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Mass-profile quantum dots in graphene and artificial periodic structures
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We analyze the bound-state spectra of mass-profile quantum dots in graphene, a system at current experimental
reach. Homogeneous perpendicular magnetic fields are also considered which result in breaking the valley
degeneracy. The spectra show rich features, arising from the chiral band structure of graphene and its Landau
levels and we identify three different regimes depending on the ratio between the radius of the dot and the
magnetic length. We further carry out a comparison with potential-well quantum dots discussed in Recher et al.
[Phys. Rev. B 79, 085407 (2009)] and conclude that mass confinement may offer significant advantages for
optical applications in the THz and infrared regime. Also due to experimental advances, we additionally analyze
the band structure of a linear chain of mass-profile quantum dots, where overlap-assisted hopping processes play
a major role for closely packed arrays. The inclusion of Coulomb interactions between electron-hole pairs of
adjacent sites leads to a new regime where Förster transfer processes become dominant.
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I. INTRODUCTION

Due to the chiral nature of its carriers, gapless graphene
cannot confine electrons via a lateral electrostatic potential
[1,2]. Several setups have been found to tackle this problem,
producing nanostructures of graphene in form of quantum
dots [3,4] or nanoribbons [5,6]. Moreover, confining Dirac
electrons in rings with edge reconstruction [7–9], inhomo-
geneous constant magnetic fields [10–12], superlattices over
different substrates [13–15] with a modulated Fermi velocity
[16] or scalar potential [17], as well as nanohole patterning
[18] and topological mass terms [19–22] have been discussed.
Achieving this gap opening is essential in regard to the design
of nanodevices or possible applications to quantum computing
[23,24].

Once we count on the possibility of opening a gap and
confining electronic states, the ability to control the level
degeneracy is of high interest. As an example, valleytronic
devices [25] or spin qubits [24,26] usually require a lifted
valley degeneracy to be engineered, although some alternatives
have been proposed recently [27]. This, in turn, is achievable
by means of magnetic fields [7,28] or etching graphene ribbons
with armchair boundaries [24].

In this paper, we study yet another alternative to confine
electrons in graphene consisting in a position-dependent gap.
This possibility was first discussed in the context of infinite-
mass boundaries by Berry and Mondragon and was mainly
motivated by theoretical considerations [29]. Other works have
also analyzed the spectra of circularly shaped finite-mass pro-
files in the presence of electromagnetic fields [30–32]. Here our
renewed interest is based on recent experiments on graphene on
top of an Ir(111) substrate covered by iridium clusters. Covered
and uncovered regions show different particle gaps, but the
substrate and the clusters leave graphene’s linear spectrum
almost unaffected [13]. Quantum dots confined by a finite
mass-boundary thus can be designed with nanosize accuracy
where the local change in the one-particle gap is introduced by
the removal of substrate clusters selected at will by a scanning
tunneling microscope (STM) tip [33]. So different quantum dot
sizes and geometries are within reach and shall be discussed
here.

In particular, we will study the bound-state spectrum of a
circular dot as a function of the radius and the magnetic field
dependence. We will further establish a comparison between
our system, i.e., mass-profile quantum dots (MP-QDs), and a
potential-well quantum dot (PW-QD) previously characterized
in Refs. [28,34]. We discuss their similar dependence on the
dot size and the magnetic field and that the valley degeneracy
splits proportionally to B in both cases. On the other hand,
we note several differences between them, e.g., the spectrum
of MP-QDs being particle-hole symmetric and less dense,
thus being more susceptible to optical experiments. Dealing
with a simpler level structure may be advantageous also for
applications, which endorses the interest in featuring MP-QDs.
Finally, we relate the properties of the spectra obtained at high
B fields to the nontrivial Berry phase of π in graphene. This
gives rise to striking differences with respect to quantum dots
hosted by other systems like a conventional two-dimensional
(2D) electron gas. We emphasize the novelty of this regime,
which has not been addressed in the aforementioned related
works and might be at experimental reach also in systems with
high local strains [35].

At last, again due to the experimental feasibility to create
periodic arrays of identical nanostructures and in regard to
possible applications like those introduced in Ref. [36], a
linear chain of MP-QDs is analyzed. Its band structure is
calculated for a fixed radius R as a function of the lattice
parameter D, and the relevance of overlap-assisted hopping
processes is discussed for closely packed arrays. Single-
particle processes such as hopping or spontaneous decay rates
are compared to excitonic processes. Varying the distance
between the dots allows us to tune to a Frenkel excitonic
regime which can be described by a bosonic tight-binding
Hamiltonian.

The paper is organized as follows. In Sec. II, we present
the model for mass-profile quantum dots and its solution. In
Sec. III A, we discuss the spectrum at B = 0 for MP-QDs
and PW-QDs, whereas in Sec. III B we extend this analysis
to B �= 0. Section IV A focuses on a MP-QD one-dimensional
linear chain, and in Sec. IV B the Coulomb interaction between
electrons is included. We summarize our conclusions in Sec. V.
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In three appendices, we present details of the solution of the
eigenvalue problem and define the tight-binding model for
arbitrary arrays of MP-QDs.

