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Electron transport in extended carbon-nanotube/metal contacts:
Ab initio based Green function method
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We have developed a new method that is able to predict the electrical properties of the source and drain contacts
in realistic carbon nanotube field effect transistors (CNTFETs). It is based on large-scale ab initio calculations
combined with a Green function approach. For the first time, both internal and external parts of a realistic
CNT-metal contact are taken into account at the ab initio level. We have developed the procedure allowing
direct calculation of the self-energy for an extended contact. Within the method, it is possible to calculate the
transmission coefficient through a contact of both finite and infinite length; the local density of states can be
determined in both free and embedded CNT segments. We found perfect agreement with the experimental data
for Pd and Al contacts. We have explained why CNTFETs with Pd electrodes are p-type FETs with ohmic
contacts, which can carry current close to the ballistic limit (provided contact length is large enough), whereas
in CNT-Al contacts transmission is suppressed to a significant extent, especially for holes.
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I. INTRODUCTION

Stand-alone carbon nanotubes possess uniquely high elec-
tron mobility, which makes their utilization in electronic
applications attractive. This benefit is intensively used in a
new family of field-effect transistors, where semiconducting
CNTs form a channel (CNTFETs). In practice, however, the
current flow through a nanotube is determined not by the
high mobility in a CNT itself, but by the injection quality
of the contacts. Understanding the mechanisms of the current
injection in realistic CNT-metal contacts is a key to access
the theoretical limit of the electron mobility in a channel of a
CNTFET.

The technology of CNTFETs has passed several stages
of development. Since the first demonstration [1] in 1998
for over five years, all manufactured CNTFETs necessarily
had Schottky-type drain and source contacts, and operated as
“Schottky barrier transistors” [2]. This significantly decreases
the drain current and the efficiency of the gate control. In
2003, a CNTFET with ohmic contacts for holes was reported
for the first time [3]. Further, ohmic contacts for electrons
were realized using scandium [4], yttrium [5], gadolinium [6],
erbium, and lanthanum [7] electrodes. Recently, a CNTFET
with a 9-nm channel was manufactured and shown to have
better performance than conventional metal-oxide semicon-
ductor FETs [8]. Gate control in CNTFETs has recently been
facilitated by using an all-around gate [9]; the possibility of
controlling the CNTFET polarity by varying the gate material
has also been shown [10].

Existing studies of metal-CNT contacts at the atomistic
level still cannot explain relevant aspects of the experimental
results—namely, the preferable type of conduction in CNT-
FET (p-, n-type, or ambipolar) and its dependence on the
contact length. By the object of modeling, simulated structures
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can be classified as follows: (i) CNT connects to the metal
by its end (“end-contact”) [11]; (ii) CNT lies on the metal
substrate (“side-contact”) [12,13]; (iii) CNT is surrounded
by the metal (“embedded contact”) [14]. The most advanced
works perform large-scale ab initio simulations, including
using different types of the contacts together with a free
segment of the nanotube [15–17]. This is notable as end- and
side-contacts have no relevance for CNTFETs, because the
former is never realized in the actual setups, and the latter
has a small contact area. Indeed, relevant CNT-metal contacts
belong to the embedded type: the nanotube is surrounded by
the metal along the entire contact width and is free from the
metal in the channel region.

Ab initio simulations of CNT-metal contacts were primarily
aimed at estimating the electrostatic barrier between the metal
and semiconducting nanotube, known as a Schottky barrier.
Being developed for the contact between two bulk materials,
the concept of the Schottky barrier has a clear sense and
an intelligible field of application in the three-dimensional
case, whereas, in the case of the metal and CNT contact,
its competence is questionable. In line with this, methods of
the Schottky barrier calculation are taken from conventional
contacts [18] without any justification that they can be applied
to the border of three- and two-dimensional materials. A review
of the works dealing with the concept of the Schottky barrier
can be found in Ref. [19].

Presenting an alternative to the mentioned approach are
works that go beyond the Schottky barrier paradigm and
characterize the injection quality of CNT-metal contacts via
a combination of density functional theory (DFT) and Green
function formalism [15,17,20]. However, this was done for
end-contacts, leaving real experimental setups aside. The same
approach has been used in Ref. [16] for a CNT embedded into
the electrodes by its three periods, which does not resemble
real CNT-metals contacts well.

The dependence of the contact resistance on the contact
length was experimentally shown in Refs. [21,22], which
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confirm that the real CNT-metal contacts belong to the
extended type (with the effective contact lengths up to the
order of 100 nm). Thus far, however, only a few papers have
been published that deal with extended contacts. The concept
of the extended contact was introduced for CNT-metal contacts
in Refs. [23,24]. The extended nature of the contact in these
works is taken into account by adding purely imaginary self-
energy terms −iγ to each on-site element of the tight-binding
chain (it could be viewed as an “extended version” of the
wide-band limit). As a reference Hamiltonian of the CNT, the
empirical one was used. The single self-energy parameter −iγ
was determined by the fitting procedure. The fitting objects
were the dispersion relation of the graphene on top of the single
metallic layer. The parameter −iγ was set so that the empirical
Hamiltonian of the graphene, modified by −iγ , yields the
same dispersion relation as those calculated using DFT. Such
an estimation of the self-energy is restricted, however, to the
case when the fitting procedure can be fulfilled; it is also
clear that the metal can, in the general case, modify the CNT
Hamiltonian arbitrarily (not only to bring an imaginary part to
its diagonal elements). After all, alignment of the dispersion
relation of the two systems does not mean that all their
electrical properties are the same. In spite of its drawbacks,
this method is the only ab initio based method that makes
predictions on the effective contact lengths.

