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Revealing the flux: Using processed Husimi maps to visualize dynamics of bound systems
and mesoscopic transport
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We elaborate upon the “processed Husimi map” representation for visualizing quantum wave functions using
coherent states as a measurement of the local phase space to produce a vector field related to the probability flux.
Adapted from the Husimi projection, the processed Husimi map is mathematically related to the flux operator
under certain limits but offers a robust and flexible alternative since it can operate away from these limits and
in systems that exhibit zero flux. The processed Husimi map is further capable of revealing the full classical
dynamics underlying a quantum wave function since it reverse engineers the wave function to yield the underlying
classical ray structure. We demonstrate the capabilities of processed Husimi maps on bound systems with and
without electromagnetic fields, as well as on open systems on and off resonance, to examine the relationship
between closed system eigenstates and mesoscopic transport.
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I. INTRODUCTION

In Mason et al. [1], we introduced the “processed Husimi
map,” which extends the concept of the probability flux, or
probability current j(r,p), defined as
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where m is the mass of a particle in the system, r is the position
and p is the momentum operator.

One of the limitations of the probability flux is that it
vanishes on stationary states for systems with time-reversal
symmetry making it impossible to reveal the strong semi-
classical connections between trajectory flow and quantum
eigenstate. Consider the stadium billiard presented in Fig. 1.
This wave function exhibits the strong influence of classical
orbits and is known as a scarred eigenstate [2]. For this bound
system, the flux is always zero. Unless the system is coupled
to a continuum, the flux as a tool for examining the system
dynamics provides no information, even though information
about the dynamics clearly exists before the coupling. The
main goal of this article is to describe in detail algorithms that
render processed Husimi maps, a numerical technique that is
able to extract the information present in the system but to
which the probability current is blind.

The processed Husimi map addresses the problem of the
underlying dynamics encoded in stationary states by extending
the definition of the flux to coherent state projections, also
known as Husimi projections [3]. Applying several Husimi
projections, each with a different momentum direction, at each
location, it is possible to render the classical rays associated
with a position and extract semiclassical paths from a quantum
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wave function even when the flux is zero. Husimi projections
sampled across a system produce a Husimi map. By processing
Husimi maps using the methods outlined in Mason et al. [1], we
can show the locations and directions of classical trajectories
suggested by a wave function. This technique has been used
to examine the relationship between graphene boundary types
and the classical dynamics of quasiparticles in each valley
of the honeycomb dispersion relation, studying states with
energies both close to and far from the Dirac point [4].
Although the processed Husumi approach was presented in
summary before [1], the level of detail might be insufficient
to allow nonexperts to develop their own programs. Here, we
also introduce new mappings that quantify how boundaries
and external fields affect those trajectories. In this paper, we
also present a complete discussion of the results summarized
previously and demonstrate the processing of Husimi maps on
a wider variety of systems with and without external fields.
In particular, we show how to use processed Husimi maps to
interpret flux through open devices and mesoscopic devices.

II. THE PROCESSED HUSIMI MAP

The properties of coherent states make them a suitable basis
for expanding the flux operator to a measurable definition,
which we call the Husimi function [3]. It is defined as a
measurement of a wave function (r) by a coherent state,
or “test wave packet,” written as

Hu(ro,ko,0; ¥ (r)) = [{¥/[ro, ko, o), @

where the parameter o defines the spatial spread of the
coherent state and defines the uncertainties is space and
momentum. Weighting each of these measurements by the
wave vector produces a Husimi vector; plotting all Husimi
vectors at a point produces the full Husimi projection.

©2015 American Physical Society
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FIG. 1. (Color online) A scarred eigenstate of the stadium bil-
liard reveals the strong influence of periodic classical orbits. The
traditional flux provides no information: it is uniformly zero inside
the billiard.

In this paper, we examine three approaches for processing
the Husimi projection. The first approach utilizes the algorithm
outlined in Mason et al. [1], which simplifies the full Husimi
projection at each point, to give rise to the significant classical
paths within the system. The second approach, which we
describe in Sec. III C, identifies key points where the system
boundary deflects straight classical paths, giving rise to the
structure of the quantum wave function. The third approach
sums all Husimi vectors at each point in space, indicating the
net flow of classical paths at each point, and resulting in the
vector-valued Husimi flux. The Husimi flux has parallels to
the traditional flux, which we describe here.

Because of the large momentum uncertainty for small o,
coherent state projections merely reproduce the probability
amplitude | (r)|? in all directions of ky. The flux emerges
as a small residual, which can be retrieved by summing each
coherent state projection weighted by k. We call this quantity
the vector-valued Husimi flux,

Hu(ro,0 (1) = / Kol (VIro.koo) Pdlko.  (3)

Several of the results in these paper display sets of Husimi
vectors for 32 equally spaced points in k space at each point
in the system. We plot such sets of Husimi vectors at many
points along a system, mapping the local phase space of the
wave function. These visualizations are known as “Husimi
maps” [3,5-7]. We refer to the maps that present the complete
set of Husimi vectors at each point as raw Husimi maps.

In Appendix A, we show that as ¢ — 0, the contributing
points in the integral over k space reduce to just the orthogonal
directions. In this limit, we can write the Husimi flux as

d
lim Hu(ro.0: /(1)) o ) el (¥ Iro.koes o)
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2
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where e; is the unit vector along the i orthogonal direction,
and we sum over d dimensions. As presented in Ref. [1], both

sides of Eq. (4) are proportional to the traditional flux measured
at point ry so that

(Wl W) o lim Hu(ro,05 ). )
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For larger o, reduced momentum uncertainty allows for
substantial variation in the coherent state projections between
different directions of Ky. The reduced momentum uncertainty
for larger coherent states also reduces spatial resolution. In
the intermediate regime, we can use Husimi projections to
map the local phase space of a wave function. By selecting
an appropriate value for o and taking snapshots of the local
phase space at many points across a system, we can produce
a clear map of the classical trajectories that correspond to a
given wave function. Like the traditional flux map, Husimi
maps can be integrated over lines and surfaces to reveal the
total probability flux current.

The raw Husimi maps present snapshots of the phase space
along the system. We can process the results to produce
a semiclassical map exposing the dominant classical paths
contributing to a given wave function. Thus the term processed
Husimi map [1].

A question arises regarding the handling of boundaries in
the system, beyond which the wave function goes to zero. Our
definition reduces the magnitude of Husimi projections within
distance o of the boundary. When a coherent state interacts
with a boundary, an image wave packet moving in the opposite
direction can replace the boundary. On a curved boundary, a
superposition of reflected image wave packets can be found
that gives zero along a section of the curve. In both cases,
reflections off the boundary amount to scattering between wave
packets with different wave vectors. Thus the reduction in the
Husimi projections near the boundaries is the result of wave
packet scattering, making it possible to process Husimi maps
to compute scattering metrics along the boundary, such as
angular deflection presented in Sec. III C.