II. THE MODEL

We shall consider graphene with a position-dependent gap
2�(r). The Hamiltonian can be written as

Hτ = H0 + τ�(r)σz, (1)

with

H0 = vF ( �p + e �A) · �σ , (2)

�B = ∇ × �A = (0,0,B), (3)

where �σ = (σx,σy) and σz are the Pauli matrices, vF =
106 m/s is the Fermi velocity, e > 0, and the index τ = ±1
labels the valleys.

The mass profile is considered to be circularly symmet-
ric and steplike, �(r) = m1v

2
F �(r − R) + m2v

2
F �(R − r),

where R is the radius of the quantum dot. It can be solved
by exploiting the rotational invariance, [Jz,Hτ ] = 0, with
Jz = −i∂φ + σz/2 the total angular momentum—orbital plus
lattice—projected onto the ẑ direction. So in polar coordinates,
the eigenvectors can be written as

ψτ (r,φ) = ei(j−1/2)φ

[
χτ

A(r)
χτ

B(r)eiφ

]
, (4)

where j is a half-odd integer. With Eq. (4), the eigenvalue
problem of the Hamiltonian, Eq. (1), can be written as

r2∂2
r χτ

σ (r) + r∂rχ
τ
σ (r) = (

b2r4 + aσ r2 + n2
σ

)
χτ

σ (r), (5)

where σ = ±1 corresponds to the A/B sublattice. We have
also defined

aσ = 2b(j + σ/2) − (E2 − �2)/(�vF )2, (6)

� = mv2
F , nσ = |j − σ/2| , b = eB

2�
. (7)

The solutions of Eq. (5) are given in Appendices A and B
for nonzero magnetic field B �= 0 and B = 0, respectively.
The matching conditions imposed on Eq. (4) at r = R, also
detailed there, yield the bound-state energies. The eigenstates
will be labeled as |τ,j,n〉, with n ordering them in ascending
absolute value of the energy.

A similar model was recently studied in Ref. [28],

Hτ = H0 + τ�0σz + U (r), (8)

with a steplike electrostatic, rotationally invariant potential,
U = �(R − r)U0 (U0 < 0). Unlike in the case of a MP-QD,
Eq. (1), the gap of a PW-QD, �0, is not position dependent,
whereas H0 is again given by Eq. (2). The differences are
sketched in the insets of Fig. 1, which outline the spectrum
of the two different quantum dots, considered throughout this
work.

The relation between the eigenfunctions of Eqs. (1) and (8)
is discussed in Appendices A and B, as well as the symmetries
they display. Further discussion about the spectra is held in the
subsequent sections.
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FIG. 1. (Color online) Spectra of a circular MP-QD (upper panel)
and a PW-QD (lower panel) for B = 0. The values of j respective
to τ = 1 label the most bounded energy levels. Insets: Diagrams of
the bound-state levels in the mass and potential well. The shadowed
region corresponds to forbidden values of the energy, and the colored
lines inside the wells represent bound states. The electron- (red) hole
(blue) symmetry is only present in the MP-QD.

The mass profile in graphene can be achieved when placing
it on an Ir(111) substrate and subsequently covering graphene
with Ir or W clusters. Graphene on Ir(111) displays a small
gap of ∼50 meV due to the Moiré lattice structure formed by
the graphene layer with the substrate, defining a superlattice
constant of 2.5 nm. Due to a change in the graphene lattice
structure from sp2 to sp3 bonding in the covered region [37],
this gap is augmented from 50 to 400 meV. In Ref. [33], it
was demonstrated that the upper metal clusters of the size
of the Moiré superlattice can be removed by an STM tip at
will, thus opening up the possibility of creating mass-confined
quantum dots of arbitrary size up to nanometer accuracy.
Throughout the article, we will therefore use the values found
in photoemission spectroscopy experiments [13], i.e., �1 =
m1v

2
F = 0.025 eV and �2 = m2v

2
F = 0.2 eV. In the PW-QD,

we choose a confining potential U0 = (�1 − �2)�(r − R)
which guarantees the the same well depth as in the MP-QD.

III. ELECTRONIC SPECTRUM OF A SINGLE
QUANTUM DOT

A. B = 0 case

Let us first discuss the spectra in the absence of magnetic
fields. Results are plotted in Fig. 1. As is proved in Appendix B,
the levels are doubly degenerate,

E(τ,j ) = E(−τ,−j ), (9)

reflecting the time-reversal symmetry that connects the two
valleys. Only for MP-QDs is the electron-hole symmetry also
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present,

E(τ,j ) = −E(−τ,j ), (10)

while it is absent in the case of PW-QDs (cf. also the discussion
in Appendix B and the insets of Fig. 1). This aspect implies a
striking difference: MP-QDs can host confined electron-hole
pairs, whereas they are not present in PW-QDs.

Further comparing the spectra of MP-QDs and PW-QDs,
one can notice a higher confinement of the states of the latter.
This implies a denser spectrum of PW-QDs for the same depth
of the mass and potential well. In turn, the larger level spacing
makes MP-QDs more accessible for optical spectroscopy.

For experimentally realizable MP-QDs with R � 10 nm,
intraband transitions between bound-state levels have a fre-
quency of the order of 10 THz, enabling our system to support
terahertz optical applications. For MP-QDs with R � 6 nm,
only one bound state in the conduction band is present,
defining a possible qubit which can be optically turned on
(electron-hole pair creation) and off (neutral ground state).
Furthermore, excitonic effects lifting the valley degeneracy
could manifest many-body effects also in the THz range,
promoting the system as an experimentally realizable probe
for interactions in quantum dots, including electron-phonon
coupling [38].

