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Evidence of power law decay of superexchange coupling in a disordered
two-dimensional π-electron system
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We report the specific heat of graphite, highly oriented pyrolytic graphite (HOPG), graphene oxide (GO),
and reduced graphene oxide (RGO) from 300 K to 50 mK. Graphite and HOPG exhibits transition from three
dimensions (Cv ∝ T 3) to two dimensions (Cv ∝ T 2) as the temperature increases above 4 K and approaching
linearity in temperature for both around room temperature is observed. We observe a Schottky-like peak in
specific heat of graphene oxide and reduced graphene oxide near 0.1 K, whose intensity and peak position
varies with external magnetic field. We find that the random Heisenberg superexchange interaction between the
Anderson (disorder) localized π electrons of GO/RGO is responsible for the specific-heat peak. The exchange
interaction strength between the localized spins falls off with distance as a weak power law (∝ 1

r2.5 ), rather than
the usual exponential fall in insulating magnets.

DOI: 10.1103/PhysRevB.91.165414 PACS number(s): 72.80.Vp, 61.48.De, 65.40.−b, 72.15.Rn

Two dimensional (2D) graphene exhibits unique electronic
properties [1,2] and presence of localized defects and extended
defects like edges gives rise to unconventional magnetic prop-
erties [3,4]. But the least investigated among all is the specific
heat of 2D graphene systems. Low-temperature specific heat
provides key insights about many physical properties such
as structural, magnetic, and superconducting phase transition
because it contains the information about the electronic density
of states at the Fermi level and low-energy (collective) excited
states. Theoretical calculation by Benedict et al. [5] shows
that in graphene the lattice contribution to the specific heat is
almost 1000 times larger than the electronic contribution at all
temperatures. Hence, it is expected that the phonon specific
heat will dominate down to T → 0 K. Phonon specific heat at
low temperature is Cv ∼ T d/n, where d is the dimension and
n is the exponent in the phonon energy (ω) momentum (k)
relation, ω(k) ∼ kn. Carbon nanotube (1D), graphene (2D),
highly oriented pyrolytic graphite (HOPG) (weakly coupled
2D planes), and graphite (3D) are ideal systems to study
the dimensional dependence of specific heat as their basic
structural element is the same. 2D graphene has three acoustic-
phonon modes. Two in-plane modes [longitudinal (LA) and
transverse (TA)] which have a linear energy-momentum
dispersion giving Cv ∝ T 2 and a third mode called the flexural
mode [in which the atoms vibrate out of plane (ZA)] with a
dispersion relation ω(k) = k2 giving Cv ∝ T [6]. Compared to
the LA and TA modes where the atoms, connected by strong σ

bonds, vibrate in the plane, the excitation of the ZA mode
is of lower energy. Thus the phonon specific heat for 2D
graphene should be composed of a linear (ZA phonon) plus a
quadratic (LA/TA phonons) component, with the linear term
dominating at all temperatures [6,7]. Low-temperature specific
heat of a collection of 1D carbon nanotubes (CNTs) has been
well studied [8,9] but, there are no experimental studies on
graphene so far.
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Lattice specific heat of natural 3D graphite is expected
to be T 3 (d = 3,n = 1) at very low temperature. DeSorbo
et al. [10] have seen a T 3 behavior below 3 K and a T 2

dependence in the temperature range 13–54 K indicating that
at higher temperatures the system behaves like a 2D system.
Komatsu [11] also finds that above 20 K the specific heat
of graphite deviates from T 3 to T 2 dependence and there
is a linear T dependence of electronic contribution at very
low temperatures (T < 1 K) indicating finite electron density
of states at the Fermi level. The specific heat of a system
depends not only on the dimension but also on the defects
in the structure. Viana et al. [12] have reported a T −0.57

dependence below 0.5 K in exfoliated graphite arising due to
the interaction between the localized states. A similar type of
behavior was also observed in phosphorus doped silicon [13]
and was well explained by Bhatt and Lee [14]. If the electrons
are in the localized regime, the electrons are left with only
the spin degrees of freedom and the electronic specific heat
comes from thermal population of all states with different spin
configurations.