III. HUSIMI MAPS IN CLOSED SYSTEMS

A. Eigenstates of the circular system

The circular well is an ideal system for demonstrating
the power of processing the Husimi map since its classical
dynamics are simple and can be analytically determined. The
Schrodinger equation in radial form is

d*R(r) 1dR(r) 2 m? R 0 6

dr? +r dr +< r2) ") =0. ©
Solutions to this equation are simultaneous eigenstates of
energy and angular momentum, and thus n (number of nodes
in the radial direction) and m (number of angular nodes) are
good quantum numbers. Figures 2(a)-2(c) shows three such
states, the first with n = 0, the second with n > m, and the
third with n & m. The processed Husimi map in each shows
the clear distinction between angular and radial components
of the wave function, and how they correlate with classical
paths with similar properties (further discussion of the classical
correspondence can be found in Ref. [8]).

To examine the harmonic oscillator state in Fig. 2(d), the
Husimi projection at each point must be modified. For the
circular well, the dispersion relation is ik = +/2m E. However,
due to the harmonic potential, the dispersion relation changes
to hk(r) = /2m(E — V(r)). This means that a different sweep
in k space must be made at each point to produce an accurate
Husimi map. Figure 2(d) shows such a state with V(r) = Vor?.
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FIG. 2. (Color online) Raw Husimi maps (left), processed
Husimi Maps (middle), and the wave function (right) for eigenstates
of the circular well (a)—(c) and the harmonic oscillator (d). Double-
arrows at far right indicate the spread of the coherent state (Ak/k =
10%). The states in (c) and (d) correspond to the classical paths in
Figs. 14(a) and 14(b), respectively.

The Husimi vectors in Fig. 2(c) align to suggest straight
trajectories, but the vectors in Fig. 2(d) do not, suggesting
the presence of curved paths. Moreover, projections near the
boundaries of both systems indicate that the paths of the
circular well scatter off the boundary with a consistent and
acute angle, while for the harmonic oscillator system the
trajectories lightly strike the “edge” at the classical turning
point position, where a classical particle would return towards
the center of the harmonic system for that particular initial
energy. As seen in this example, the processed Husimi flow
markedly elucidate the dynamics present, but not always
apparent in wave functions.

If we center the Husimi projections on points that corre-
spond with the predicted classical paths, clear trajectories can
be seen without processing the raw Husimi map. This makes
it possible to identify the source of slight deviations from the
classical paths that are exhibited towards the center of the
system. We explore both issues in Appendix D.

B. Magnetic field

In comparison to the traditional flux, processed Husimi
maps extract more information from systems without time-
reversal symmetry, such as those in the presence of a magnetic
field. To properly represent these states, both the momentum
operator in Eq. (1) and the momentum term iKy - rp in Eq. (3)
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FIG. 3. (Color online) Raw Husimi map (left), processed Husimi
maps (middle), and wave function (right) for two eigenstates of
the circular well with magnetic field coming out of the plane.
The magnetic field strength is set so that the cyclotron radius
is approximately 1/2 (a) and 1/3 (b) the radius of the system.
Double-arrows at far right indicate the spread of the coherent
state (Ak/k = 10%). Both states correspond to the classical paths
presented in Fig. 4.

must be modified to reflect the canonical transformation

p—PpP—9gA/c, @)

where the magnetic potential A is defined in Appendix B.

The circular well states without magnetic field in Fig. 2
exhibit cross-hatching nodal patterns which are absent from the
states in the magnetic systems. In the presence of a magnetic
field the wave functions (see Fig. 3) exhibit circular nodal
patterns with complex phase arguments. The processed Husimi
maps for each state indicate circular classical trajectories with
radii corresponding to the cyclotron radius. At the magnetic
fields used here, the cyclotron radius is smaller than the system
size (see Appendix B), as presented in Fig. 3.

Figure 4 present maps of the current flow and the classical
trajectories corresponding to the magnetic systems depicted in
Fig. 3. The trajectories correlate strongly with the processed
Husimi map. Like the circular well states, the presence of
multiple trajectories at each point in Fig. 4 can be explained
by the intersection of rotated classical trajectories that arise
from rotational symmetry. For the state in Figs. 3(a) and 4(a),
we have artificially removed rotational symmetry to highlight
fewer paths.

The approach of mapping the flow using the flux operator
on a wave function is rather unreliable. The flux map in the
left column of Fig. 4, obtained by integrating the flux with
a Gaussian kernel corresponding to the coherent state used
to generate the processed Husimi map, does not follow the
classical paths (right column) corresponding to the system.
The traditional flux map j(r) averages over all trajectories at
each point. As seen in Fig. 4, the particle flow at a point
obtained from the flux averages over the two main directions
of flow obtained from the processed Husimi. The flux operator
fails to indicate the full classical dynamics underlying a
quantum wave function. In contrast, the processed Husimi
map (middle column of Fig. 4) reproduces the classical paths
with remarkable fidelity. The flux is able to instead measure
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FIG. 4. (Color online) Maps of the flow for the two states
presented in Figs. 3(a) and 3(b). (Left) the flux map, (center) the
processed Husimi map, and (right) classical paths. The traditional
flux correlates strongly with Husimi flux [Eq. (3)] but fails to show
the classical paths suggested by the wave function.

the total drift flow, which might be the desired quantity in some
circumstances. The total drift flow is also obtained from the
summation of all vectors at each point in the processed Husimi
map.

C. Processing Husimi maps to determine angular deflection

To identify points along the boundary where path deflec-
tions occur, we process the Husimi map to extract a quantity
we call angular deflection. In Sec. III D, we demonstrate
how processed Husimi maps can provide insight into to the
semiclassical underpinnings of quantum wave functions in
stadium billiard eigenstates. Of particular interest are boundary
reflections, which play a key role in the structure of the wave
function and its underlying classical paths.

We begin by considering the Husimi function for one point
in k space measured at equally spaced points on a grid that
covers the system. The scalar field yields a spatial map of
the presence of an individual trajectory angle and fluctuations
in the map indicate points where classical paths deflect away
from and towards the angle. Summing the results for all wave
vectors along the contour line defined by the system energy
in the dispersion relation, we can derive a measurement of
angular deflection Qg (r; W) written as

Qung (15 W) = / D (1K W)k ®)

D, (r,k; W) is the Gaussian-weighted absolute divergence of
the Husimi map for wave vector k written as

d
Dabs.(r’k;\p)Z/Z
i=1

/ )2
X exp |:(r2—2r)]ddr/, )
o

Hu(k,r’; ¥) — Hu(k,r; ¥)
(r—r)-e

where the sum is over the d orthogonal dimensions associated
with the appropriate unit vector e;.
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Processing the Husimi map to measure angular deflection
has close ties to its initial implementation as a measurement
state for building phase diagrams [3]. For instance, it is possible
to use the divergence of the Husimi map for each wave vector
to compute the quantum analog of a state’s Poincare map [9].
This form of the Husimi map has been used to examine the
angle of impact against a coordinate along the boundary [9] to
study chaotic behavior in stadium billiards [10,11]. Angular
deflection can also be used to examine the case where external
fields cause path deflection, such as in the presence of a strong
magnetic field, although we do not explore such use in this

paper.