B. B �= 0 case

In Fig. 2, we show the spectra of a MP-QD (upper panel)
and a PW-QD (lower panel) as a function of the radius for
zero and nonzero magnetic field B. We observe a splitting
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FIG. 2. (Color online) Splitting of the valley degeneracy of a
circular MP-QD (upper panel) and a PW-QD (lower panel) when
a perpendicular magnetic field is applied. Blue lines correspond to
B = 0, and they split into black (τ = 1) and red (τ = −1) lines when
applying B = 4T. For clarity, only levels with |j | = {1/2,3/2} (labels
of the curves) have been plotted. In the insets, where the full spectra
at B = 0 is shown, they are highlighted in blue.

between levels belonging to different (τ = ±1) valleys which
is proportional to the magnitude of the applied magnetic field.
For B = 4 T, we can achieve a splitting up to 2 meV (THz
regime) for quantum dots with only one bound state (i.e.,
for R � 6 nm). Remarkably, the splitting of the levels is
considerably larger in the MP-QD.

These plots also show that if levels belong to different
valleys, their energies are modified by the magnetic field in a
different manner. Whereas every τ = +1 level rises with B,
some τ = −1 ones are lowered, i.e., become more confined.
Interestingly, for some R values for which there were an
equal number of τ = ±1 states at B = 0, we observe that
new τ = −1 states appear and other τ = +1 states vanish
when applying a sufficiently high magnetic field. The opposite
happens in the valence band. As we will see later, this fact
will be relevant to explain the spectrum for R � lB , with the
magnetic length lB = √

�/(eB).
In Fig. 3, we present the spectra as a function of the fixed dot

radius R over the magnetic length lB . They show more clearly
one of our previous considerations concerning the appearance
and disappearance of states with different valley index, see
Fig. 2, i.e., as long as B is increased for a fixed R, some
τ = +1 levels are no longer bound states, whereas others with
τ = −1 enter the well. Remarkably, one can appreciate three
(and not two, as usual) different regions in these plots for both
the MP-QD and the PW-QD: (i) for B → 0, we recover the
degenerate spectrum, in which the level spacing does not seem
to have a definite structure. (ii) As soon as B is sufficiently
large, the levels converge to straight lines and to the bottom
of the well. (iii) For greater values of B, only bound states
with τ = −1 are allowed in the conduction band, see left
panels of Fig. 3. In this last case, for energies not close to the
top or the bottom of the well, we encounter equally spaced
nondegenerate levels. Near the bottom, we can notice how
a growing number of states with B converge to the lowest
possible energy. We will devote part of this section to discuss
the emergence of these patterns featured in points (ii) and (iii).

Concerning the intermediate region (ii), Fig. 3 resembles
a typical Fock-Darwin spectrum [20,39] the potential well or
the mass profile playing the role of the harmonic potential in
that model. In this regime, the energy term corresponding to
B dominates over the well depth. This is confirmed by the
dependence

|En| =
√

�2 + 2n (�vF /lB)2 (11)

(n � 0 refers to the nth asymptote), revealing a structure
characteristic of Landau levels in gapped graphene [40,41].
The existence of the lowest Landau level is of particular
relevance, since it is responsible for the structure of the
spectrum for large B, as discussed below.

The degeneracy of the Landau levels in this region is also
noteworthy, which is proportional to the magnetic flux through
the system. One can verify this dependence in Fig. 3: While B

is increased, more τ = −1 levels appear inside the wells and
converge asymptotically to graphene Landau levels, providing
them with the required degeneracy.

For B greater than a critical value

Bc 

(
m2

2 − m2
1

)
v2

F

2e�

 30 T, (12)
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FIG. 3. (Color online) Upper panels: MP-QDs. Lower panels: PW-QDs. Left panels: Spectra for R = 10 nm (R = lB ⇒ B = 6.6 T). Right
panels: Spectra for R = 40 nm (R = lB ⇒ B = 0.41 T). Black (red) corresponds to τ = (−)1 valley. Convergence to Landau levels (bottom
of the well and dashed blue lines) can clearly be appreciated. The spectrum structure with only τ = −1 levels and approximately equidistant
energy levels appears for B > Bc, see Eq. (12).

only the lowest Landau level will remain, see Fig. 3. We
encounter the aforementioned region (iii) with only τ = −1
states. Our previous considerations on the degeneracy explain
the level structure of this part of the spectrum. As long as B is
increased, a constant income of levels is needed to guarantee
that the lowest Landau level is degenerate enough. As a result,
our quantum dots show an excited spectrum of equally spaced
levels that will converge to the bottom of the well at higher
B. Their difference in energy can be tuned with the radius,
since a higher area A increases the degeneracy of Landau
levels, in turn implying a greater density of incoming states.
Experiments with graphene have been carried out for values
of B � Bc [42], so this regime may be observable for our
values of �1 and �2. As an alternative, pseudomagnetic fields
exceeding Bc could be induced by strain [35].

