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Solitons in a one-dimensional Wigner crystal
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In one-dimensional quantum systems with strong long-range repulsion particles arrange in a quasiperiodic
chain, the Wigner crystal. We demonstrate that besides the familiar phonons, such one-dimensional Wigner crystal
supports an additional mode of elementary excitations, which can be identified with solitons in the classical limit.
We compute the corresponding excitation spectrum and argue that the solitons have a parametrically small decay
rate at low energies. We discuss implications of our results for the behavior of the dynamic structure factor.
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Landau’s concept of elementary excitations plays a central
role in our understanding of interacting quantum systems [1].
Even if the interaction between the constituent particles in
the system of interest is strong, low-energy excited states
can be described in terms of weakly interacting elementary
excitations. In this paper we study elementary excitations of
a one-dimensional quantum system with strong long-range
repulsion. Properties of such systems are dominated by the
interaction, and can often be understood from semiclassical
considerations. For example, the particles, regardless their
statistics, are expected to form a configuration that minimizes
the potential energy. Such minimal-energy configuration is,
obviously, an equidistant chain [2–5]. In the case of electrons
interacting via the Coulomb potential such periodic structures
are usually referred to as Wigner crystals [2,6]; here we adopt
this term for systems of particles of any nature with strong
long-range repulsion. Although quantum fluctuations destroy
the long-range order in the one-dimensional Wigner crystal
[3], the distances between neighboring particles remain close
to their mean value 1/n0, where n0 is the particle density.

Classical one-dimensional Wigner crystals support propa-
gation of harmonic waves of density. Their dispersion relation
at low wave numbers q � n0 reads

ω(q) = vq[1 − χ (q/n0)2], (1)

where v is the sound velocity and χ is a positive dimensionless
coefficient that depends on the functional form of the
interaction potential, but not on its strength [4]. In a quantum
system, the wave with frequency ω and wave number
q corresponds to a phonon with energy εph = �ω and
momentum p = �q. The phonon spectrum εph(p) = �ω(p/�)
is a concave function of p. Therefore, energy and momentum
conservation laws forbid interaction-induced decay of
phonons at zero temperature [4,5].

The nonlinear correction in the phonon spectrum εph(p)
is small, and can often be neglected, which amounts [3]
to the Luttinger liquid [7] approximation. It is well known
[8] that the interaction between phonons in the Luttinger
liquid, although irrelevant in the renormalization group sense
[7], leads to divergences in perturbation theory [8]. This
difficulty is resolved [9] by describing the system in terms of
effective spinless fermions rather than phonons. Accordingly,
elementary excitations at p → 0 are fermionic quasiparticles

and quasiholes [9] with energies given by

ε±(p) = vp ± p2

2m∗
. (2)

Here m∗ is the effective mass [8–10], which can be estimated
as m∗ ∼ m

√
K [4], where m is the mass of the constituent

particles and K = π�n0/mv is a dimensionless parameter
characterizing the interaction strength. For the Wigner crystal
K � 1.

Similar to phonons, the spectrum of the quasiholes ε−(p)
is a concave function of p, hence the quasiholes do not
decay at zero temperature. It is therefore natural to view the
phonons and the quasiholes as the same branch of elementary
excitations, but in different regimes. The crossover between
these regimes occurs at momenta of order p∗ defined by
the equation εph(p∗) = ε−(p∗), which yields the estimate
p∗ ∼ �n0

√
K [4]. The crossover separates the classical regime

at p � p∗ from the quantum regime at p � p∗. Indeed,
unlike phonons, the fermions do not allow for a classical
interpretation. Note also that the wave number corresponding
to the crossover momentum, p∗/�, vanishes in the classical
limit K ∝ � → 0, leaving no room for the quantum regime.