It should be noted that infinite extended contacts had
also been treated within the empirical quantum models
(effective mass Schroedinger equation) [25,26]. The contact
Hamiltonian was modified in a way similar to the atomistic
model [23,24]. In addition, it was shown that for small
−iγ , the contact between the embedded and free CNT
segments resembles the semiconductor junction, whereas a
large −iγ embedded CNT is fully metalized yielding Schottky
contact formation. We observe both these scenarios within our
atomistic model for Pd and Al contacts, correspondingly.

In this paper, based on earlier suggestions [23,24], we have
developed a quantitative theory of the realistic CNT-metal
contacts, taking into account advantages of the large-scale
simulations [15–17]. The subject of this paper is the electrical
properties of the CNT-metal contact with realistic geometry
(Fig. 1), which is relevant for the state-of-the-art CNTFET
technology. The novelty of this paper can be understood when
compared with Refs. [23,24] as done below.

In Refs. [23,24], the self-energy of the metal is assumed
to have only diagonal terms. These terms can contain only

FIG. 1. (Color online) Overall system of interest includes two
embedded contacts and a free CNT (16,0) segment in between. The
transverse section of the contacts is infinite, whereas the contact
length Lc is finite and arbitrary.

an imaginary part, which does not depend on energy (wide-
band limit). The self-energy itself was not calculated in
Refs. [23,24]; instead it was estimated using an ambitious
mapping procedure. The aforementioned fitting procedure was
shown to be applicable in the case of a Pd contact, but fails for a
Ti contact [23], i.e., it is not universal. In our work, we perform
a direct calculation of the self-energy, though for a simplified
system, but rigorously, i.e., we define as many components of
the metal self-energy matrix as we wish, both diagonal and
nondiagonal, having both real and imaginary parts. Moreover,
all terms of the self-energy matrix depend on energy; we have
shown that this dependence can be strong and far from trivial.

In Refs. [23–26], it was assumed that the Hamiltonian of
the CNT remains unaffected by the metal. Therefore both
self-energy and the Hamiltonian of the CNT cannot contain
terms that describe, for example, doping of the CNT due
to the vicinity of the metal and other consequences of the
CNT-metal interaction. This makes it impossible to make any
suggestions about the polarity of the CNTFET. In contrast, we
have extracted the CNT Hamiltonian from the realistic system,
which contains both an embedded and a free CNT part. This
allows us to catch all possible influences of the metal on the
CNT Hamiltonian, which appeared to be comparable with the
changes due to the self-energy.

Our main assumption is neglecting the curvature effect of
the CNT and CNT-metal interface. Within this assumption,
the rest of the calculations were done rigorously. Therefore
we expect to obtain reliable information about the realistic
CNT-metal contact. The reliability of our method is virtually
restricted by the reliability of DFT as is.

The paper is organized as follows. In Sec. II, we introduce
our method. This includes a description of how and in which
form the Hamiltonian of the carbon subsystem and the metal
self-energy were calculated as well as how they were treated
to obtain the effective Hamiltonian of the extended CNT-metal
contact. Section II is closed with the description of the
quantities and dependencies available for output within the
method. In Sec. III, we apply our method to the CNT partially
embedded into the two electrodes (Al and Pd) of the arbitrary
length. We have calculated, analyzed, and compared with the
experimental data, the output quantities of the method, namely,
(1) the real and imaginary parts of the diagonal elements of
the self-energy, (2) the transmission coefficient as a function
of energy and contact length, and (3) the local density of
states along the CNT and effective band edges. Finally, a short
conclusion is given in Sec. IV.

II. SYSTEMATIC TREATMENT OF THE REALISTIC
CNT-METAL CONTACT

The ultimate goal of this work is to treat a system consisting
of a CNT partially embedded into the metallic electrodes of
arbitrary width and infinite thickness (Fig. 1). As an example,
we apply it to a semiconducting (16,0) CNT embedded into
the metal except for a 9-nm-long channel. This system is really
close to the experimental setups [8,21,22].

Two types of contacts can be distinguished in such a system.
Let us introduce some terminology: (1) internal contact is a
region close to the boundary between the embedded CNT
segment and the surrounding metal. It has a cylindrical shape;
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FIG. 2. (Color online) General idea of the method shown at an
example of a tight-binding chain (represents CNT) connected to
a two-dimensional, semi-infinite electrode (represents the three-
dimensional surrounding metal): initial system, which consists of
an infinite metal electrode, and a CNT (a) is to be represented
by an effective system that contains only carbon atoms and metal
self-energies and whose Green function is the same as for the initial
system (b).

(2) the external contact is a region of space between embedded
and free segments of the CNT, which is in the shape of a circle
(Fig. 1).

Within this terminology, Refs. [15–17] consider only
external contacts, whereas Refs. [23,24] deal with only internal
contacts. The present work takes into account both.

A. The method

The general idea of this work is to bring a given system
(Fig. 1) to the system, which is characterized by two compo-
nents: (1) tight-binding-like Hamiltonian of the CNT, partially
embedded into the metallic electrode, and (2) self-energies
taking metallic electrodes into account. Figure 2 illustrates the
idea of the method: an infinite system [Fig. 2(a)] that consists
of the square lattice (stands for the metal) and the simple
tight-binding chain (stands for the CNT) is to be substituted
by the system [Fig. 2(b)] that contains only an “effective”
tight-binding chain, i.e., all influence of the metal is taken into
account through the self-energy terms. If the metal self-energy
has been found correctly, the Green function of the effective
system coincides with the corresponding part of the initial
system, i.e., both systems are equivalent in terms of transport
properties.

The system depicted in Fig. 2(b) is a known model system
referred to as “extended contact.” The novelty of this work
consists not in the investigation of the extended contact model
(this has already been done [23–26]), but in the correct
identification of its parameters at the ab initio level. Then, we
use Green function formalism to study the electrical properties
of the extended contacts with the identified parameters.