As we have seen, the chiral nature of graphene’s carriers
manifests itself in the results. The presence of a Landau level
whose energy is B independent is the most determinant feature
in the quantum dot spectrum. It guarantees the existence
of bound states at arbitrarily high values of B with the
structure of the third region discussed before. This is in stark
contrast to quantum dots of ordinary 2D semiconductors,
where no bound states exist beyond some critical Bc. The
approximate equidistant level structure might be useful for
optical experiments in the THz regime, inducing transitions
between several adjacent levels. Since conduction and valence
bands host bound states of opposite valleys, no interband
transitions are allowed.

IV. ARRAYS OF MP-QDS

The controlled removal of metal clusters on top of graphene
placed on an Ir(111) substrate allows for creating artificial

periodic lattice structures within the nanoscale [33]. In this
section, we will thus focus on linear chains of MP-QDs, setting
with this elementary example the proceedure to analyze more
complicated one- or two-dimensional arrays. For the sake of
simplicity, we fix the dot radius R = 6.5 nm, which implies
dealing only with a single bound state (cf. Fig. 1) per band.
Our aim is to carry out a tight-binding calculation considering
both the valence and the conduction band. Later, we will also
add the Coulomb interaction between the excitations hosted in
different dots.

A. One-particle physics

We start our analysis by considering two MP-QDs whose
centers are separated by a distance D. It turns out that the over-
lap λ of the two wave functions is not negligible for D close
to 2R. This is demonstrated in Fig. 10. Although its square is
smaller, we will not neglect it for the moment. Actually, we
will show below that its contribution will be relevant for an
array of quantum dots with a small lattice parameter D 
 2R.
Henceforth, only O(λn) terms with n � 3 will be discarded
unless the contrary is specified. This introduces an error of
less than 1%, see the lower panel of Fig. 5.

A sketch of all different processes that can take place
between the two MP-QDs is shown in Fig. 4. In Appendix C,
we demonstrate that the probability amplitudes of the hopping
processes ξ , κ , μ and λκ are relevant, whereas η, the electron-
hole annihilation, can be shown to be precisely zero. λκ is a
term of the order of λ2 (cf. Fig. 5). It is not a direct hopping
parameter like {η,κ,μ} but a hopping process provoked or
assisted by the overlap.

The upper panel of Fig. 5 shows the spectrum of the double
well as a function of the distance between the centers. There it
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Process 2

Process 1

2Δ1 2Δ2

FIG. 4. (Color online) Outline of different hopping processes
between two MP-QDs. Left-hand side: Single-particle processes.
γ0 is the spontaneous decay, Eq. (19). Right-hand side: Interaction
processes.

can be seen that considering or neglecting terms of the order
of the overlap squared does not alter the values of the energies
considerably. Nevertheless, the situation will differ in periodic
arrays of quantum dots closely packed, as we will discuss
below.

In Appendix C, we define a tight-binding model for a
linear chain of MP-QDs with R = 6.5 nm. The resulting bands
appear in Fig. 6, ranging from dispersive to flat with the
increase of D. The gaps and carrier effective masses are thus
tunable with the lattice parameter.

FIG. 5. (Color online) Upper panel: Bound-state energies of two
nearby MP-QDs. Red: Bound-state energy of a single well. Black
(blue): Bound-state energies neglecting the overlap squared (cubed)
of the wave functions. For more details, see Appendix C. Lower
panel: Comparison between the hopping processes depicted in Fig. 4
(with the same color code). h labeling the vertical axis refers to κ ,
μ, and ξ . The strong (light) shadowed region corresponds to values
below the overlap cubed (squared).

FIG. 6. (Color online) Bands of a one-dimensional chain of
quantum dots. From wider to narrower bands, dashed black: D = 2 R;
blue: D = 2.1 R; red: D = 2.3 R; green: D = 2.7 R; solid black:
D = 3.5 R; orange: D = 4.5 R; magenta: D = 6 R. Terms of higher
order than the overlap squared (cubed) are neglected in the upper
(lower) panel. The inset plots a close view of the D = 2 R curve,
showing its negative curvature at k = 0.

Clearly, for a lattice parameter close to the dot diameter, the
effect of the overlap on the band structure is significant. This
is mainly due to the next-nearest neighbor hopping assisted
by λ, see Fig. 11 and the discussion in Appendix C. Note
that this effect cannot take place in a double well and this
explains why the influence of the overlap-assisted processes
on the eigenenergies was much weaker.

As a result, the effective mass m∗ of the carriers with
k 
 0 is strongly renormalized by λ. Remarkably, for a closely
packed chain, the overlap-assisted processes give rise to a
change of sign in the curvature of the bands around k = 0 (see
inset of Fig. 6). For low densities, the ground state is thus
given by a Fermi ring [43] and shows that the implications
of considering second-order processes in a tight-binding
approach go beyond a mere correction in eigenenergies.