D. Stadium billiard eigenstates

The classical dynamics of circular stadia are integrable
while those of the Bunimovich stadium [12] are chaotic. As
a result, the stadium has been featured in many studies of
quantum chaology [9,13-19]. In addition, stadium billiards
provide another perspective on the utility of the processed
Husimi map. Unlike the circular system already presented,
where the trajectories accumulating at a particular point are
fairly regular and predictable, all points in a stadium billiard
eigenstate are rife with many unpredictable trajectories. In this
regime, the processed Husimi map validates its use as an ideal
tool for lifting the veil on the underlying classical dynamics.
This is particularly true once issues regarding the selection
of the width parameter o are addressed, which we discuss in
Appendix E.

In Fig. 5, we present raw and processed Husimi maps for
three eigenstates of the closed stadium billiard system. For
each calculation, the size of the coherent state is kept constant,
but because the energy of the eigenstates increases from top-to-
bottom, the momentum uncertainty for each Husimi projection
also increases. This is reflected in the clarity of the suggested
classical paths at higher energy as well as the reduction of
angular deflection in the bulk (which exhibits small positive
values in the top figure due to uncertainty, not because there is
actual deflection at these points).

To the untrained eye, the wave functions in Fig. 5 do not
appear to emphasize isolated classical trajectories, the scars
found in the high-energy stadium states [11,14,16,17,19], and
explored in Appendix E, specifically since at low energies
the system only accommodates a few wavelengths along its
diameter. In the processed Husimi map, however, it is quite
clear that a very limited set of classical trajectories are largely
responsible for these wave functions, suggesting that Husimi
projections could be used to study the properties of low-energy
scar states [2].

Sections with high angular deflection show, which parts of
the system boundary are responsible for the creation of each
state and indicate where adiabatic changes in the boundary
conditions are most likely to affect the state [19,20]. This can
be imagined as a quantum force on the boundary. Because
the size of the coherent state used to generate each Husimi
map is kept constant, the angular deflection penetrates into the
bulk to the same extent for each state. However, the locations
of high angular deflection along the boundary form a unique
fingerprint for each state.

165405-4
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FIG. 5. (Color online) Eigenstates of the stadium billiard system
with Dirichlet boundary conditions at three increasing energies, with
the raw Husimi map (left), processed Husimi map (middle), and
wave function (right). Angular deflection is indicated in blue in the
left column. Double arrows indicate the spread of the coherent state
used in the calculations [Ak/k = 20% (a), 15% (b), and 10%(c)].

IV. FLUX THROUGH OPEN SYSTEMS
A. Subthreshold resonance

The previous section used processed Husimi maps to
examine the semiclassical dynamics of closed systems directly
from their wave functions, providing substantial benefits over
the usual flux operator, which vanishes for time reversal
symmetric systems, and averages all trajectories (thus missing
crisscrossing trajectory paths, see Fig. 4) when a magnetic field
is present. Moreover, the spread of the coherent state used
to generate the Husimi map provides flexibility to examine
dynamics at a variety of scales, while the flux operator is
confined to the limit of infinitesimal spread. In its traditional
guise [Eq. (1)], the flux operator is most often employed
in scattering problems which arise when a closed system
is coupled to leads or baths. Is it possible to connect the
semiclassical dynamics of the closed system to the open system
using an extended Husimi flux?

In this section, we demonstrate how the Husimi flux can
help interpret the traditional flux and deepen our understand-
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FIG. 6. (Color online) (Top) An infinite waveguide schematic
with a slight bulge in the middle (grey). This system can be modeled
as two waveguides of different widths (blue and red). (Bottom) In an
infinite waveguide, the transmission curve has a series of plateaus as
each transverse mode opens up (blue transmission curve). In a wider
waveguide, each mode opens up at lower energies (red curve). If
only a small segment of the waveguide is widened, then subthreshold
resonances occur in between the energies of the narrow and wide
waveguides (grey transmission curve). These resonances correlate
with subthreshold resonant states, which peak in the density of states
(DOS) at those energies. Energy is given in units of # where 4t is the
band edge.

ing of transport across a device. We consider subthreshold
resonance for a waveguide that is slightly widened along a
short section (see inset, Fig. 6). In an unperturbed waveguide,
transport occurs through transverse modes, which open for
transport when the system energy exceeds the transverse
energy of the mode. At these energies, the transmission
function exhibits distinct plateaus as seen in Fig. 6, where
the plot of the transmission for a wide(narrow) waveguide is
presented in red (blue).

If a section of a narrow waveguide is widened, the transverse
energy of each mode diminishes in the wider section. Thus, for
each mode, there is a range of energies bounded above by its
transverse energy in the unperturbed waveguide, and below by
its energy in the wider region. In this energy range, the mode
can reside in the wider region but cannot propagate through the
narrower leads where it is an evanescent wave. This forces the
system into a quasibound state which is trapped in the wider
region and is only weakly coupled to the environment, causing
a striking peak in the density of states, commonly known as a
Feshbach resonance [21]. In the quasibound state, the particle
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FIG. 7. (Color online) The raw Husimi map for the resonant state
(see inset) is plotted using (a) Ak/k = 100% and (b) Ak/k = 20%.
The spread of the test wave packet is indicated by the respective
double-arrows. A single Husimi projection (circled in red) for each
map is magnified at right. The vector sums of each map are shown in
Fig. 9(b).

bounces vertically between the walls of the perturbed region
and is unlikely to escape.

At certain energies, a particle propagating in a lower energy
mode corresponding to the narrow section interacts with the
wider region and becomes trapped in the quasibound state. This
causes the quasibound state to hybridize with the propagating
mode and interfere with the transmission in the device, as seen
in Fig. 6. The suppression of transmission appears as a pair
of sharp dips, accounting for symmetric and antisymmetric
versions of the Feshbach resonance. Since the resulting wave
function is the hybridized state that inhabits the system at
resonance, we refer to it as the resonant state.

We compute the wave function of the resonant state
corresponding to the first dip in the transmission shown in
Fig. 6 (indicated by the arrow in the transmission function)
according to the method outlined in Appendix C. This method
allows the extraction of the pure resonant state without the
second-lowest propagating mode, which is also present at these
energies. Figure 7 shows two raw Husimi maps for this wave
function produced using coherent states with uncertainties of
Ak/k = 100% and 20%, respectively. Spatial variations in the
Husimi map decrease as the size of the coherent state increases,
as we present later in Fig. 15.

The raw Husimi map is indistinguishable from the quasi-
bound state and the resonant state, which is expected since
the resonant state is only slightly perturbed by the propagating
mode. The flux of the quasibound state is zero. Moreover, as
the energy is increased across resonance, the wave function
does not substantially change in appearance, while the flux
patterns alter dramatically. At first, these behaviors appear to
contradict the Husimi map, but below we show that the flux

PHYSICAL REVIEW B 91, 165405 (2015)
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FIG. 8. (Color online) (a) The raw Husimi map for the wave
function of the lowest propagating mode (see inset) of the waveguide
in Fig. 6. The energy of the state is well above resonance (E =
0.02745). The uncertainty for this map is Ak/k = 20%. A magnified
view of the projection circled in red is presented at right. (b) The
Husimi flux. This is the mode that hybridizes with the resonant state
to produce Figs. 7 and 9.

patterns correlate with subtle changes in the Husimi maps that
can be retrieved by adding all their vectors.