B. Carbon subsystem

The overall infinite system of interest consists of a finite
carbon subsystem (“C”) and an infinite metal subsystem

(“Me”). The corresponding Hamiltonian H, written in the basis
of the local atomic orbitals, reads

H =
[

HC TC−Me

T+
C−Me HMe

]
. (1)

In turn, the carbon subsystem itself consists of the left/right
embedded CNT segments as well as the free CNT segment in
between; the corresponding Hamiltonian reads

HC =
⎡
⎣ HL TLS 0

T+
LS HS HSR

0 H+
SR HR

⎤
⎦ . (2)

Let us assume that the whole carbon subsystem is a block
tight-binding chain comprising N CNT unit cells. Out of these
N unit cells, Nc are embedded into the left electrode, Ns

constitutes the free CNT segment, and, again, Nc are covered
by the right electrode: N = 2Nc + Ns .

The Hamiltonian of the carbon subsystem HC can be
represented as

〈i|HC|j 〉 = δijhi + δi,j+1ti + δj+1,i t
+
i (3)

and is completely defined by hi and ti . Indexes i and j are
numbers of the CNT unit cells. Hereafter, the blocks of the
block-tridiagonal matrices and other equal-sized matrices are
set in italics, whereas all larger matrices are boldfaced.

In order to find matrices hi and ti , we simulate system 1
depicted in Fig. 3. By doing this, we substitute CNT, partially
embedded into the metal, by its rolled-out counterpart, self-
closed by periodical boundary conditions (PBC) [Fig. 4(a)].
Let us discuss this substitution in details. From the electrical
point of view, system 1 with PBC can be viewed as a CNT with
the curvature effects neglected. In Ref. [27], the effect of the
curvature on the electrical properties of the stand-alone CNTs
with different diameters/chiralities was considered. It has been
shown that discrepancies in both band structure and ballistic
current between the normal CNT and the corresponding
nanoribbon with BPC do not exceed 7% for relevant diameters
(which starts from about 1.3 nm). Moreover, Nemec et al. [24]
have shown that fluctuation and dilution disorder effects in
nonepitaxial extended contacts have very low impact on their
transport properties. This means that, to a large extent, only the
effective distance between the CNT and the metal plays a role.
These two arguments can be considered as a justification for the
usage of a “planar version” of the CNT in the identification of
the CNT Hamiltonian. Besides, such substitution allows us to
keep relevant π orbitals of the CNT in one direction, whereas,
in real CNTs, they are always distributed among two atomic
p orbitals.

Consider the geometry of system 1 in detail. System 1
consists of the 30 periods of the rolled-out (16,0) CNT, of
which four periods from either side lie on top of the FCC (111)
metallic lattice fragment, which is three metallic layers deep.
Such a supercell is the most stable configuration of the contact
between the FCC [111] metal with a lattice constant close to
4 Å (Pd and Al) and the carbon honeycomb lattice [28]. The
lattice constant of the metal is changed so as to match perfectly
with the honeycomb lattice within a

√
3 × √

3 supercell
[Fig. 5(a)]. The Pd lattice has to be scratched by 3%, whereas
the Al lattice has to be 1% compressed in order to match
perfectly with the honeycomb lattice (C-C distance is taken
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FIG. 3. (Color online) Atomic systems that have been simulated with DFT in order to obtain either elements of the Hamiltonian of the
carbon subsystem or the metal self-energy: (a) system 1: 576 metallic atoms and 1920 C atoms [30 periods of the rolled-out CNT (16,0)]; (b)
system 2 (810 metallic atoms and 240 carbon atoms), which consists of the four slices: carbon honeycomb lattice and three subsequent metallic
slices; (c) system 3 (810 metallic atoms or three slices of the [111] lattice). Systems 1 and 2 contain 10 nm vacuum under the honeycomb
lattice. All systems were subjected to PBC in all spatial directions.

to be 1.42 Å). We have computed the surface and bulk Green
function as well as the density of states for Al [111] and Pd
[111] with fully relaxed and constrained (as mentioned above)
geometry. For Al, we have seen no difference for all mentioned
quantities, whereas for Pd, the maximum difference does not
exceed 5%. From this, we can conclude that metal-carbon
interface properties remain robust against these manipulations
with lattice constants. It should be noted that system 1 contains
a 10-nm vacuum under the carbon sheet and is subjected to
PBC in each spatial direction.

Subsystems “L”, “S,” and “R” of the carbon subsystem
of the system 1 contain four (indices −3 . . . 0), 22 (indices
1 . . . 22), and four (indices 23 . . . 26) unit cells, respectively.
How do we simulate the contacts comprising more than four
CNT unit cells? Within DFT, we always calculate only four
pairs of the elements for each of HL and HR . The rest of
the elements (hi , ti) are just set to be equal to (h−3, t−3) and
(h26,t26) for HL and HR , correspondingly: (hi,ti) ≡ (h−3,t−3)
for i � −4 and (hi,ti) ≡ (h26,t26) for i � 26.

Out of the calculated Kohn-Sham matrix of the carbon
subsystem, we take only the hopping matrix between two
adjacent cells. Farther interactions are indeed vanishing. As

(a) (b)

(d)(c)

...
...

... ...

...

... ...

... ...

FIG. 4. (Color online) Two main assumptions of the method: (1)
as a Hamiltonian of the CNT (a) we use the one for the “unrolled”
CNT with PBC (b); and (2) for the metal self-energy of the CNT-metal
system (c), we use the one for the system of graphene on top of a metal
(d). In (b), arrows stand for PBC; in (c) and (d), dark blue denotes the
part of the metal perturbed by the proximity of the carbon, in contrast
to light blue, which stands for the unperturbed metal.

we work in a nonorthogonal basis, we need to build the
corresponding overlap matrix SC as well. SC has the same
form and is built by complete analogy with HC.