In this paper, we have reported the specific heat of graphite,
highly oriented pyrolytic graphite (HOPG), graphene oxide
(GO), and reduced graphene oxide (RGO) from 300 K
down to 50 mK. Graphite and HOPG were commercially
procured whereas GO and RGO were synthesized from
graphite powder using modified Hummer’s method [15].
Synthesis and characterization of GO and RGO are reported
elsewhere [16]. Specific heat of the samples from 300 to
2 K was measured using a physical property measurement
system (PPMS, Quantum Design) and from 4 K to 50 mK was
measured using a PPMS-DR (dilution refrigerator) system.
In between 2 and 4 K the two sets of measured data join
smoothly. We observed no linear T electronic specific heat in
GO and RGO; instead the specific heat below 0.5 K shows
a Schottky-like peak near 100 mK and a slow falling tail
above the peak temperature. Under external magnetic field,
the peak shifts towards higher temperatures and the peak value
of specific heat increases. We have modelled the electronic
system in GO and RGO as composed of some paramagnetic
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FIG. 1. (Color online) Specific-heat data of graphite, HOPG,
GO, and RGO in log-log scale and the same in linear scale in inset
(a). Inset (b): Fitting of RGO specific-heat data.

noninteracting π electron with spin- 1
2 moments, coexisting

with interacting π electrons. The interaction Hamiltonian is a
random antiferromagnetic (superexchange) Heisenberg model
for dilute spin- 1

2 moments [13,14,17,18]. This peak is absent
in graphite and HOPG but we find that graphite has an excess
T −0.14 contribution below 1 K and we attribute this to the
localized electrons at the defect centers which gives rise to the
specific-heat peak in GO and RGO as we shall see below. We
have also analyzed the specific heat beyond 1 K in graphite,
HOPG, GO, and RGO, entirely in terms of lattice phonon, and
find that the systematic changes in lattice specific heat in these
four systems share some universal features which we shall
point out here. We have measured resistance vs temperature
of RGO from 300 to 2 K using the four-probe method to
understand the nature of the disorder.

Figure 1 shows the specific heat of all the samples. Specific
heat of both HOPG and graphite varies as T 1.5 in 80–300-K
range. This switches over smoothly to T 2.3 behavior in the
5–50-K range. This type of behavior has been reported
earlier [10,11,19,20]. In Fig. 2(a) a CV /T vs T 1.65 plot of
HOPG shows linearity in the range 240 mK–4 K indicating
that the specific heat of HOPG follows the aT + bT 2.65 from
240 mK to 4 K, with coefficients a = 1.1 × 10−3 μJ/mg/K
and b = 2.5 × 10−3 μJ/mg/K2.65. T 2.65 dependence indicates
that both T 2(d = 2,n = 1) and T 3(d = 3,n = 1) terms are
present in the phonon specific heat due to weak coupling
between the layers. CV /T vs T 2 plot of graphite in Fig. 2(b)
shows a straight line in the temperature range 500 mK–4 K,
hence the specific heat of graphite fits to the aT + bT 3 form
in this temperature range, with a = 9.7 × 10−3μJ/mg/K, and
b = 1.6 × 10−3 μJ/mg/K3. Coefficient a is proportional to the
density of states at the Fermi level. Graphite has more density
of states than HOPG. In the temperature range 5–300 K,
specific heat does not have any T 3 term, showing that the
z-axis dispersive 3D phonon contribution saturates beyond
5 K. So at higher temperature, the specific heat of 3D graphite
is basically similar to HOPG. Hoeven et al. [20] finds a T 3

dependence below 2 K, with a gradual transition from T 3 to
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FIG. 2. (Color online) (a) CV /T vs T 1.65 plot of HOPG. (b)
CV /T vs T 2 plot of graphite. (c) Specific-heat data of graphite from
50 mK to 4 K fitted with the form Cv = aT + bT 3 + pT −0.14. Inset:
log10(�CV ) vs log10 T plot.