We can begin to understand these subtle changes by
examining the lowest propagating mode. The raw Husimi map
far away from resonance, shown in Fig. 8 using a moderate
size coherent state, corresponds to a complex plane wave with
a single wave vector. In the Husimi flux, the left-to-right flow
appears unchanged within the central region of the system. The
flux operator for this mode, not shown, is similar. In contrast,
the vector-sum and the flux of the bound state is always zero.
So what happens when it interacts with the lowest propagating
mode to produce the resonant state?

InFig. 9, we address this question by showing the traditional
flux, wave function, and the Husimi flux. The energy for each
state is (a) above, at (b), and below (c¢) resonance. The flux
operator is integrated over a Gaussian kernel corresponding
to a coherent state spread of Ak/k = 100% and is identical
to the Husimi flux with the same coherent state spread. In
the flux operator, we see the characteristic vortex patterns
shift in direction above and below resonance, as expected
when the bound state passes through a phase of m over
resonance. Moreover, while it is clear that the presence of the
lowest propagating mode is stronger away from resonance, the
wave-function representation at all three energies are strongly
influenced by the bound state. Similarly, probability flux is
strongly localized in the center of the system, and it is unclear
how the vortices correlate with the fact that transmission for
this mode goes to zero on resonance.

In the Husimi flux, however, the correlation is obvious:
above and below resonance, vortices cancel out and leave
behind the drift velocity of the mode. For these energies, the
Husimi flux is quite similar to the lowest propagating mode
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FIG. 9. (Color online) The traditional flux (left column) and
the Husimi flux (right column) for the resonance state in Fig. 6
slightly above resonance (a, E = E + 0.00005), at resonance
(b, E = E.) and slightly below resonance (¢, E = E,s. — 0.00005).
The coherent state for the Husimi flux corresponds to Ak/k = 0.2.
The transmission function for this mode corresponds to (a) 7' = 0.99,
(b) 0.06, and (c) 0.99 for the respective energies. Even though the
raw Husimi maps (not shown) at each energy are indistinguishable
from Fig. 7, their vector additions (Husimi flux) vary substantially.
Energies are in arbitrary units, scaled to Fig. 6.

in Fig. 8, and the left-to-right flow extends through the semi-
infinite leads, although there are slight changes in the central
region. At resonance, however, the vortices no longer interfere
to produce flow from left-to-right, but instead persist as larger
vortices across the central region, which counteract the left-
to-right flow from the leads, resulting in zero transmission for
this mode. The second-lowest propagating mode (not shown),
which is antisymmetric along the transverse direction, does not
interact with the resonance and maintains full transmission.
At all energies, the raw Husimi map shows the simple
vertical bouncing trajectories that are identical to the bound
state (Fig. 7), while the left-to-right flow of the lowest
propagating mode (Fig. 8) interferes with these paths to
produce the residual flux vortices. The classical dynamics of
the resonance therefore indicate a subtle shift in the overall
contribution of classical trajectories that give rise to the
resonance. Because the vertical trajectories can easily cancel
each other out, the residual becomes exquisitely sensitive to the
initial conditions of such classical paths, which are determined
solely by the energy of the lowest-propagating mode.
Examining this system using the Husimi flux allows us to
extract details at small spreads similar to the information found
using the flux operator. Yet, the Husimi flux also can indicate
larger drift flows when utilizing larger spreads. Important
information about the resonance can be retrieved at all scales,
since the flow can be understood as the slight residuals of
the full Husimi projection found at different coherent state
spreads. By adding the Husimi projection and the Husimi flux
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to the wave analysis tool set, we can examine the problem
at various scales and construct a more nuanced and complete

story.

B. Transport through complex geometries and
the nature of flux vortices

In the previous section, we explored different scales of flow
patterns by varying the spatial spread of the coherent states
(o) used to generate a Husimi map. In this section, we vary
the o parameter to reveal the behavior of the probability flux
at arbitrary scales in systems with geometries more complex
than a simple waveguide: a square system with two small leads
and a half stadium with two attached leads.

In the square system, the size of the square is much larger
than the characteristic wavelength at the energies of interest.
The leads are displaced vertically from the center towards
the bottom-left and upper-right corners. Further, there is an
obstruction in the middle of the system that constrains transport
towards the central region. As a result, transmission in this
device requires that particle trajectories must reflect off the
boundaries several times.

In Fig. 10, we present a scattering state wave function for
this system, a magnified view of the traditional flux, the Husimi
flux, and the processed Husimi map. The scattering wave
function [see Fig. 10(a)] acts as a mode of unit transmission for
a square system with two small leads. The nodal lines appear
along the 45° diagonals, which is corroborated by trajectories
favoring those diagonals in the processed Husimi map [see
Fig. 10(c)]. This arises because all boundary conditions are
vertical or horizontal walls; since each mode of the unperturbed
waveguide leads is associated with a distinct pair of trajectory
angles, the vertical and horizontal walls therefore reflect all
trajectories back onto the same pair rotated at 45°. At the
energy selected, the pair of trajectory angles for the incoming
mode are at perfect 45° diagonals, so that their rotations from
reflecting off the walls also point along the diagonals, resulting
in standing wave patterns.

The Husimi flux [see Fig. 10(b)] for this state presents a
conductance pathway where it is clear that transport follows
primarily through a narrow channel. Here, most of the particle
flow is from the lower-left to the upper-right corners. By
comparison, the traditional flux map (not shown) is rife with
vortices throughout the entire system, dramatically limiting
our ability to identify overall flow. The conductance pathway
does not have to be classical, since it is an aggregate
phenomenon formed from many trajectories; as a result, it
is able to curl in the bulk without external forces, as seen
in Fig. 10(b). Pairs of vortices form as the pathway moves
from the central part of the device towards the region where
perpendicular classical paths (indicated by the processed
Husimi map) dominate. We highlight one such region with
a black box and present in the inset of Fig. 10 the traditional
flux for this region. These vortex pairs are a direct analog to
those found in subthreshold resonance as the left-to-right con-
ductance pathway passes through perpendicular trajectories
in the perturbed waveguide (see Fig. 9 and the surrounding
discussion).

We now proceed to another complex geometry (see Fig. 11)
and examine a full-transmission scattering state for a large
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FIG. 10. (Color online) A scattering wave function associated
with full transmission through a partially obstructed square device.
(a) Wave function of the system, (b) the Husimi flux, and (c) the
processed Husimi map. The coherent state spread used is Ak/k =
10%, indicated by the double arrows. The inset shows the traditional
flux over the part of the system indicated by the black squares.

half-stadium with two leads attached at its sides. Given that
scar orbits must self-loop but be otherwise unstable [2], scar
states can only participate in transport when the leads attach
at points that are slightly displaced from one of the orbit’s
reflection points; otherwise, the classical orbit leaks out the
system too quickly. The wave function in Fig. 11 shows strong
scarring, and the processed Husimi map corroborates the
scarring with an identifiable classical orbit which just misses
the leads.