It is critically important that system 1 contains the transi-
tional region between the embedded and free tube segments.
This allows us to study the transition region between free and
embedded segments of the tube (“external contact”).

Equally important as we use system 1 to identify HC is that
a doping of the tube by a metal is already partially included
in HC, which is a necessary condition to correctly describe
internal contact. The second quantity we need to identify
within internal contact is the self-energy due to interaction
with the metal. Next, we describe how to do this.

C. Self-energy of metal subsystem

The left and right segments of a tube are surrounded
by metallic atoms constituting electrodes. Once we find the
Hamiltonians of the embedded tube and the surrounded metal,
we will be able to incorporate all the influence of the metal
subsystem on the carbon subsystem as follows: H∗

L(R) ≡
HL(R) + �L(R)(E). If we substitute HL and HR in (2) by H∗

L

and H∗
R , the resulting effective system will be characterized

by the same retarded Green function GR
C(E) as the carbon

subsystem of the initial overall system [see (1)]. Such a
substitution is sketched in Fig. 2. Later on, we use notation

top view

side view

i R||,0

(a)

(b)

R||,1

R||,2

R||,3

R||,14

R||,13

FIG. 5. (Color online) Alignment of the carbon and metal sub-
systems (so-called

√
3 × √

3 supercell) in systems 1, 2, and 3 (a);
transverse sections of systems 2 and 3 in terms of

√
3 × √

3 supercells
(b)

165404-4



ELECTRON TRANSPORT IN EXTENDED CARBON- . . . PHYSICAL REVIEW B 91, 165404 (2015)

� instead of �L(R) if it is not important which electrode we
mean, the left or the right one.

We have approximated the self-energy terms to be added
to HC by those representing a system consisting of a graphene
sheet on an infinitely thick metal [Fig. 4(d)]. Such substitution
should not change the magnitude of �(E) significantly
because the chirality of the CNT is large enough. It is also
known [29] that the work function of zig-zag CNTs resembles
that of graphene with a deviation of less than 2% starting from
the chirality (9,0).

A “graphene on the metal” system in the x0y plane has
a view of the supercell (Fig. 5), translated in the x and y

directions to obtain an infinite system. In the z direction, the
graphene layer is followed by an infinitely thick (111) metallic
slab. This system is infinite in the x0y plane and semi-infinite
in the z direction. Our goal is to find its metal self-energy. In
general, to compute the self-energy of a system, we need to
know its Hamiltonian. As the “graphene on the metal” system
is (1) periodic within the x0y direction and (2) approximately
periodic in the z direction deep inside the metallic substrate,
and (3) due to the finite range of interatomic interactions,
its Hamiltonian in the LCAO basis consists of an enumerable
quantity of the same elements. Our intention is to identify these
elements. To do this, it is not necessary to simulate within DFT
the whole infinite system. Instead, we can with high accuracy
find the mentioned elements by simulating finite segments of
an initial system (systems 2 and 3), as will be explained later
in this section.

Along the z axis, our “graphene on the metal” system can
be represented by a sequence of tightly bounded slices [see
Fig. 6(a)]. Each slice, except for the first one, consists of three
metallic layers; the first slice is simply a graphene sheet. Within
each slice, the system is periodic in the x0z plane with a
common translation vectors R|| for either slice [see Fig 5(b),

...

...

...

...

...

...

...

r||

( )z, kII
z

u( )k||

...

u( )k||

( )k||

( )k||

u( )k||

( )k||

( )k||

( )E, k||
( )E

...

...

...

... ......

( )z, r||

( )E ( )E
......

(a) (b)

(c)(d)

FIG. 6. (Color online) The procedure of calculation of the metal
self-energy shown in an example of a simple two-dimensional
lattice connected to a one-dimensional simple tight-binding chain
(represents the three-dimensional metallic lattice with graphene on it):
the initial system given in real space (a) can be Fourier-transformed
by a transverse direction to the set of independent one-dimensional
chains (b), which can be easily decimated to obtain the metal
self-energy (c), which is then Fourier-transformed back to real space
(d).

where a part of the “graphene on the metal” system is shown
schematically].

Let us consider the Hamiltonian of the “graphene on the
metal” system given by its matrix elements in the local
atomic orbital representation. We can define it by the set
of the following matrix elements: Hi,a;j,b ≡ 〈zi,r

||
a |H |zj ,r

||
b |〉.

Hereafter, index i(j ) numerates slices along the z direction,
whereas a(b) numerates each of the transverse supercells (x0y

plane). Using the periodicity of the “graphene on the metal”
system in the transverse direction, we can partially Fourier-
transform the Hamiltonian H in the x and y directions to
obtain its Hamiltonian in (k||,z) space, whose matrix elements
are Hij (k||) ≡ 〈zi |H (k||)|zj 〉. The Hamiltonian H(k||) (as well
as H) describes block tight-binding chains in the z direction,
but (as contrasted with H) these chains are being completely
separated in the transverse direction: Hij (k||) = αi(k||)δij +
βi(k||)δi,j+1 + β+

i (k||)δj+1,i . This can easily be understood by
comparing Figs. 6(a) and 6(b).

The on-site and hopping matrices αi(k||) and βi(k||) of the
ith slice are calculated as follows [30]:

αi(k||) =
∑
R||

〈zi |H (R||)|zi〉 expik||R|| , (4a)

βi(k||) =
∑
R||

〈zi |H (R||)|zi+1〉 expik||R|| . (4b)

In (4), we introduce notations R|| = r||
a − r||

b and H (R||) =
〈r||

a |H |r||
b〉 to denote the vector of the translation and matrix

elements between a given ath cell and an arbitrary bth
cell (including the ath cell itself), correspondingly [see also
Fig. 5(b)]. Elements αi(k||) and βi(k||) do not depend on how
we have chosen the ath cell as a consequence of the transversal
periodicity of each slice.