B. Coulomb interaction

The second part of this section aims to include Coulomb
interactions in our system. Processes like those depicted on
the right-hand side of Fig. 4 come into play. Their rates γC can
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be calculated with the help of Fermi’s golden rule,

γC = 2π

�
|〈f |Vint|i〉|2Ff i, (13)

where Vint is the Coulomb interaction and Ff i the generalized
δ function, see Eq. (15) [44]. |i〉 (|f 〉) refers to the initial (final)
state of the transition which is a two-particle—electron-hole—
state,

|E �Ra〉 ⊗ |E′ �Rb〉, (14)

where, in turn, |E �Rα〉 describes the eigenstate with energy E of
a single well centered at �Rα . Since we are dealing with only a
single bound state per well in the valence and conduction band,
and since the Coulomb interaction does not couple valleys nor
spins, we can neglect the other quantum numbers (j , τ , spin)
that strictly label the state and only keep E and �Rα in Eq. (14).
In the overlap factor

Ff i =
∫ ∞

−∞
dε ρi(ε)ρf (ε), (15)

a Lorentzian was considered for the density of states of the |i〉
(|f 〉) level, whose energy is centered at Ei(f ):

ρi(f )(ε) = 1

π

�

[ε − Ei(f )]2 + �2
. (16)

A typical broadening of � = 10 meV was used [45].
Process 2 in Fig. 4 is an example of Förster transfer [46]. In

this case, one can approximate the matrix element in Eq. (13)
by its multipolar expansion,

〈f |Vint|i〉 
 1

4πε0

D �μa · �μb − 3( �μa · �D)( �μb · �D)

D5
, (17)

where �D = �Ra − �Rb, and in turn �Ra and �Rb are the centers of
the MP-QDs involved in the process. The dipole momenta are

�μj =
∫

d2r |ψ(�r − �Rj )|2(�r − �Rj ), j = {a,b}, (18)

with |ψ(�r − �Rj )|2 the density probability associated to the
single-particle bound state centered at �Rj . We checked
numerically the excellent agreement between Eq. (17) and
the exact value of the transition matrix element.

A comparison between the rates γ of all processes depicted
on Fig. 4 is shown in Fig. 7. We highlight the algebraic behavior
of the Förster transfer versus the exponential one of all the rest.
The spontaneous decay rate [46],

γ0 = ω3
0| �μ|2

3πε0�c3

 1.9 × 107 s−1, (19)

is also plotted as reference, with �μ given by Eq. (18) and �ω0

being the energy difference between the levels involved. For
D 
 7R, this indicates the existence of a regime in which
Förster transfer is the dominant process. In that case, the
particle-hole excitations have a sufficiently long lifetime to
overlap with the adjacent site to form a band. These Frenkel
excitons thus can be described by the following quasibosonic
tight-binding Hamiltonian in the diluted limit:

H 
 −
∑
〈i,j〉

[
texa

†( �Rj )a( �Ri) + H.c.
]
. (20)

FIG. 7. (Color online) Comparison between the rates γ , Eq. (13),
of single-particle and excitonic processes. The color code was
introduced in Fig. 4. It is reproduced in the inset for clarity.

Here a( �Ri) ≡ c
†
−( �Ri)c+( �Ri) annihilates and a†( �Ri) ≡

c
†
+( �Ri)c−( �Ri) creates an exciton at lattice site �Ri , where

c
(†)
+ ( �Ri) and c

(†)
− ( �Ri) are the electron annihilation (creation)

operators in the upper and lower levels of a single dot centered
at �Ri , respectively. The excitonic operators a(†)( �Ri) satisfy
bosonic commutation relations in the diluted limit [47].

The effective excitonic hopping amplitude induced by
Förster transfer is given by tex ≡ 〈+ �Rj ; − �Ri |Vint|− �Rj ; + �Ri〉,
which takes place only between nearest neighbors. Other
processes, outlined in Appendix C and which were neglected
in Eq. (20), would induce a finite lifetime of the excitons. For
lattices with D/R � 3.5, the bands turn dispersive (see Fig. 6)
and single-particle processes become dominant.

The previous considerations promote the system under
study to a highly tunable probe which can further host
collective excitations in form of interband plasmons [48,49].
The engineering of lattices exhibiting different symmetries
and dimensionality thus opens up a new scenario to explore
interactions in artificial lattices.

V. CONCLUSIONS

Motivated by recent experimental advances, we have
studied the bound-state spectra of mass-profile quantum dots
(MP-QDs) and compared it with the corresponding spectrum
of recently studied potential-well quantum dots (PW-QDs).
Both systems allow us to confine electrons in 2D and control
the lifting of the valley degeneracy by applying a perpendicular
magnetic field to the sheet. We have seen that the behavior
of their spectra as a function of the radius and the magnetic
field is similar, but the level structure of MP-QDs is somehow
simpler. This could make the latter more suitable for optical
applications in the midinfrared and THz regime. Moreover,
we have featured different regions of the spectra according
to the magnitude of the magnetic field. Besides the quantum
dot spectrum at B → 0, we have discussed the convergence to
Landau levels at intermediate values of B and the appearance
of an equally spaced level structure for large B fields. The
latter arises due to the existence of a lowest Landau level
pinned to the band edge whose energy is B independent, in
stark contrast with quantum dots hosted by conventional 2D
systems.
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In the second part, the electronic spectrum of linear chains
of MP-QDs with fixed radius R = 6.5 nm (and therefore a
single valence and conduction bound level) was discussed.
Bands of tunable gap and curvature were then obtained.
Overlap-assisted processes are shown to play a significant role
for closely packed arrays, renormalizing the effective mass of
the carriers to the extent of changing its sign for D 
 2R.
When including interactions, the engineered lattice parameter
allows us to encounter Frenkel excitons. Remarkably, a system
of bosons in a linear chain ultimately governed by efficient
Förster transfer between adjacent dots can be reproduced for