Like the partially obstructed square device in Fig. 10, the
traditional flux also occurs most strongly along a narrow
conductance pathway which, in this case, flows along the
bottom of the device while deviating into the bulk at its middle.
In addition, flux vortices occur throughout the system, making
interpretation of the dynamics difficult without applying our
methods. In contrast with the square device, these vortices
no longer form identifiable pairs. In the half-stadium state,
classical paths do not intersect at 90° angles, but take on a
range of oblique angles. As a result, the vortices take on forms
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FIG. 11. (Color online) A scattering wave function associated
with full transmission through the half-stadium. (a) Wave function
representation, (b) the Husimi flux, and (c) the processed Husimi
map. The coherent state spread used is Ak/k = 10%, indicated by the
double arrows. Black and red squares highlight regions of particular
interest (see text). The traditional flux from the respective highlighted
regions of the system is shown magnified in the insets.

that are consistent with the processed Husimi map at each
intersection. For instance, in the black inset, there is strong
flow from bottom left to upper right, with other near-vertical
flows forming vortices. In the red inset, there are three primary
flows propagating at 60° to each other, forming the triangular
arrangement of vortices shown.

V. CONCLUSIONS

The processed Husimi map algorithms for the visualization
and extraction of the dynamics of wave functions presented
here are powerful tools. They provide an extremely accurate
way to reveal the dynamics and classical ray structures of a
quantum wave function. Also, this technique can be used in
a wide variety of systems and to calculate properties such
as angular deflection, boundary reflections, and the flux. The
results and examples presented in this paper demonstrate the
technique as invaluable for informing a design principle in
quantum systems, since it provides a map of how boundaries
affect individual quantum states (Sec. III D), as well as the
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impact of potentials (Sec. 2), and magnetic fields (Sec. III B).
In addition, we have shown its utility for illuminating the
phenomena underlying resonance when a closed system
interacts with an environment (Sec. IV A), while explaining
the source and properties of flux vortices (Sec. IV B).
Because of its ability to contextualize the flux operator and
identify the primary conductance pathway in large systems,
the processed Husimi map is an ideal tool for interpreting
quantum conductance simulations.

This paper focuses on two-dimensional systems, since they
are ideal for demonstrating the significant physical intuition
that the Husimi tools are able to provide. However, its
definition is not limited to such systems. It is equally well
suited to three-dimensional systems, and may be able to
provide a significant contribution to interpreting molecular
orbitals, augmenting such technologies as Bader surfaces
analysis [22] and local currents [23].
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APPENDIX A: UNCERTAINTY PROPAGATION
FOR HUSIMI VECTOR ADDITION

When integrating over the available k& space in Eq. (3),
the resulting Husimi flux vector has lower uncertainty than
the individual terms in the integral, but by how much?
Understanding this detail is key to appreciating why the Husimi
projection is valuable when extending the flux operator to an
operator with defined uncertainty. Moreover, understanding
the behavior of uncertainty propagation in this integral makes
it possible to confidently approximate the result with a discrete
sum, offering both visual and computational advantages.

We begin by considering the extreme cases. If the wave
vector orientation remains unchanged for each measurement,
summing up identical measurements has no effect on the final
relative uncertainty. On the other hand, when either the spatial
coordinates or the wave vectors are sufficiently separated, each
Husimi vector constitutes an independent measurement; the
uncertainty of the result will reduce by the square root of
the number of measurements. In general, calculations fall in
between these two extremes. This analysis is performed in
only one dimension since to obtain the variance in more than
one dimension we would just need to add the variance along
each orthogonal axis. First, the coherent state is expressed in
the momentum basis as

20
J/2

Most generally, the Husimi projection in Eq. (3) is the integral
of Husimi functions over all of k space. In this appendix, and
in the figures throughout this paper, the integral is replaced
with a finite sum of test wave vectors {k;}, which satisfy the
dispersion relation at a particular energy.

12
(K|ro,ko,0) =< ) e~ kkorHitk—ko)ro (A7)
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The variance of the integral in Eq. (3) (the vector-valued
Husimi flux) can be obtained by building on intuition about
coherent states. The k-space variance of the coherent state
can be derived by integrating the coherent state probability
amplitude over k-space, weighting the integrand by (k — ko)?.
Using the notation in Eq. (A1), this gives o2 = #, where
o and o, are the spread in momentum and real xspace of
the coherent state. The properties of coherent state yield the
relation o0, = % This can be thought of in the Husimi
formulation as a statistical result where the quantity oy is
the variance of each individual term in the Husimi vector
summation. In this representation, the variable is the wave
vector and the probability function is the probability amplitude
of the coherent state. Because the probability function is
complex, we take the absolute sum squared.

Factoring in more than one Husimi function into the Husimi
projection results in the expression

2

20 > Z(k _ki)efaz(k*ki)zﬂ(k*kf)m dk, (A2)

/2 S

where the integral is over the set {k;} of test wave vectors,
projected onto the given axis, xp is the spatial point being
tested, and o is the chosen spatial Gaussian spread. By
setting the coherent states to the same phase at their centers,
xo = 0, the above integral can be evaluated and the spread in
momentum is

1 _ 9 (k2
ot = s | N4+2 ) e T = ok — k)
i j>i

(A3)

Already it is possible to test this result against intuition. If
each wave vector is identical, then k; — k; = 0 and the sum of

N measurements results in the uncertainty o = & which

would provide no reduction of relative uncertainty. When

|ki — kj| > o, the exponential term will overwhelm the
2

quadratic term and the uncertainty becomes o7 = 2, a

reduction in the relative uncertainty of J/N.

The second term in Eq. (A3) quantifies the covariance
between measurements. In Fig. 12, we plot this quantity for
two vectors which can actually be negative. The lower bound
of Qky ko) = 26~ 5 ®k0 (1 — 62(ky — ky)) is
—0.893, achieved at |k, — k1| = +/3/0.

The terms in Eq. (A3) suggest that when additional vectors
are added, the uncertainty can be reduced arbitrarily by setting
the correct separations between the test wave vectors (Q is
zero for some vector combinations). It even suggests that for
three or more vectors we could possibly produce results with
negative uncertainty, but intuitively that cannot be possible. To
appreciate why, Fig. 13 plots the results of o for the addition
of three wave vectors.

The minima that occur from maximizing the separation
between each pair of wave vectors is indicated by the white
dashed lines. At the center of the graph, a peak exists at
o} = 9/40?%, which falls to 3 /40 for regions beyond the area
bounded by the white dashed lines, consistent with earlier
observations. There is also a minimum (positive) uncertainty

—_ 4 ~
ar =
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k2'k1

FIG. 12. The second term in Eq. (A3) is plotted for the addition
of two vectors in the Husimi projection. This term represents the
covariance between the two vectors, and is bounded above by 2 and
below by — e;% for all choices of o.

arising from the fact that the separation between all pairs
of points on a line cannot be equal. as shown in Fig. 13
where there are no points where three dashed lines intersect.
For two vectors the minimum occurs at o} ~ 0.981 /402,
for three of ~ 1.017/402, and for four o} ~ 1.036/40>.
We can generalize and state that for Np;, vectors that fall
on separate minima, the uncertainty of their sum will be
o ~ ﬁ Moreover, even if vectors are added that do not
fall on the uncertainty minima in Figs. 12 and 13, they will
have a negligible impact on the total relative uncertainty. To
summarize, no matter how many vectors contribute to the
sum, only the vectors on the minima will reduce the relative
uncertainty. This shows that the key quantity is not the total
number of vectors that are added, but the number that have
sufficient separation to fall on the uncertainty minima.