A new element in the quantum regime p � p∗ is the
emergence of the second excitation branch, the quasiparticle
excitation with spectrum ε+(p), see Eq. (2). It is then natural
to ask whether the Wigner crystal supports a second, distinct
from the phonons, excitation mode at relatively high momenta
p � p∗, beyond the range of applicability of Eq. (2). The main
goal of this paper is to show that such excitations indeed exist
and can be interpreted as solitons on the classical side of the
quantum-to-classical crossover.

We model our strongly interacting one-dimensional quan-
tum system by the Hamiltonian

H =
∑

l

p2
l

2m
+ 1

2

∑
l 	= l′

V (xl − xl′). (3)

Here xl and pl are the coordinate and momentum of the lth
particle satisfying the usual commutation relations [xl,pl′ ] =
i� δl,l′ . We assume periodic boundary conditions and consider
the thermodynamic limit when both the number of particles
N0 and the system size L0 are taken to infinity, with the density
n0 = N0/L0 kept fixed.

For excitations with wavelengths much larger than the
distance between the particles 1/n0, including excitations
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with momenta of order p∗ � �n0, the Wigner crystal can be
treated as a continuous medium. Such continuum description
is obtained by expanding the Hamiltonian (3) in powers of the
displacements ul = xl − l/n0 and replacing the sums over l

and l′ by integrals. Substituting ul′ − ul = (l′ − l)∂lu + 1
2 (l′ −

l)2∂2
l u + . . . , one obtains the gradient expansion H = H0 +

H1 + . . .. The leading term in this expansion corresponds
[3] to the Luttinger liquid [7] approximation. Changing the
integration variable to y = l/n0, we write this term as

H0 =
∫

dy

[
p2

2mn0
+ mn0v

2

2
(∂yu)2

]
, (4)

where the displacement field u and the conjugate momentum
density p satisfy [u(y),p(y ′)] = i� δ(y − y ′).

The Hamiltonian (4) describes the strongly interacting
quantum fluid in terms of the Lagrangian variables [11,12],
in which the position of the fluid element is specified by the
reference coordinate y rather than by the physical coordinate
x(y) = y + u(y). A subtle point in this description is the
form of the momentum operator. The total momentum P =∫
dy p(y) can be written as a sum of two terms, P = P + P0.

Here

P = −
∫

dy (∂yu) p(y) (5)

is the continuum version of the quasimomentum [13], and
P0 accounts for the reciprocal lattice vector of the one-
dimensional Wigner crystal; its eigenvalues are integer mul-
tiples of 2π�n0. In the continuum description excitations
with wavelengths of order 1/n0, responsible for the umklapp
scattering [5], are neglected, and both P and P0 commute with
the low-energy Hamiltonian. Excitations near zero momentum
ground state correspond to P0 = 0, which gives P = P for the
total momentum.

It is convenient to write u and p as

u = −
√

K

2πn0
(ϕ+ + ϕ−), p = �n0

2
√

K
∂y(ϕ+ − ϕ−), (6)

where the right/left-moving bosonic fields ϕ± satisfy
[ϕ+,ϕ−] = 0 and [ϕ±(y),ϕ±(y ′)] = ± iπ sgn(y − y ′). Substi-
tution into Eqs. (4) and (5) yields

H0 = v(P+ − P−), P = P+ + P−, (7)

where P± = ± �

4π

∫
dy(∂yϕ±)2 are the momenta of the

right/left-moving excitations.
Nonlinear corrections to spectra in Eqs. (1) and (2) arise

due to higher-order terms in the gradient expansion. The two
leading contributions of this type read

H1 = �
2

12πm∗

∫
dy[(∂yϕ)3 − a∗(∂2

yϕ)2], (8)

where ϕ = ϕ+ + ϕ−, m∗ is the effective mass [9], and a∗
the emergent length scale. For the interaction potential V (x)
in Eq. (3) decaying as 1/x3 or faster the length scale a∗ is
finite and can be estimated as a∗ ∼ (n0