D 
 7R. Further research on the possibility of hosting Bose-
Einstein condensates in this kind of systems remains to be
explored in future works.
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APPENDIX A: WAVE FUNCTIONS OF THE BOUND STATES FOR B �= 0

In this appendix, we present the general formulas necessary to solve the eigenvalue problem of a MP-QD. The general solution
of Eq. (5) is given by

χτ
σ (r) = e−br2/2rnσ

{
ασM[qσ (m1),1 + nσ ,br2] for r � R,

βσU [qσ (m2),1 + nσ ,br2] for r > R,
(A1)

with

qσ (m) = 1

4

[aσ

b
+ 2(1 + nσ )

]
(A2)

and Eqs. (6) and (7). U and M are the confluent hypergeometric functions [50]. Since the wave function has to be nonsingular at
the origin and square integrable, U (M) can only be a solution in the region r > R (r � R). The ratio ασ/βσ is provided by the
coupled equations resulting from inserting Eq. (4) in Eq. (1).

When imposing the continuity of the wave function at the frontier r = R [51,52], the following conditions are obtained:

j > 0 ⇒ U (q1(m2),1 + n1,bR2)

M(q1(m1),1 + n1,bR2)
= τE + �(m1)

[τE + �(m2)]
[
1 − q1(m1)

1+n1

] U (q−1(m2),1 + n−1,bR2)

M(q−1(m1),1 + n−1,bR2)
, (A3)

j < 0 ⇒ U (q−1(m2),1 + n−1,bR2)

M(q−1(m1),1 + n−1,bR2)
= − (1 + n−1)q−1(m2)[τE − �(m1)]

q−1(m1)[τE − �(m2)]

U (q1(m2),1 + n1,bR2)

M(q1(m1),1 + n1,bR2)
. (A4)

They yield the allowed energies of the bound states.
It is possible to relate the solution of Eq. (5) (MP-QDs) and

Eq. (8) (PW-QDs). The substitution

E → E − U (r), � → �0, m1 → m2, (A5)

in Eq. (A1) provides the wave functions of Eq. (8). The
matching conditions then yield Eqs. (A3) and (A4) but with
the changes

τE ± �(m1) → τ (E − U0) ± �0, (A6)

τE ± �(m2) → τE ± �0. (A7)

Moreover, in Eq. (6) when inserted in Eq. (A2), E → E − U0

for qσ (m1), whereas E → E for qσ (m2). The whole set of
substitutions can be understood under the following consider-
ation: Focusing on Eqs. (A3) and (A4), the different masses
m1 and m2 only appear for the regions r � R and r > R,
respectively. In order to obtain the solution of a PW-QD, we
thus change E → E − U0 only in the case r � R. On the other
hand, m1 → m2, i.e., �(r) → �0, holds everywhere.

The electron-hole symmetry of the solution for MP-QDs
can be inferred directly from Eqs. (A3) and (A4). They depend
on the energy solely through the variable τE. Therefore,
given a state with (E,τ,j ), another with (−E,−τ,j ) exists.
Nevertheless, this symmetry is broken in PW-QDs. The reason

is that the substitutions given by Eqs. (A6) and (A7) in
Eqs. (A3) and (A4) split the dependence on τE in τ and
E separately.

Plots of the wave-function components appear in Fig. 8. In
the upper panels, the effect of increasing the magnetic field is
analyzed. A polarization of the B sublattice takes place in both
valleys and the quenching of the kinetic energy with magnetic
field is revealed as a shift of the radial probability towards
the center of the well. The lower panels, on the other hand,
focus on levels with different j values at a fixed B field. The
increase in the total angular momentum Jz entails a shift of
the radial probability away from the center of the dot. This
is in agreement with the lower localization of the states with
energies closer to the top of the well.

APPENDIX B: WAVE FUNCTIONS OF THE BOUND
STATES FOR B = 0

In the case of B = 0, Eq. (A1) reduces to

χτ
σ (r) =

{
δσ Jj−σ/2 [k(m1)r] for r � R,

γσH
(1)
j−σ/2 [i k(m2)r] for r > R.

(B1)

In turn,

k(m) ≡
√∣∣(τE − mv2

F

)(
τE + mv2

F

)∣∣/�vF (B2)
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FIG. 8. (Color online) Components of the MP-QD wave function, Eqs. (A1) and (4). Solid (dashed) lines refer to the A (B) sublattice.
Upper panels: Plots for different values of the magnetic field B. The thick blue curves correspond to zero magnetic field (B = 0), whereas
black (τ = 1) and red (τ = −1) curves show the eigenfunctions at finite magnetic field for R/lB = {1,1.5,2}: Greater values of R/lB are
respective to the more deviated curves from the blue ones. For comparison, an extra solution for R/lB = 2.5 in the regime with only τ = −1
levels has been plotted for τ = −1. The insets depict the radial probability (2πrR|χA,B |2 vs r/R) associated to the wave functions. Lower
panels: Plots for R = 10 nm, R/lB = 3, corresponding to the region where only τ = −1 levels are present and different values of j . Left
plot: j = {−1/2,−3/2,−5/2,−7/2,−9/2} corresponding to A (B) sublattice curves ordered from bottom (left) to top (right). Right plot:
j = {−11/2,−13/2,−15/2,−17/2,−19/2} corresponding to A (B) sublattice curves ordered from top (left) to bottom (right).

and Jj−σ/2 and H
(1)
j−σ/2 are the Bessel functions and the

Hankel functions of the first kind as defined in Ref. [50].
The ratio δσ /γσ is calculated analogously to ασ/βσ in
Appendix A.