N W R OO N 0 ©

—_

-6

ko-ky

FIG. 13. (Color online) Uncertainty obtained by summing three
vectors of a Husimi projection, as written in Eq. (A3). The uncertainty
is bounded above by 9/452 and below by ~ 1.017/452. The dashed
white lines indicate local minima that result from spacing each pair
of vectors by +/3/c, which would give a minimum uncertainty for
two-vector addition (see Fig. 12).
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How many vectors is this? We know, for instance, that this
minimum occurs when the maximum number of vector pairs
has a separation near ~/3/o. Further, this is likely to occur
when the vectors are evenly spaced on a line at that separation.
Thus we propose that the number of vectors that can fall on
the minima is given by Ny, = floor(2k(E)o/+/3), and using

hk = v/2mE, we can rewrite this as Ny, = floor(o,/ 8mE ).

3R
Substituting this value results in the proportionalities

~1
(' (2 vmE ) .
h

This makes sense intuitively: the relative uncertainty of a finely
sampled Husimi vector addition goes down with larger o and
energy.

This result deepens the connection between the flux opera-
tor and the Husimi function for small o, since for very small
coherent states, the uncertainty minima, which are separated
by o ~!, grow increasingly far apart. There is only a finite range
of wave vectors that satisfy the dispersion relation at a given
energy, meaning that as the coherent states get smaller, fewer
and fewer samples in k-space minimize the uncertainty. In
fact, at the extreme limit of 0 — 0, the uncertainty cannot be
minimized beyond a single measurement in each orthogonal
direction, indicating that results for these small coherent states
have undefined uncertainty, just like the flux operator. An
alternative proof of this result can be found in Mason et al. [1].

Ak/k

(A4)

min0

APPENDIX B: THE HAMILTONIAN

The numerical simulations presented in this paper use
a free-particle Hamiltonian H = —% + U(r) sampled on
a square grid with spacing @ and where U(r) =0 at all
points unless otherwise stated. This Hamiltonian can be
expressed in more familiar language by using the tight-

binding approximation. The effective mass envelope function
Hamiltonian becomes H =), eiaja,- =12 i a:.[aj, where
a; is the annihilation operator for the i" site, ¢; is the energy
of the system plus the disorder potential, and the set (ij)
cycles through all nearest-neighbor pairs. The hopping term is
t = 2222 and €; = 4t + U;, where U; is zero unless otherwise
stated.

Section III B uses the Peierls substitution [24] to incorporate
magnetic fields, using the language of the tight-binding
model. The magnetic field contributes a phase to the hopping
potential ¢:

tij = texpligl,¢ = gA - (r; — 1))/, B

where r; is the position vectors of the site corresponding to
the ith column of the Hamiltonian, A is Planck’s constant, and
q is the electron charge. Calculations in this paper assume
that the magnetic field is perpendicular to the plane on which
the system sits and is bounded by a cylinder centered on the
system’s center. The radius of this column is chosen to be
greater than the size of the system. Accordingly, the gauge of
the magnetic potential for an out-of-plane magnetic field is
defined such that

A = 2 / B.dxdy, (B2)
2nr
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where the integral is over a disk centered on the origin and
limited by radius r.
The cyclotron radius can be determined by the following
relation:
hk

P (B3)
Byg

For a free particle, ik = ~/2mE, giving

r ~2mE (B4)
a  Boga®’

This means that at £ = O.2mh—;, the energy used in Sec. III B,

a magnetic field strength of B =2 x 10’3% is sufficient to

produce a cyclotron radius that is 2/3 of the system radius.

APPENDIX C: SCATTERING WAVE FUNCTIONS

Diagonalizing the Hamiltonian to examine eigenstates of
a closed system is straightforward. Section IV A, however,
examines an open system in a standard ballistic conductance
calculation. The numerical Green’s function formalism is used
to obtain the scattering wave function for these calculations,
for which modern implementations are outlined in several
texts [25-27]. In this formalism, the Hamiltonian is divided
into a left-lead, central region, and right-lead projections

HL VLC 0
H=|V). He Vg (C1)
0 Vi. Hg

The semi-infinite Green’s function at the surface of each lead
is calculated using the Lopez-Sancho method, g, r(E) for
the left (L) and right (R) (identical) leads. To compute the
complete Green’s function, the device G(E) and the semi-
infinite surface Green’s functions g(E) for each lead [28,29]
are first computed and matched to the surface Green’s function
of the device region, using the numerical technique outlined
in Mason et al. [30].

The coupling matrix for the left lead to the central region is
then defined by ' . (E) = ZIm[VZCgL(E)VLC]. This results in
a density matrix of coherent scattering wave functions p(E) =
G(E)'L(E)G(E). Each coherent scattering wave function in
the system can be obtained by diagonalizing p. Associated
with each eigenvector of p will be an eigenvalue equal to the
likelihood of measuring the wave function within the system.
Since there are generally more basis sets within the central
region than modes available to the system through the semi-
infinite leads, the vast majority of the eigenvalues will be zero,
and the number of nonzero eigenvalues will be equal to the
number of modes available to the system at the given energy.
This number determines the maximum transmission across the
device.

Since a resonant state “traps” the wave function at a specific
energy, it creates a striking peak in the density of states. As
a result, the resonant state can be easily identified among the
eigenvectors of the density matrix since it will be associated
with the largest eigenvalue near the resonance energy. When
discussing resonant wave functions, it is assumed that we
are using a density matrix near the resonance energy and

PHYSICAL REVIEW B 91, 165405 (2015)

examining the eigenvector associated with the largest eigen-
value (and measurement probability) at that energy. This
makes it possible to distinguish the resonant wave function
from the ones that are propagating through the system but are
unaffected by the resonance.

APPENDIX D: CONSIDERATIONS REGARDING THE
MULTIMODAL ALGORITHM AND CLASSICAL PATHS

Processing the Husimi map makes it possible to produce
robust visualizations of the underlying classical paths. It is
possible to sample the Husimi projections at equally-spaced
points along a grid to produce plots. It is also possible to
compute quantities such as the angular deflection described
in Sec. III C. However, if we instead sample along one of the
classical paths that correlate with regions of high density in the
wave function, the processing is not necessary since we find
a set of Husimi vectors which align themselves perfectly with
the classical path. We show these two approaches in Figs. 14(a)
and 14(b), which correspond to the wave functions in Figs. 2(c)
and 2(d), respectively.

Each Husimi projection in Fig. 14(b) contains an additional
set of Husimi vectors which do not align with the path.