√
K )−1 [14]. The two

terms in the right-hand side of Eq. (8) describe the leading
nonlinearity and dispersion, respectively. The first term in
Eq. (8) has lower scaling dimension and thus represents
the leading irrelevant correction to H0 at small momenta

p � �/a∗. Moreover, in order to obtain the leading nonlinear
corrections to the excitation spectra, it is sufficient [9] to
retain in H1 contributions proportional to (∂yϕ±)3. With this
approximation, H0 + H1 can be rewritten [9,15] in terms
of effective noninteracting fermions, which leads to Eq. (2)
for the spectra of the elementary excitations. Conversely,
at relatively large momenta p � �/a∗ it is the dispersion
that has the dominant effect. With the nonlinearity term in
Eq. (8) neglected, the Hamiltonian H0 + H1 is quadratic, and
one finds Eq. (1) with χ = 1

3π
K(m/m∗)(a∗n0), resulting in

p∗ = 3�/2a∗ for the crossover momentum.
To study the crossover between the quantum and classical

regimes, we focus on momenta of order p∗, where the
nonlinearity and dispersion contributions to Eq. (8) have a
comparable effect. With this in mind, we change the integration
variable to ξ = y/a∗, and write the gradient expansion of the
low-energy Hamiltonian as [14]

H = vp∗(h0 + ζh1 + ζ 2h2 + . . .), ζ = p∗
2m∗v

. (9)

Here h0 and h1 follow directly from Eqs. (4) and (8),
respectively, and have a universal, i.e., model-independent,
form. The operators h0 and h1 are given by integrals of
(∂ξϕ+)2 + (∂ξϕ−)2 and (∂ξϕ)3 − (∂2

ξ ϕ)2, respectively. On the
other hand, the operator h2 consists of integrals of (∂ξϕ)4,
(∂ξϕ)2(∂3

ξ ϕ), and (∂3
ξ ϕ)2 with model-dependent coefficients of

order unity [14]. The parameter ζ in Eq. (9) characterizes the
relative magnitude of the nonlinear corrections to the excitation
spectra at the quantum-to-classical crossover. At small K the
ratio ζ/K depends on the functional form of the interaction
potential in Eq. (3), but is independent of its strength [14].
Careful analysis [14] shows that the expansion (9) is justified
provided that both K and ζ are small.

Consider now a state with a single right-moving excitation,
such that 〈P+〉 ∼ p∗ and 〈P−〉 = 0. In this state the expectation
values of the operators hn are of order unity for all n. Equation
(9) then yields the expansion of the energy in powers of ζ .
Keeping the first two terms in this expansion is sufficient to
lift the degeneracy between the two excitation branches. These
terms correspond to the model-independent contributions h0

and h1 in the expansion (9). Therefore, with corrections of
order vp∗ζ 2 neglected, the excitation spectra can be written as

ε±(p) = vp + p2
∗

2m∗
e±(p/p∗). (10)

The crossover functions e±(s) in Eq. (10) are the same for all
models that admit the expansion (9). This universality in the
main result of our paper.

Because of their universality, it is sufficient to compute the
functions e±(s) for any model that has a Wigner crystal limit.
Here we consider the hyperbolic Calogero-Sutherland model
[16,17]

V (x) = �
2

ma2
0

λ(λ − 1)

sinh2(x/a0)
(11)

in the regime λ � eα , where α = (a0n0)−1 � 1. In this regime
both K = πeα(4α2λ)−1 and ζ = 3eα(8πλ)−1 [14] are small,
which guarantees the applicability of the expansion (9). The
model is integrable [16,17], and its excitation spectra can be
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found exactly by asymptotic Bethe ansatz [17]. Evaluation of
the spectra at p ∼ p∗ proceeds in the same fashion as a similar
calculation for the Lieb-Liniger model [18] and results in the
crossover functions e±(s) in parametric form,

s(τ ) = ±
∫ ± τ

0
dt f (t), e±(τ ) = 2π

3

∫ ± τ

0
dt s(t), (12)

where τ > 0. The function f (t) in Eq. (12) is analytic at all
real t and is given by

f (t) = 1

3
√

2π

∫ ∞

0

dz

z1/2
sin(2πz)�(z) e−z(ln z−1−2πt) (13)

at t < 0 and

f (t) = 1

3
√

2π
−
∫ ∞

0

dz

z3/2

[
1 − πez(ln z−1−2πt)

tan(πz)�(z)