The continuity condition for the wave function yields in
this case

i τ sg(E)η(m2)Jj−1/2 [k(m1)R] H
(1)
j+1/2 [i k(m2)R]

= η(m1)Jj+1/2 [k(m1)R] H
(1)
j−1/2 [i k(m2)R] , (B3)

which again gives the allowed energies of the bound states.
We also defined

η(m) ≡
√∣∣∣∣τE − mv2

F

τE + mv2
F

∣∣∣∣. (B4)

The considerations regarding the electron-hole symmetry
which are related to the τE dependence also apply here, see
Appendix A. Moreover, the properties of Bessel and Hankel

FIG. 9. (Color online) Components of the wave function (left-hand side), Eqs. (B1) and (4), and their associated radial probabilities
(right-hand side) for τ = 1 and j = 1/2 [blue (dark gray)], j = 3/2 (red), and j = −1/2 (black). Solid (dashed) lines correspond to the A
(B) sublattice and dotted lines to the total radial density probability. A wave function with τ = −1 and j = −1/2 is also plotted in Fig. 8
(right-hand side of upper panel).
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FIG. 10. (Color online) Overlap between wave functions belong-
ing to wells whose centers lie at a distance D. n = 1,2,3,4 correspond,
from top to bottom, to blue, red, green, and magenta.

functions

J−n(z) = (−1)nJn, H
(1)
−ν (z) = eνπiH (1)

ν (z), (B5)

together with

η(m1)

η(m2)
τ→−τ−−−→ η(m2)

η(m1)
, (B6)

allow us to prove the double degeneracy of levels, i.e., a
solution with (E,τ,j ) implies the existence of another with
(E,−τ,−j ). In contrast with the electron-hole symmetry, the
substitutions of Eqs. (A6) and (A7) in Eq. (B3) (yielding a
PW-QD) do not lift this degeneracy. As we mention in the
main text and show in Figs. 2 and 3, a splitting happens when
a magnetic field is applied. Plots of several wave functions
and their corresponding radial probabilities are shown in
Fig. 9.

APPENDIX C: TIGHT BINDING IN A LATTICE
OF MP-QDS

Our aim is to construct a tight-binding model for a system in
which the overlap λ of neighboring wave functions cannot be
neglected. This is motivated by Fig. 10, which plots the overlap
for a couple of quantum dots as a function of the distance. As
a starting point, we will discard terms which are cubic or of
higher order in λ. Actually, we will show that O(λ2) terms will
be significant in packed lattices of quantum dots.

Let |n〉 be the wave function of a particular state of a single
well located at a certain position. The set S containing all |n〉
kets respective to every lattice site and every energy level is not
orthonormal because the overlap 〈n|n′〉 between neighbors is
not negligible. However, the Gram-Schmidt algorithm allows
us to obtain an orthonormal basis S ′ by linear combinations
of the vectors belonging to S. Denoting the elements of S ′ by
|fn〉, we can write the identity as

I =
∑

n

|fn〉〈fn|. (C1)

Carrying out the algorithm to obtain |fn〉, the unity operator in
terms of the S-basis vectors only, including correction terms

to lowest orders, reads

I =
∑

n

|n〉〈n| −
∑
j �=n

〈j |n〉|j 〉〈n|. (C2)

To express the Hamiltonian in the original basis S, we will use
this representation of the identity operator.

Let us apply the aforementioned procedure to a set of N MP-
QDs whose centers are located at �Ri with i = {1, . . . ,N}. We
will consider wells that only have one valence and conduction
bound state with energy ±E (E > 0) and j = ±1/2 (cf.
Fig. 1). Therefore, we can univocally label the S states
by |± �Ri〉.

We define the following parameters, describing the hopping
processes depicted in Fig. 4:

λ±
ij = 〈± �Ri |± �Rj 〉, (C3)

ξ± = 〈± �Ri |�Ui |± �Ri〉, (C4)

η± = 〈± �Ri |�Ui |∓ �Ri〉, (C5)

κ±
ij = 〈± �Ri |�Uj |± �Rj 〉, (C6)

μ±
ij = 〈± �Ri |�Uj |∓ �Rj 〉. (C7)

Assuming inversion symmetry for the array under consid-
eration and making use of the properties of the wave functions,
the following identities can be proved:

{λ±
ij ,ξ

±,κ±
ij } ∈ R, λ+

ij = λ−
ij ≡ λij , λij = λji, (C8)

ξ+ = −ξ−, η± = 0, κ+
ij = −κ−

ij , κ±
ij = κ±

ji , (C9)

μ±
ij ≡ μ±( �Ri − �Rj ) = μ±(| �Rj − �Ri |x̂)e

±iθ �Rj − �Ri , (C10)

μ±(| �Rj − �Ri |x̂) ∈ R, μ+
ij = −μ−

ij

∗
. (C11)

x̂ is the unitary vector in the x direction, θ �Rj − �Ri
is the angle

between �Rj − �Ri , and x̂ and h( �Ri − �Rj ) ≡ hij , where h =
{λ±,κ±,μ±}. In turn,

�Uj = H − H �Rj
, (C12)

H = ∑
i H �Ri

being the total Hamiltonian and H �Rj
the Hamil-

tonian of a single MP-QD centered at �Rj . �Uj accounts then
for the influence of the lattice on the Hamiltonian of an isolated
dot and results in the hopping of electrons between different
wells.