FIG. 14. (Color online) Quantum-classical correspondence from
Husimi maps by sampling along classical trajectories. In part (a), the
Husimi map for the two eigenstates in Figs. 2(c) and 2(d), where
Husimi projections are sampled along a grid. In part (b), projections
are instead sampled along classical paths that correspond to the wave
function. Because of rotational symmetry, however, the wave function
is actually created by the sum of many rotations of such paths, as
indicated in part (c).
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These vectors can be understood by considering that wave
functions for the circular well and harmonic oscillator actually
correspond to infinitely many such paths rotated in space due
to the circular symmetry of these systems, which we indicate in
Fig. 14(c). The “cross-hatching” patterns in Figs. 14(a)-14(b)
arise because two rotated classical paths intersect at any point.

Towards the center of the system, a large number of paths
come into close proximity. Even though an infinitesimal point
is intersected by only two paths, the finite spread of the
coherent state is sensitive to other paths nearby, giving rise
to Husimi projections showing a large number of trajectories
with similar angles. These points in a wave function can violate
assumptions of the multimodal algorithm used to process the
Husimi map [1], since the different trajectory angles cannot
be resolved by the finite spatial and momentum uncertainties
of each Husimi projection. As a result, the processed Husimi
maps at the centers of Figs. 2(c) and 2(d) show slight deviations
from the classical path. The processed Husimi maps show the
average classical trajectory at that point and approximations
on both sides of the average.

APPENDIX E: CONSIDERATIONS REGARDING
THE WIDTH PARAMETER o

We begin by examining raw Husimi projections for stadium
billiard eigenstates, to demonstrate their sensitivity to the width
parameter o. This sensitivity has meaning. Figure 15 shows
three Husimi maps for a billiard eigenstate. The wavelength
at the energy of the eigenstate is much shorter than the size
of the system, allowing well-defined scars to form, which are
spawned by modestly unstable and infinitely rare (among all
the chaotic orbits) classical periodic orbits [2].

In Fig. 15(a), an extended coherent state is used to generate
the raw Husimi map, so that many fine features of the wave
function are washed out. Only the scar path (seen as a rotated
“y” pattern in the depiction) is clearly visible. The sharply
peaked Husimi sunburst reflects both the low momentum
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FIG. 15. (Color online) Raw Husimi maps for the scarred sta-
dium billiard eigenstate. Each map uses a different spread of the
measurement wave packet. The spread is indicated by the double-
arrows on the bottom, with relative uncertainties of Ak/k = 5%(a),

20%(b), and 50%(c). A single Husimi projection, circled in red, is
magnified at the bottom of each representation.

uncertainty of the Gaussian used and the strong dominance
of the periodic orbit pathway in the eigenfunction.

Compare this to the Husimi map in Fig. 15(c) which is
generated by a small coherent state with larger momentum
uncertainty. Here, each Husimi projection is more ambiguous,
and local variations in the wave function probability amplitude
have a large impact on the representation since they are no
longer smoothed over. As a result, the trajectories implied
by the map no longer continue from one projection to
its neighbors and appear somewhat irregular. In general,
a compromise can be made by choosing an intermediate
momentum uncertainty, as shown in the Husimi map presented
in Fig. 15(b). Trajectories are fairly well-resolved, and local
variations are easy to follow. Coherent states of this size
provide the clearest representation of semiclassical paths.

[1] D. J. Mason, M. F. Borunda, and E. J. Heller, Quantum flux and
reverse engineering of quantum wave functions, Europhys. Lett.
102, 60005 (2013).

[2] E. J. Heller, Bound-state eigenfunctions of classically chaotic
Hamiltonian systems: Scars of periodic orbits, Phys. Rev. Lett.
53, 1515 (1984).

[3] K. Husimi, Some formal properties of the density matrix, Proc.
Phys. Math. Soc. Jpn. 22, 264 (1940).

[4] D. J. Mason, M. F. Borunda, and E. J. Heller, Semiclassical
deconstruction of quantum states in graphene, Phys. Rev. B 88,
165421 (2013).

[5] E. J. Heller, Wavepacket Dynamics and Quantum Chaology,
edited by M. J. Giannoni, A. Voros, and J. Zinn-Justin,
Proceedings of the 1989 Les Houches Summer School on
“Chaos and Quantum Physics” (Elsevier Science, North-
Holland, 1989), pp. 546—663.

[6] P.W.O’Connor and S. Tomsovic, The unusual nature of quantum
Baker’s transformation, Ann. Phys. 207, 218 (1991).

[7]1 M. S. Child, G. Bruun, and R. Paul, Short time quantum phase
space dynamics at a 1:2 Fermi resonance, Chem. Phys. 190, 373
(1995).

[8] R. W. Robinett, Visualizing the solutions for the circular infinite
well in quantum and classical mechanics, Am. J. Phys. 64, 440
(1996).

[9] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics,
Interdisciplinary Applied Mathematics (Springer-Verlag, New
York, 1990).

[10] L. Kaplan and E. J. Heller, Measuring scars of periodic orbits,
Phys. Rev. E 59, 6609 (1999).

[11] W. E. Bies, L. Kaplan, M. R. Haggerty, and E. J. Heller,
Localization of eigenfunctions in the stadium billiard, Phys.
Rev. E 63, 066214 (2001).

[12] L. A. Bunimovich, On ergodic properties of certain billiards,
Funct. Anal. App. 8, 254 (1974).

[13] M. V. Berry, The Bakerian lecture, 1987: Quantum chaology,
Proc. R. Soc. A 413, 183 (1987).

165405-12


http://dx.doi.org/10.1209/0295-5075/102/60005
http://dx.doi.org/10.1209/0295-5075/102/60005
http://dx.doi.org/10.1209/0295-5075/102/60005
http://dx.doi.org/10.1209/0295-5075/102/60005
http://dx.doi.org/10.1103/PhysRevLett.53.1515
http://dx.doi.org/10.1103/PhysRevLett.53.1515
http://dx.doi.org/10.1103/PhysRevLett.53.1515
http://dx.doi.org/10.1103/PhysRevLett.53.1515
http://dx.doi.org/10.1103/PhysRevB.88.165421
http://dx.doi.org/10.1103/PhysRevB.88.165421
http://dx.doi.org/10.1103/PhysRevB.88.165421
http://dx.doi.org/10.1103/PhysRevB.88.165421
http://dx.doi.org/10.1016/0003-4916(91)90184-A
http://dx.doi.org/10.1016/0003-4916(91)90184-A
http://dx.doi.org/10.1016/0003-4916(91)90184-A
http://dx.doi.org/10.1016/0003-4916(91)90184-A
http://dx.doi.org/10.1016/0301-0104(94)00352-B
http://dx.doi.org/10.1016/0301-0104(94)00352-B
http://dx.doi.org/10.1016/0301-0104(94)00352-B
http://dx.doi.org/10.1016/0301-0104(94)00352-B
http://dx.doi.org/10.1119/1.18188
http://dx.doi.org/10.1119/1.18188
http://dx.doi.org/10.1119/1.18188
http://dx.doi.org/10.1119/1.18188
http://dx.doi.org/10.1103/PhysRevE.59.6609
http://dx.doi.org/10.1103/PhysRevE.59.6609
http://dx.doi.org/10.1103/PhysRevE.59.6609
http://dx.doi.org/10.1103/PhysRevE.59.6609
http://dx.doi.org/10.1103/PhysRevE.63.066214
http://dx.doi.org/10.1103/PhysRevE.63.066214
http://dx.doi.org/10.1103/PhysRevE.63.066214
http://dx.doi.org/10.1103/PhysRevE.63.066214
http://dx.doi.org/10.1007/BF01075700
http://dx.doi.org/10.1007/BF01075700
http://dx.doi.org/10.1007/BF01075700
http://dx.doi.org/10.1007/BF01075700
http://dx.doi.org/10.1098/rspa.1987.0109
http://dx.doi.org/10.1098/rspa.1987.0109
http://dx.doi.org/10.1098/rspa.1987.0109
http://dx.doi.org/10.1098/rspa.1987.0109

REVEALING THE FLUX: USING PROCESSED HUSIMI ...