]
(14)

at t > 0. Simple poles in the integrand of Eq. (14) are
understood as Cauchy principal values. On the quantum side
of the crossover Eqs. (12)–(14) yield

e±(s) = ± s2 − 1

3
s3 + . . . , s � 1, (15)

in agreement with Eq. (2). On the classical side of the crossover
we find

e+(s) = 3

5

(
2π

3

)2/3

s5/3 − 2

9
s + . . . , s � 1, (16a)

e−(s) = − s3 − 2

3
s + . . . , s � 1. (16b)

The first terms in the right-hand sides of Eqs. (16a) and
(16b) have a purely classical origin, whereas the second ones
represent the leading quantum corrections. The classical con-
tributions can be obtained [17] by solving classical equations
of motion instead of resorting to Bethe ansatz. In the regime
we consider, the sinh function in Eq. (11) can be approximated
by exponential, and the sum in the potential energy term
in Eq. (3) can be restricted to nearest neighbors. Thus, the
hyperbolic Calogero-Sutherland model reduces [17] to the
Toda lattice model [19]. The corresponding classical equation
of motion, the Toda equation [19], has two kinds of solutions,
the harmonic waves and the solitons [19]. Converting solutions
of the Toda equation to the excitation spectra results [17] in
Eq. (10) with e±(s) approximated by the leading terms of the
asymptotes (16a) and (16b). As expected, fermionic quasiholes
on the quantum side of the crossover turn to phonons on its
classical side, see the discussion above. At the same time,
fermionic quasiparticles morph to the classical Toda solitons.

The spectra ε±(p) reveal themselves in the behavior of the
dynamic correlation functions, such as the dynamic structure
factor S(p,ε) defined as the Fourier transform of the density-
density correlation function. At zero temperature most of the
spectral weight of S(p,ε) is confined between ε−(p) and
ε+(p) [8,10,20,21]. Indeed, at ε < ε−(p) the structure factor
vanishes identically because ε−(p) represents the exact finite-
momentum ground state of the system [8,20]. At ε > ε+(p),
on the other hand, the structure factor differs from zero due to
the interaction between the right and left movers [20–22].
The corresponding coupling constant is proportional to ζ ,
hence S(p,ε) at ε > ε+(p) is suppressed by the factor ζ 2. At

0 1 2 3
1

0

1

2

(a)

εε+ε−

p p∗S

p p∗S

εε+ε−

(c)

(b)

FIG. 1. (a) Exponents characterizing power-law singularities in
the dynamic structure factor S(p,ε) at ε → ε±(p), see Eqs. (17) and
(18). (b) Sketch of the dependence of S(p,ε) on ε at p � p∗. In this
regime the spectral weight is spread almost uniformly between ε−(p)
and ε+(p), as expected for weakly interacting fermions. (c) At higher
p the spectral weight shifts towards the phonon line ε = ε−(p), and at
p � p∗ the dynamic structure factor S(p,ε) resembles a δ function.