The dependence of Eqs. (C3)–(C7) on D/R, where D is the
distance between the centers of the dots, is plotted in Fig. 5 for
a double MP-QD. It can be seen that {μ,κ} < λ(m2 − m1)v2

F

and ξ < λ2(m2 − m1)v2
F , which will be taken into account

when discarding terms of greater order than λ2 in subsequent
calculations.
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FIG. 11. (Color online) Analogous to Fig. 5. Hopping processes to the same well, to a nearest neighbor, or to a next-nearest neighbor are
analyzed separately. The sketches on the right give the legend of the plots on the left. Solid lines correspond to direct processes, and dashed
lines to processes assisted by λ together with a direct hopping, i.e., terms of the kind

∑
i,j,m λjih

±
im appearing in Eq. (C13) (h = {ξ,κ,μ}).

When in each right outline several processes are labeled by a single linestyle, the associated curve on the left plot corresponds to the sum of
their probability amplitudes. In the upper left plot, the magenta processes do not appear because the sum of their amplitudes vanishes due to
Eq. (C10). In the bottom left plot, the amplitude of the orange process is not identically zero but so small that lies outside the plot range. For
shadowed regions, see Fig. 5.

Under these considerations and with Eq. (C2), the Hamiltonian acting on |± �Rm〉 can be expressed as

H |± �Rm〉 = (
H �Rm

+ I · �Um

) |± �Rm〉 =
⎡
⎣±|E| + ξ± −

∑
i �=m

λmiκ
±
im

⎤
⎦ |± �Rm〉

+
∑
j �=m

⎡
⎣κ±

jm − ξ±λjm −
∑

i �={j,m}
λjiκ

±
im

⎤
⎦ |± �Rj 〉 +

∑
j �=m

⎡
⎣μ±

jm −
∑

i �={j,m}
λjiμ

±
im

⎤
⎦ |∓ �Rj 〉 −

∑
j �=m

λmjμ
±
jm|∓ �Rm〉.

(C13)

Equation (C13) gives the matrix elements of H in the S

basis for a still unspecified geometry of the quantum dot set.
This general result can be applied to different systems. The

simplest consists in only two coupled MP-QDs. Its spectrum,
with the individual energy levels split, appears in Fig. 5. One
can see there that for D � 4R, the influence of O(λ) terms
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is significant, although there is not a great difference between
neglecting λ2 and λ3 terms even at small distances between the
wells. Second-order processes, however, will be more relevant
in lattices due to the assistance of next-nearest-neighbor
hopping processes, see the following discussion and Fig. 11.

For a periodic system of MP-QDs, it is more convenient to
work in a Fourier-transformed basis defined by

|± �R〉 = 1

2π

∫
d2k ei�k· �R|±�k〉. (C14)

Inserting Eq. (C14) into Eq. (C13), the Hamiltonian can be
expressed in block diagonal form. The block respective to �k
reads

H (�k) ≡
[〈−�k|H |−�k〉 〈−�k|H |+�k〉
〈+�k|H |−�k〉 〈+�k|H |+�k〉

]

=
⎡
⎣h−

1 + ∑
�δ h−

2,�δe
i�k·�δ ∑

�δ h−
3,�δe

i�k·�δ∑
�δ h+

3,�δe
i�k·�δ h+

1 + ∑
�δ h+

2,�δe
i�k·�δ

⎤
⎦ . (C15)

Dropping the subindicies, �δ is defined by

�δ = �Rj − �Rm, (C16)

choosing the adequate j and m. We have also defined,
correspondingly,

h±
1 = ±|E| + ξ± −

∑
i �=m

λmiκ
±
im, (C17)

h±
2,�δ = κ±

jm − ξ±λjm −
∑

i �={j,m}
λjiκ

±
im, (C18)

h±
3,�δ = μ±

jm −
∑
i �=m

λjiμ
±
im. (C19)

The following identities, the last of which guarantees the
hermiticity of the Hamiltonian, can be proved attending to
the symmetry of the wave functions and �Uj :

h+
1 = −h−

1 ; h+
2,�δ = −h−

2,�δ; h+
3,�δ = h−

3,−�δ
∗
. (C20)

We can apply the general result Eq. (C15) to the simplest
lattice, namely a one-dimensional chain with a single atom
per node. To do so, we must determine the relevant processes
which contribute significantly to Eqs. (C17)–(C19). That
analysis was carried out and is summarized in Fig. 11.

There we see that departing from the criterium of neglecting
λ2, only the direct processes κ and μ between neighboring
wells are relevant. However, as long as the chain lattice
parameter becomes close to the diameter of the wells, O(λ2)
processes become increasingly more relevant. In particular,
a next-nearest-neighbor (nnn) hopping process is assisted by
the wave function overlap, whereas direct processes to nnn are
negligible.

Once we have discarded all irrelevant terms in Eqs. (C17)–
(C19), we can diagonalize Eq. (C15) to obtain the bands and
the tight-binding description is complete. Spectra for various
lattice parameters are plotted in Fig. 6.
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