Summation by R|| can be limited by several transversal unit
cells, because the elements 〈r||

a |H |r||
b〉 are decaying rapidly as

|r||
a − r||

b | increases. In our case, we have simulated a system
that has 3 × 5 supercells in the x0y plane [Fig. 5(b)]; thus we
take 15 elements out of 〈zi |H (R||)|zi〉 to find αi(k||), and the
same number out of 〈zi |H (R||)|zi+1〉 to find βi(k||).

Now, we see the need to identify several elements of the
form 〈zi |H (R||)|zi〉 and 〈zi |H (R||)|zi+1〉 out of the real-space
Hamiltonian to perform the Fourier transformation (4). Next,
we show how we do it in practice.

Assume first that each slice of the metal, starting with the
second slice away of graphene, is unperturbed by proximity
to the surface and has identical properties, which means
that αi(k||) = αu(k||) and βi(k||) = βu(k||) for i � 3. To find
αu(k||) and βu(k||), we simulate a system that consists of
3 × 5 supercells in the transverse direction and three slices
of the metal in the z direction [Fig. 3(c)]. Out of the
simulated Hamiltonian matrix, we pick up the submatrices
〈zi |H (R||)|zi(zi+1)〉 to be used in (4).

Elements α1(2)(k||), β1(2)(k||) are calculated using elements
extracted from the Hamiltonian of the system, which consists
of the fragment of the carbon honeycomb lattice followed by
the three slices of [111] FCC metallic substrate [Fig. 3(b)].
The width of each slice equals the period of the FCC lattice in
(111) direction.
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The transformation of the overlap matrix S is done in full
correspondence with that of the Kohn-Sham Hamiltonian.
Elements of the S that correspond to αi(k||) and βi(k||) are
denoted by sα,i(k||) and sβ,i(k||) accordingly.

Once we have identified the parameters of the tight-binding
chain αi(k||), βi(k||), sα,i(k||), and sβ,i(k||), we can find the
metal self-energy in (z,k||) space:

σ (k||,E) = τ+(k||,E)gs(k||,E)τ (k||,E), (5)

where gs(k,E) is the retarded surface Green function of our
tight-binding chain, τ ≡ [Esβ,1(k||) − β1(k||)]. We have used
a highly converged Lopez-Sancho algorithm [31] to decimate
the unperturbed metal slices and substitute them by the self-
energy σMe(k||,E), followed by a single step of the simple
decimation technique [see Eq. (5)] to obtain the gs(k||,E) of
the resulting system.

The self-energy of one metal supercell σ (E) =
〈ra|�(E)|ra〉 in the initial representation is then recovered
by integrating σ (k||,E) over the Brillouin zone:

σ (E) =
∫

k||∈BZ
σ (k||,E)dk||. (6)

D. Effective Hamiltonian of the carbon subsystem

Out of the matrix σ (E), we extract a correction to the matrix
elements of the Hamiltonian of the carbon atoms up to the
third-nearest neighbor, i.e., 〈rα|σ (E)|rα(n)〉, where rα(n) is the
position of the atom itself (n = 0), the nearest neighbor (n =
1), and so on.

With the elements 〈rα|σ (E)|rα(n)〉, we construct the energy-
dependent self-energy matrices σε(E) and σt (E) to be written
down to the diagonal hi(k||) and nondiagonal ti(k||) elements of
the Hamiltonian of the embedded CNT, correspondingly. This
means that we are beyond the wide-band limit, which was used
for extended contacts earlier [23,24]. More important is that
we correct both real and imaginary parts of the on-site hi and
hopping ti elements of the CNT Hamiltonian of the contact
to obtain their effective counterparts h∗

i and t∗i : h∗
i (E) = hi +

σh(E), ti(E)∗ = ti + σt (E). As a result, we obtain a finite chain
of the tightly bounded CNT unit cells, which are connected to
the reservoirs in a distributed manner as shown in Fig. 2(b). It
is then decimated cell by cell to obtain the self-energies of the
left and right contacts [23,24] σL(E) and σR(E), which are of
the same size as hi and bounded by the first and the last on-site
matrices of the quantum system.

At this point, it is possible to find the retarded Green
function of the quantum system GR

S (E) in a conventional way:

GR
S (E) = 1

(E + iη)SS − H∗
S

, (7)

where H∗
S is the effective Hamiltonian of the quantum system.

It coincides with HS , except for the two elements, namely,
〈1|H ∗

S |1〉 ≡ 〈1|HS |1〉 + σL and 〈Ns |H ∗
S |Ns〉 ≡ 〈Ns |HS |Ns〉 +

σR; η is a positive infinitesimal. Hereafter, we omit the
superscript “S” of the Green function of the quantum system
for convenience.

E. Output of the method

We are focusing mainly on the two physical quantities
to analyze the CNT-metal contact quantitatively: (*) the
transmission coefficient between the left and right electrodes
T (E) (including its dependence on contact length) and (**)
the local density of states both being defined by the Green
function of the quantum system GR(E) and the electrodes’
self-energies σL(R)(E).

We avoid inverting the full matrix in Eq. (7) to find the
Green function GR(E). Instead, we use the recursive Green
function method [32], which allows us to find GR

1,Ns
as well

as GR
i,i , which are the only necessary elements of GR for

calculating the transmission coefficient and the local density
of states (LDOS).

1. Transmission coefficient

After calculation of the so-called broadening matrices
γL(R) = −2ImσL(R) and the retarded Green function GR , we
are able to calculate the transmission coefficient from the left
to the right contact using the Fisher-Lee relation [33], which
reads for our block tight-binding system:

T (E) = Tr
[
γ L(E)GR

1,Ns
(E)γ R(E)GA

1,Ns
(E)

]
. (8)

2. Local density of states along the CNT

The local density of states can be defined for each CNT unit
cell as follows [34]:

ρi(E) = − 2

π
Im Tr[GR(E)S]i,i , (9)

where S stands for the overlap matrix of the quantum region;
factor 2 stands for the spin.