ε approaching ε±(p) the structure factor exhibits power-law
singularities [8,20,21]

S(p,ε) ∝ |ε − ε±(p)|μ±(p/p∗). (17)

The exponents μ± in Eq. (17) can be expressed via the spectra
ε±(p) [8,23]. Substituting ε±(p) in the form of Eq. (10) into
the relations derived in Refs. [8,23], we arrive at

μ±(s) =
[

2s

e′±(s)

]2

− 1, (18)

where e′
±(s) = de±/ds. The functions μ±(s) are plotted in

Fig. 1(a). In the quantum regime, s � 1, Eq. (18) yields
μ±(s) = ± s, as expected for fermions with weak repulsive
interaction [8,20]. The resulting dependence of S(p,ε) on ε

is sketched in Fig. 1(b). In the classical regime, s � 1, the
exponent μ+ grows as s2/3, whereas μ− approaches −1. The
latter behavior is consistent with the expectation that in the
classical limit the structure factor is confined to the phonon
branch, S(p,ε) ∝ δ[ε − ε−(p)], see Fig. 1(c).

In the hyperbolic Calogero-Sutherland model the quasi-
particles/solitons are protected from inelastic decay by in-
tegrability: these are not merely elementary excitations, but
exact eigenstates. In a generic Wigner crystal, however,
these excitations acquire a finite decay rate �/�, and the
singularity at ε → ε+ in Eq. (17) is smeared by �. The
decay is caused by nonuniversal terms in the expansion (9),
such as h2. Accordingly, in the generic case the on-shell
scattering amplitude for excitations with momenta p ∼ p∗ is
proportional to ζ 2. Therefore, at p ∼ p∗ the broadening �

is expected to be small compared with δε = ε+ − ε−, which
is first order in ζ .

An estimate of � can be obtained with the help of
the results of Ref. [24] which express the decay rate of
the fermionic quasiparticles in terms of the corresponding
spectrum. Substituting ε+(p) in the form (10) with e+(s) given
by Eq. (15) into the relations derived in Ref. [24] we obtain
[14,25]

�(p) = gζ 5vp∗(p/p∗)8, p � p∗. (19)
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The dimensionless coefficient g in Eq. (19) is the functional
of the interaction potential in Eq. (3). It vanishes identically
for the hyperbolic Calogero-Sutherland model (11), but is of
order unity for a generic potential [14]. Extrapolating Eq. (19)
to p ∼ p∗ yields the estimate

�(p∗)

δε(p∗)
∼ ζ 4. (20)

This estimate shows that the quasiparticle/soliton excitation
not only remains well defined at the quantum-to-classical
crossover, but can be readily distinguished from the quasi-
hole/phonon excitation. Moreover, it is reasonable to assume
that the dependence of the ratio �/δε on p is smooth and
featureless. The estimate (20) then strongly suggests that the
inequality �/δε � 1 holds also on the classical side of the
crossover p � p∗, breaking down at p ∼ p∗∗ � p∗. Finding
p∗∗ is beyond the scope of this paper.

Our results are applicable to strongly interacting one-
dimensional systems with interaction potential V (x) decaying
as 1/x3 or faster, irrespective of the statistics of the constituent
particles. These results can be tested in experiments with
quantum wires in the Wigner crystal regime [2,26]. The
spectra of elementary excitations can be studied by measur-
ing momentum-resolved tunneling between parallel quantum
wires [27], and the dynamic structure factor is accessible [22]

via measurements of the Coulomb drag effect [28]. It should
be noted that in the classical regime p � p∗ the phonons
dominate the structure factor, whereas the solitons have a
negligible effect. The solitons, nevertheless, do exist in the
classical regime as well. Their observation, however, would
require probing the system beyond linear response. Consider,
for example, the evolution in time of an initially localized
density perturbation [29]. Such perturbation would break
up into elementary excitations, i.e., phonons and solitons.
Because the solitons propagate with supersonic velocities,
they will reach remote parts of the system faster than the
phonons, and their early arrival can in principle be detected in
time-resolved charge transport experiments [30].

To summarize, in this paper we demonstrated that in
addition to phonons, one-dimensional Wigner crystals support
a second mode of elementary excitations. This mode is
identified with solitons in the classical regime, and crosses
over to fermionic quasiparticle excitations in the quantum
regime of low momenta. The quantum-to-classical crossover
in the excitation spectra is described by universal crossover
functions, which we found analytically.
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