[14] P. W. O’Connor and E. J. Heller, Quantum localization for a
strongly classically chaotic system, Phys. Rev. Lett. 61, 2288
(1988).

[15] M. V. Berry, Quantum chaology, not quantum chaos, Phys.
Scripta 40, 335 (1989).

[16] S. Sridhar and E. J. Heller, Physical and numerical experiments
on the wave mechanics of classically chaotic systems, Phys.
Rev. A 46, R1728(R) (1992).

[17] S. Tomsovic and E. J. Heller, Long-time semiclassical dynamics
of chaos: The stadium billiard, Phys. Rev. E 47, 282 (1993).

[18] F. P. Simonotti, E. Vergini, and M. Saraceno, Quantitative study
of scars in the boundary section of the stadium billiard, Phys.
Rev. E 56, 3859 (1997).

[19] A. Barnett, D. Cohen, and E. J. Heller, Deformations and
dilations of chaotic billiards: Dissipation rate, and quasiorthog-
onality of the boundary wave functions, Phys. Rev. Lett. 85,
1412 (2000).

[20] D. Cohen, A. Barnett, and E. J. Heller, Parametric evolution for
a deformed cavity, Phys. Rev. E 63, 046207 (2001).

[21] H. Feshbach, Unified theory of nuclear reactions, Ann. Phys. 5,
357 (1958).

[22] R.F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford
University Press, New York, 1990).

PHYSICAL REVIEW B 91, 165405 (2015)

[23] G. C. Solomon, C. Herrmann, T. Hansen, V. Mujica, and
M. A. Ratner, Exploring local currents in molecular junctions,
Nat. Chem. 2, 223 (2010).

[24] R. Peierls, Zur Theorie des Diamagnetismus von Leitungselek-
tronen, Z. Phys. A 80, 763 (1933).

[25] S. Datta, Electronic Transport in Mesoscopic Systems
(Cambridge University Press, Cambridge, 1997).

[26] S. Datta, Quantum Transport: Atom to Transistor (Cambridge
University Press, New York, 2005).

[27] D. K. Ferry and S. M. Goodnick, Transport in Nanostructures,
Cambridge Studies in Semiconductor Physics and Microelec-
tronic Engineering (Cambridge University Press, Cambridge,
1999).

[28] M. P. Lopez-Sancho, J. M. Lopez Sancho, and J. Rubio,
Quick iterative scheme for the calculation of transfer matrices:
Application to Mo (100), J. Phys. F: Met. Phys. 14, 1205
(1984).

[29] M. P. Lopez-Sancho, J. M. Lopez Sancho, and J. Rubio, Highly
convergent schemes for the calculation of bulk and surface Green
functions, J. Phys. F: Met. Phys. 15, 851 (1985).

[30] D. J. Mason, D. Prendergast, J. B. Neaton, and E. J. Heller,
Algorithm for efficient elastic transport calculations for arbitrary
device geometries, Phys. Rev. B 84, 155401 (2011).

165405-13


http://dx.doi.org/10.1103/PhysRevLett.61.2288
http://dx.doi.org/10.1103/PhysRevLett.61.2288
http://dx.doi.org/10.1103/PhysRevLett.61.2288
http://dx.doi.org/10.1103/PhysRevLett.61.2288
http://dx.doi.org/10.1088/0031-8949/40/3/013
http://dx.doi.org/10.1088/0031-8949/40/3/013
http://dx.doi.org/10.1088/0031-8949/40/3/013
http://dx.doi.org/10.1088/0031-8949/40/3/013
http://dx.doi.org/10.1103/PhysRevA.46.R1728
http://dx.doi.org/10.1103/PhysRevA.46.R1728
http://dx.doi.org/10.1103/PhysRevA.46.R1728
http://dx.doi.org/10.1103/PhysRevA.46.R1728
http://dx.doi.org/10.1103/PhysRevE.47.282
http://dx.doi.org/10.1103/PhysRevE.47.282
http://dx.doi.org/10.1103/PhysRevE.47.282
http://dx.doi.org/10.1103/PhysRevE.47.282
http://dx.doi.org/10.1103/PhysRevE.56.3859
http://dx.doi.org/10.1103/PhysRevE.56.3859
http://dx.doi.org/10.1103/PhysRevE.56.3859
http://dx.doi.org/10.1103/PhysRevE.56.3859
http://dx.doi.org/10.1103/PhysRevLett.85.1412
http://dx.doi.org/10.1103/PhysRevLett.85.1412
http://dx.doi.org/10.1103/PhysRevLett.85.1412
http://dx.doi.org/10.1103/PhysRevLett.85.1412
http://dx.doi.org/10.1103/PhysRevE.63.046207
http://dx.doi.org/10.1103/PhysRevE.63.046207
http://dx.doi.org/10.1103/PhysRevE.63.046207
http://dx.doi.org/10.1103/PhysRevE.63.046207
http://dx.doi.org/10.1016/0003-4916(58)90007-1
http://dx.doi.org/10.1016/0003-4916(58)90007-1
http://dx.doi.org/10.1016/0003-4916(58)90007-1
http://dx.doi.org/10.1016/0003-4916(58)90007-1
http://dx.doi.org/10.1038/nchem.546
http://dx.doi.org/10.1038/nchem.546
http://dx.doi.org/10.1038/nchem.546
http://dx.doi.org/10.1038/nchem.546
http://dx.doi.org/10.1007/BF01342591
http://dx.doi.org/10.1007/BF01342591
http://dx.doi.org/10.1007/BF01342591
http://dx.doi.org/10.1007/BF01342591
http://dx.doi.org/10.1088/0305-4608/14/5/016
http://dx.doi.org/10.1088/0305-4608/14/5/016
http://dx.doi.org/10.1088/0305-4608/14/5/016
http://dx.doi.org/10.1088/0305-4608/14/5/016
http://dx.doi.org/10.1088/0305-4608/15/4/009
http://dx.doi.org/10.1088/0305-4608/15/4/009
http://dx.doi.org/10.1088/0305-4608/15/4/009
http://dx.doi.org/10.1088/0305-4608/15/4/009
http://dx.doi.org/10.1103/PhysRevB.84.155401
http://dx.doi.org/10.1103/PhysRevB.84.155401
http://dx.doi.org/10.1103/PhysRevB.84.155401
http://dx.doi.org/10.1103/PhysRevB.84.155401