In order to study the external contact, it is important to
visualize the LDOS in the embedded part of the tube. To
do this, we expand the length of the quantum region so as
to enclose additionally four periods of the CNT from each
side of the uncovered tube segment. The calculation of the
Green function in this case is the same except for stopping the
decimation four CNT cells earlier.

3. Effective band profile of the CNT-metal junctions

The profiles of the conduction and the valence band edges,
Ec and Ev , in conventional semiconductor junctions, provide
the most essential information on contact properties. Band
edges can be defined once the dispersion relations E(k) have
been found. Although E(k) can strictly be defined for the
periodical systems only, it is also used for “almost” periodical
systems (p-n junctions) as well as for systems with clearly
broken periodicity (heterojunctions).

In our work, we define effective band edges Ec(z) and
Ev(z) for each ith CNT unit cell from the dispersion relation
Ei(kz) defined for the ith auxiliary system, comprising the
infinite tight-binding chain given by the on-site matrices hi

and the hopping matrices ti (for the free CNT segment) and
h∗

i and t∗i for the embedded CNT segment (together with the
corresponding overlap matrices sh,i and st,i). Hereafter, the z

direction coincides with the tube axis.
The above-mentioned auxiliary systems have the Hermitian

(non-Hermitian) Hamiltonian for the free (embedded) CNT

165404-6



ELECTRON TRANSPORT IN EXTENDED CARBON- . . . PHYSICAL REVIEW B 91, 165404 (2015)

segment. In the second case, the self-energies Ei(kz) have
both real and imaginary parts. The former are the positions
of the metastable energy levels, whereas the latter describes
their broadening. Band edges, if any, are determined solely by
the real part of the self-energies as the edges of the forbidden
band.

III. RESULTS FOR ALUMINUM AND
PALLADIUM CONTACTS

We apply the method described above to analyze the
injection properties of the Pd and Al extended contacts as
well as to compare qualitatively our results with the existing
experiments. Qualitative comparison can be done by analyzing
the transmission coefficient, the density of states and the
band profiles at equilibrium. For example, the position of
the Fermi level relative to band edges at equilibrium tells
us the preferable polarity of the CNTFET; the dependence
of the contact resistance on contact length can be estimated
by analyzing the transmission coefficient T (E) at different
contact lengths.

The geometries of the systems that were used to find
the necessary elements of the overlap matrices and Kohn-
Sham Hamiltonians were introduced earlier. Within these
geometries, we have taken the distance between the top layer
of the metals and carbon sheet from Ref. [35]: dC-Al = 3.72 Å,
dC-Pd = 3.50 Å, i.e., we assume that the CNT-metal distance
equals that between graphene and the metal. This approxima-
tion cannot cover the real geometry of the CNT-metal contact
and the wetting properties of the particular metal (which are
shown to be different [36]), but it is based on the special van
der Waals functional, which is claimed to give reliable results
for the metal-carbon interface [35]. Besides, it is perfectly
compatible with the approximations we have accepted for
the carbon subsystem Hamiltonian and the metal self-energy.
Although the CNT-metal distances have also been defined by
DFT simulations [12,14,15], both methods of its definition
and the type of the functional used seem to be less reliable.
For Pd, these studies give the carbon-metal distance ≈2.2 Å;
as we used this magnitude in our calculations of CNT-Pd
contact, we have observed no signs of the extended character
of the contacts and the n-type doping of the embedded tube
segment. Both these findings are in strong contradiction with
all experimental data with which we are familiar.

The Kohn-Sham Hamiltonians and the overlap matrices
of the systems 1–3 (Fig. 3) were obtained with the use
of DFT as implemented in the Quickstep module of the
CP2K package [37]. Within the energy functional, we use
the Goedecker, Teter, and Hutter (GTH) approximation of
the pseudoptentials [38,39]. To approximate the exchange-
correlation energy, the meta-generalized gradient approxima-
tion (GGA) of Perdue, Burke, and Ernzerhof (PBE) [40] was
used. In order to express the systems’ Hamiltonians in the local
atomic orbital representation, we used a single-ζ valence basis
set for C atoms (2s, 2px , 2py , 2pz orbitals) and a double-ζ
valence basis set plus the polarization function for Pd (25
orbitals in total) and Al (13 orbitals in total). This allows us
to include individual features of each of the metals in detail,
keeping only four orbitals per C atom at the final stage of
calculations.
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FIG. 7. (Color online) Averaged diagonal elements of the self-
energy taken between π orbitals of the same C atoms: (a) imaginary
and (b) real parts for both Pd and Al.

A. Self-energies of metal subsystem for Al and Pd contacts

Within our model, the presence of the metal around the
embedded CNT segments is taken into account in a twofold
manner: (*) by modification of the HC itself due to proximity of
the metal and (**) further modification of the HC by summing
up with the self-energy. The self-energies contain elements
that modify all on-site and hopping elements within a carbon
atom and those between the nearest, next-nearest, and the atom
behind the latter.

The real and imaginary parts of the most important matrix
element 〈π |�(E)|π〉 of the metal’s self-energy matrix are
plotted in Fig. 7. It is worth noting that the other elements of
�(E) have the same or a lower order than the former. Together
with the changes in the carbon subsystem’s Hamiltonian,
four elements 〈rα|σ (E)|rα(n)〉 (n = 0,1,2,3) contain exhaustive
information about the extended metal-CNT contact.