T 2 dependence from 2 to 20 K and pure T 2 dependence above
20 K. The linear T -dependent specific heat due to the flexural
phonon is suppressed at low temperatures in both graphite
and HOPG, due to nonzero gap in flexural modes because of
interlayer coupling between the planes. This mode dominates
near room temperature. Hence the specific heat of graphite
and HOPG smoothly change over from T 3 below 4 K to T 2.3

behavior in the 5–50-K range and T 1.5 in the 80–300-K range.
The specific heat of graphite is different from HOPG in a

fundamental way only below 0.5 K, where CV /T keeps rising
with decreasing temperature. We find that the specific-heat data
of graphite can be fitted with Cv = aT + bT 3 + pT −0.14 down
to 50 mK [Fig. 2(c)]. An extra pT −0.14 contribution is obtained
from log10(�CV ) vs log10 T plot [Fig. 2(c) inset] where �CV

is the excess specific heat over the T and T 3 term. This
anomalous contribution comes from the magnetic interaction
of randomly distributed localized electronic states at the defect
sites [12]. Structurally HOPG has lesser defects than graphite
powder and hence does not have any such anomalous specific
heat.

In GO and RGO the specific heat is almost linear at
T > 50 K. Thermal energy is stored in many local vibrations
of the adatoms like O and OH. Since GO has more O and OH
groups than RGO, the specific heat is larger in GO than RGO
at T > 50 K. Near 50 K, the specific heat of GO and RGO are
almost the same, indicating that these local modes are frozen
below 50 K. Below 50 K the specific heat decreases very fast
with a sigmoid-type bend (in log scale). There is a crossing of
curves at 30 K, below which specific heat of GO is surprisingly
less than RGO. Even though the thermal vibrations of O and
OH groups are now frozen, their presence affects the flexural
mode dispersion relations and density of states. Specifically the
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random attachment of O and OH on the carbon network stiffens
the flexural mode and suppresses this mode leading to lowering
of specific heat. One expects a redistribution of the density of
state of flexural phonons, i.e., a transfer of density of states
from low energy to higher energies (resulting in the formation
of a pseudogap). We can phenomenologically model this by
introducing a gap in the flexural phonon in RGO/GO. Above 10
K, the specific-heat data of RGO/GO can be fitted with the form
Cv = cT e− �

T [Fig. 1(b)] with � = 12.5 and 45 K for RGO
and GO respectively. The freezing of the linear specific heat of
flexural modes at T < � is responsible for the sigmoid-type
bends. The larger gap in GO compared to RGO is responsible
for the crossing of the curves and lesser specific heat in
GO compared to RGO below the crossing temperature. This
means, at T < �, specific heat due to the ZA mode is small.
Here specific heat in GO and RGO should be dominated by the
LA and TA modes, i.e., Cv ∝ T 2. In the temperature range 2–
10 K, the specific-heat data of GO/RGO fits with T 2.5, showing
the presence of a T 3 term along with a T 2 contribution.
The T 3 term comes presumably because of the presence of
a small amount of few-layered GO and RGO in the materials.
Multilayered graphene sheets should give a T 3 contribution
due to 3D phonon modes, like in HOPG and graphite. Specific
heat of GO and RGO below 1 K is purely electronic in origin
and is fundamentally different from HOPG and graphite.

To understand better the electronic states in GO/RGO we
have measured the temperature dependence of resistivity in
RGO which is shown in Fig. 3. Resistivity can be explained
by the variable range hopping (VRH) mechanism, i.e., R =
R0e

(T0/T )p where, for the Mott-VRH [21] in d dimension
p = 1

1+d
and for Efros-Shklovskii VRH (ES-VRH) [22]

p = 1/2 in all dimensions when the Coulomb interaction
between hopping sites are considered. From the plot of reduced
activation energy w(T ) = − δ ln R

δ ln T
[23] vs temperature (inset of

Fig. 3), we find p = 1/3 in the temperature range 250–50 K
and for T < 50 K, p = 1/2. It is clear that there is a crossover
from Mott-VRH to ES-VRH at 50 K. Since the electrons
are strongly localized at low temperatures in GO/RGO, the
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FIG. 3. (Color online) Resistance vs temperature plot of RGO in
log-log is scale showing nonlinear behavior. Inset: ln w(T ) vs ln T

plot of RGO.