In order to calculate the metal self-energies, we evaluate
the integrand in Eq. (6) at 21 × 36 and 31 × 54 uniformly
distributed k points for Al and Pd, respectively. During the
calculation of the retarded surface Green function of the
unperturbed metal we set the infinitesimal η to be 5 × 10−2 eV;
for the last (perturbed) slice of the metal the infinitesimal has

165404-7



FEDIAI, RYNDYK, AND CUNIBERTI PHYSICAL REVIEW B 91, 165404 (2015)

been taken to be 10−3 eV. In both cases, the corresponding
value is about one order less than the imaginary part of the
self-energy; therefore, it does not change the resulting Green
function significantly while making it possible to bypass Green
function singularities.

Since the periodicity of the metals does not match with
those of the carbon, we can distinguish four different carbon
atoms in terms of the perturbation due to the metal. In Fig. 7,
the matrix elements of self-energies 〈π |�|π〉 averaged over
these four kinds of carbon atoms are shown.

In the wide-band limit, it was shown [23,24] that a small
imaginary part preserves the high conductance of the contact if
the contact is sufficiently long. In contrast, a large imaginary
part suppresses conduction for long contacts, but for short
contacts it yields lower contact resistance. Although the
Al-CNT distance is slightly larger than that of Pd-CNT, the
element Im〈π |�(E)|π〉 in the relevant energy range is three
to 10 times larger than those of the Pd contact.

Although the self-energy elements are significant for all
four carbon orbitals, in the relevant energy range, only the
modification of the π orbitals plays a role. Inclusion of the
three other σ -like orbitals into consideration does not change
the transmission coefficient and density of states in the relevant
energy range.

B. Transmission coefficient as a function of contact length

The dependence of the transmission coefficient on the
contact length (expressed in the number of the unit cells Nc

of the CNT) is shown in Fig. 8. First, let us analyze it for
the infinitely long contact. For both Al and Pd contacts, we
have an energy gap of almost 1 eV, where the transmission is
completely suppressed. For the infinitely long Pd contact, the
transmission virtually reaches a ballistic limit away from this
gap, whereas the Al contact suppresses conduction, especially
for holes. For Pd contacts, the Fermi level is shifting as if it
were p-type doped. For Al contacts, it is not clear from the
transmission coefficient plot, if there is any doping or not.
Doping-related issues are clearer from the LDOS, which is
discussed below.

As for the dependence of the transmission on the contact
length, we observe two main trends. First, for the Al contact,

more than 50% of the possible injection efficiency is reached
for as short a contact as 2.13 nm (five CNT periods). The
palladium contact is much more extended: the transmission
coefficient continues to grow till the contact length reaches
42.6 nm, whereas short Pd contacts are even worse than a
short Al contact. These findings agree with the work of Nemec
et al. [23,24] as the imaginary part of the self-energy for the
Al contact is three to 10 times larger than those of the Pd
contact. We can also see the consequences of the sharp drop
of the Im 〈π |�(E)|π〉 at the plot of T (E) for Pd: for electrons
(i.e., E > EF ) longer Pd contacts are necessary to achieve its
maximal value.

For Al contacts, Im〈π |�(E)|π〉 varies slowly with energy
wherewith it reminds the wide-band limit. Hence we expect
the transmission to change uniformly. Deeper suppression of
the holes’ conductivity is observed compared with those of
electrons instead. This could find a possible explanation during
the analysis of LDOS, which is given below.

C. Local density of states along the nanotube

The local density of states along the nanotube with Pd and
Al contacts was determined according to Eq. (9) and plotted
together with the effective band edges in Fig. 9. These plots
can be used to analyze the external contact, i.e., the contact
between the embedded and free tube segments.

Consider first the LDOS in the embedded part of the
nanotube. For the Pd contact, we clearly see metal-induced
p-type doping, which resembles the doping of graphene [28].
The CNT embedded into the Al contact, in contrast, is losing
its band gap and is becoming metallic. Which states are filled,
propagating, or localized? The effective dispersion relation
shows that there is no band gap in the embedded part of
the tube; therefore, the Al contact is truly metallic, i.e., the
band gap of the pristine CNT is filled by propagating states.
It should be noted that the sign and magnitude of the CNT
doping by Pd agree with those for graphene [28]. For Al, they
are not comparable, because on being introduced into Al, CNT
changes its effective band structure drastically.

The electrical properties of the free CNT part also differ
for Pd and Al contacts. P -type doping of the Pd contact
extends to the free CNT segments as well, while the free part of
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FIG. 8. (Color online) Transmission coefficient as a function of energy for different contact lengths for Pd and Al contacts. Contact length
is expressed in the number of CNT unit cells Nc
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Al-contacted CNT remains undoped. In both cases, however,
there is no evidence that the effective band structure of the
free CNT segment suffers any changes compared with those
of pristine CNT except doping.

In principle, the effective band edges could give us
information on the presence/absence of a Schottky barrier in
the z direction between the embedded and free CNT segments
(which we refer to as the external contact). From Fig. 9,
we can conclude that the Schottky barrier height for the
external Pd contact is close to zero for holes. This assumption
is also confirmed by the transmission coefficient behavior,
which reaches the quantum limit below the Fermi level
(Fig. 8).

From the band edges’ positions near the CNT-Al contact
(Fig. 9), we can conclude that equal Schottky barriers exist for
both holes and electrons. At the same time, the position of the
quasidiscrete states below the valence band edge along with
the damping of the transmission coefficient within the refereed
energy range allows us to assume that there is a narrow and
high electrostatic barrier for holes between the CNT segment
embedded into the Al contact and the free one. It should be
noted that the band edges were defined for a set of discrete
points with a spacing ≈0.43 Å (one period of CNT). Therefore
it is impossible to identify electrostatic barriers (even if they
exist) shorter than the period of the CNT. It is likely, however,
that in the case of Al, we deal with this. One can assume that
the height of this barrier should be as large as the real part of the
self-energy element 〈π |�|π〉, which is ≈2 eV. Therefore the
injection quality of the Al contact is low due to both internal
and external contacts.