specific heat at the lowest temperatures should come from
the spin degrees of freedom of the localized electrons. Both
GO and RGO have a peak in specific heat even in the
absence of external magnetic field. Under external magnetic
field H , the specific heat for a two-level system caused by
Zeeman splitting (�ε = 2μBH ) of a localized electron is
C

para
v (T ) = ( �ε

kBT
)2 e−�ε/kB T

(1+e−�ε/kB T )2 . This expression has a peak at
Tpeak = 0.417�ε = 0.828μBH and also shows a peak shift to
higher temperature with external magnetic field but the specific
heat at the peak temperature does not change with magnetic
field. For H = 1000 Oe, the shift in peak temperature should
be 0.062 K. For RGO and GO this peak shift is 0.048 and
0.065 K, which indicates that the Schottky type specific-heat
peak is due to s = 1

2 localized paramagnetic moments of the
π electrons in GO/RGO.

The actual magnetic field felt by a localized electron is the
external field plus the internal magnetic field due to nearby
moments, i.e., H = Hext + Hint. From the peak temperature at
Hext = 0Oe we get Hint = 400 Oe. C-C distance in graphene
is a0 = 1.42 × 10−8 cm. The magnetic dipolar field felt by
an electron due to another electron at a distance 2a0 is
Heff = μB

(2a0)3 = 405 Oe. To see if the internal field is really due
to an uncompensated stray magnetic dipolar field from near-
neighbor s = 1

2 paramagnetic π electron moments, we need to
know the average separation between paramagnetic moments
in GO/RGO. We use the low-field (H = 100 Oe) magnetic
susceptibility of GO and RGO (same materials) which we have
reported in Ref. [16]. Magnetic susceptibility of GO/RGO
are Curie-like with Curie constants, C = 8.05 × 10−3 emu/

g/Oe K for RGO, and C = 1.8 × 10−2 emu/g/Oe K for
GO. The Curie constant from N moments (per gram) of

S = 1/2 is C = N
4μ2

B

3kB
S(S + 1). We find N = 1.11 × 1022

and 2.46 × 1022 in RGO and GO respectively. The number
of carbon atoms/g is 5 × 1022. This means only a fraction
of 0.22 and 0.48 of the carbon sites have moments, which
gives paramagnetic moment in RGO and GO respectively. So
the average separation between the paramagnetic moments are
2.13a0 and 1.44a0 in RGO and GO and hence we may conclude
that the internal field is magnetic dipolar in origin. Observation
of a lesser number of paramagnetic s = 1/2 moments in RGO
compared to GO suggests the presence of antiferromagnetic
interaction between these localized π electrons. Nearest-
neighbor π electrons with antiferromagnetic interaction favors
singlet formation and singlets do not contribute to the low-field
magnetic susceptibility. Since RGO has more π electrons
than GO, it also has a larger number of nearest-neighbor
singlets than GO. This is the reason for the observation of
low magnetization in RGO compared to GO.

The experimentally measured specific heat has two addi-
tional features that cannot be explained by the paramagnetic
moments, i.e., (1) the value of specific heat at the peak
temperature increases with magnetic field and (2) the specific
heat drops slower than 1

T 2 for T > Tpeak which indicates that
the additional contribution to the specific heat arises from the
interacting spins. Natural interaction between the electrons is
of superexchange type and so we can model the interacting
electrons by an effective Hamiltonian, H = ∑

i,j Jij SiSj

where the spins are at random sites and the number of spins
is less than the number of lattice sites in GO/RGO. We shall
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assume a functional form for Jij as a function of distance
between the spins |Ri − Rj |. For spin S = 1

2 , there is a strong
tendency towards formation of spin singlets between pairs
of electrons. For N spin-1/2 electrons, there exists a large
number of ways to pair them up into N

2 singlet pairs. At any
finite temperature T all pairs with exchange energy J > T are
frozen into singlets and the specific heat comes from the rest
of the pairs with J < T .

In the absence of magnetic field the ground state of two
electrons with exchange coupling J is 1√

2
[↑↓ − ↓↑] with

energy − 3
4J and three states [↑↑], [↓↓], and 1√

2
[↑↓ + ↓↑]

are degenerate with energy + 1
4J , so the energy separation

is J . By rescaling, the partition function is Z = 1 + 3e−J/T

and the specific heat of two electrons is C
pair
v (J,T ) = 3 ×

( J
T

)2 e−J/T

(1+3e−J/T )2 . In the presence of field (H �= 0) the energy

of the two states, 1√
2
[↑↓ − ↓↑] and 1√

2
[↑↓ + ↓↑] do not

change. The energy of [↑↑] and [↓↓] becomes J − 2μBH

and J + 2μBH respectively and in this case the specific heat
of two electrons is

Cpair
v (J,T ,H ) = e−J/T

[
J 2 + 4a2e−J/T + 2(J 2 + a2) cosh a

T
+ 2a2e−J/T cosh a

T
− 4Ja sinh a

T

]

T 2
[
1 + e−J/T + 2e−J/T cosh a

T

]2 ,

where a = 2μBH . Similarly there will be singlet pairs of all
bond lengths r with exchange coupling J (r). The number of
bonds whose length is between r and r + dr is N (r)dr =
N
A

× 2πrdr where N is the total number of interacting spins
and A is the total area. So the total specific heat is C

pair
v,N (T ,H ) =

2πN
A

× ∫ ∞
a0

rdrC
pair
v (J (r),T ,H ). With this formula, we find

good fittings with the experimental data by considering
power law decay of J (r) rather than the exponential decay.
If we assume the superexchange coupling J (r) = J0( a0

r
)n

where a0 is the localization length then the specific heat

is C
pair
v,N = N

2πa2
0

nA

∫ X0

Xmin

dX
X

× ( X
X0

)2/n × Cv(J (r),T ,H ), where

X = J
T

and X0 = J0
T

. We must emphasize that the lower limit
on J or X cannot be set to zero in this formula. There has to
be a lower cutoff which will bring down the rising specific
heat to zero in the T → 0 limit. Strictly the J = 0 limit
corresponds to paramagnetic moments whose specific heat
we have already discussed. Hence, the total specific heat of
the system is CTotal

v (T ,H ) = K1C
para
v (T ,H ) + K2C

pair
v,N (T ,H ).

We find the best fit with n = 2.5 and J0 = 5 K as shown
in Figs. 4(c) and 4(d) where �Cv is the remaining specific
heat after substraction of the phonon contribution (cT 2.6 for
RGO and cT 2.5 for GO) at low temperature. The extracted
values of K1 and K2 are independent of magnetic field
and are 0.123 and 0.154 μJ/mg/K in RGO and 0.05 and
0.04 μJ/mg/K in GO. K1

2K2
is equal to the ratio of the number

of paramagnetic and interacting moments. This ratio is 1.25
in GO and 0.8 in RGO which is expected because RGO
has lower magnetization than GO. Variable range hopping
(VRH) conductivity presupposes exponentially localized wave
functions and since the superexchange coupling energy is
proportional to the square of the wave function overlap
between two electrons, the superexchange coupling should
fall exponentially with distance. However, we find that a power
law falloff with distance of exchange coupling gives a more
satisfying fit of specific heat of both GO/RGO at H = 0 and
1000 Oe than the exponential fall. Recent theoretical work
on disordered graphene [24] within a T -matrix approximation
predicts power law fall of charge density of the localized state
(as ∝ 1

r0.5 ) coming entirely due to linear dispersion of electrons.
For such power law localized states, the superexchange

coupling should be J (r) ∝ 1
r
. Our analysis of specific-heat

data suggests that J (r) ∝ 1
r2.5 , i.e., a much faster falloff with

distance. This difference is most likely due to neglection of
Coulomb interaction between the electrons in Ref. [24].

In conclusion, we find that the π electrons in GO and
RGO are in Mott-Anderson localized states due to disorder
scattering. Localized electrons have random antiferromagnetic
Heisenberg exchange interaction between them. There is
strong singlet pairing correlation in the system with exis-
tence of singlet bonds of all length scales. The superex-
change coupling between the moments in this system is
found to fall as a power law with distance between them.
This is radically different from all known magnetic insula-
tors where superexchange coupling falls exponentially with
separation.
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