D. Relation to the experimental results

We have intentionally chosen the most different (in terms
of the experimental behavior) contact materials to verify the
method. Palladium is a material that is known to be able to
form an ohmic contact with CNTs yielding conduction close
to the ballistic limit [3]; it is also a well-established fact that
CNTFETs with Pd electrodes are pronounced p-type FETs.
The effective contact length of the Pd contact in experiments

has an order of 100 nm just like in our calculations. At the
same time, Al-contacted CNTFETs experimentally manifest
mainly electron conduction with signs of ambipolarity. The
current that the Al-contacted CNT can carry is several orders
less than that of the Pd-contacted tube.

The above-described experimental results agree qualita-
tively with the existing experimental data [3,8,21,22,41,42]
both in terms of the preferable conduction type and difference
in the current flow magnitude. First, consider the case of
the infinitely long contact (in practice, this means that Lc �
100 nm [22]). The position of the Fermi level in relation to
band edges (Fig. 9) in the case of Pd contact assumes that the
transfer characteristic of the CNTFET with Pd contacts must
be asymmetric, namely, negative gate voltage must yield a
higher drain current than positive gate voltage. This is what was
actually observed for Pd-contacted CNTFETs in practice (see,
for instance, Fig. 2(b) in Ref. [8]). It is important to note that
the experimental setup [8] has a channel length Lch ≈ 9 nm
and tube diameter dCNT ≈ 1.3 nm, which resembles closely the
structure we simulate in this work [dCNT = 1.25 nm (diameter
of (16,0) CNT); Lch = 9.4 nm].

There are no available experimental data on short-channel
Al-contacted CNTFET, whose Lch and dCNT resemble those
of the structure we simulate. There are, however, available
transfer I -V characteristics for single-CNT CNTFET with
dCNT ≈ 2.5 nm and Lch = 2500 nm [42] (see Fig. 4(a) in
Ref. [42]), as well as for single-CNT CNTFET with Lch =
1200 nm [41] and unknown diameter [41] (see Fig. 1(d) in
Ref. [41]). Both these Al-contacted CNTFETs possess n-type
conduction as the preferable one. How can we compare it
with our results? In Fig. 8, the transmission coefficient for
electrons (E > 0) is much higher than for holes (E < 0). We
expect, therefore, for the theoretical transfer characteristics to
have asymmetry that is typical for the n-type CNTFET. Thus,
Al-contacted CNTFETs are n-type FET both according to our
theory and in practice. In Ref. [41], based on experimental
results, the authors suggest that Al-contacted CNTFETs have
Schottky barriers for both types of carriers; higher for holes
and smaller for electrons. The calculated band edges depicted
in Fig. 9 confirm this assumption as well.
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As reported in Ref. [41] [see Figs. 1(b) and 1(d) inside],
the drain current difference between Al- and Pd-contacted
CNTFETs exceeds one order of magnitude. This agrees
qualitatively with our results for T (E) for Al- and Pd-contacted
CNT (Fig. 8): the transmission of a Pd-CNT contact tends
to the ballistic limit, whereas that of an Al-CNT contact is
strongly suppressed. We expect, therefore, similar differences
in the drain current.

As reported in Ref. [8], the drain current of Pd-contacted
CNTFETs depends on the contact length. The drain current
increases as Lc increases, and reaches its maximal magni-
tude for Lc � 100 nm. In our calculations, the transmission
coefficient T (E,Lc) smoothly tends to the ballistic limit
as Lc grows (Fig. 8). At Nc = 100 (which corresponds to
length Lc = 42.6 nm), our model predicts virtually complete
transmission saturation. This suggests that the drain current
will depend on Lc in the same way as in the experiment. For
Al contact, we cannot make similar comparisons due to the
absence of a corresponding experiment. Being only qualitative,
such a good agreement with experimental data, has never been
achieved at the ab initio level before.

IV. CONCLUSION

For the first time, we consider realistic CNT-metal contacts
in CNTFET. By this, we mean that both internal (extended
region between the embedded CNT segment and a metal)
and external (well-localized region near the contact of the
free and embedded CNT segments) contacts were taken
into account. Previous works consider either internal con-
tacts [23–26] or external contacts solely [16], but never
both.

Our method contains two stages. At the first stage, we
identify all the elements of the Hamiltonian and overlap
matrices of the CNT partially embedded into the metal. For
this, we simulate one principal system (system 1) and two
auxiliary systems (systems 2 and 3). During the second stage,
we substitute the metal subsystem by the set of the distributed
self-energy terms that are to be added to the Hamiltonian
of the carbon subsystem of the system 1. In fact, we have
generalized the conventional method of incorporating infinite
electrodes trough self-energies [34] to the case of extended
electrodes. Self-energy terms for extended contacts have never
been calculated before this; in the best case, they have been
identified by fitting the E(k) relation of a graphene sheet on a
metal [23,24] or just setting it arbitrarily [25,26].

As we looked for self-energies of the metallic electrodes,
we had partially switched to k space (in the transverse
direction) and gone back to the initial representation. For
this, we used auxiliary periodic systems that have a common
period in the transversal direction in both the carbon and the
metal.

We have introduced a wider spectrum of output quantities,
including DOS and effective band edges as a function of
position along the tube (including the embedded part), as well
as a transmission coefficient depending on the length of the
contact.

To check the prediction abilities of the method, we
have applied it to CNT-Al and CNT-Pd contacts. For Pd
contacts, we observe p-type doping of the embedded and
free segments of the tube; the contact has an effective
width of the order of 100 nm. Long Pd contacts manifest
a transmission close to the ballistic limit, whereas the
transmission in the short Pd contacts is strongly suppressed.
These results agree perfectly with the experimental data on Pd
contacts [3,8,21,22,42].

The aluminum-CNT contact manifests, in some sense,
opposite electrical properties compared to the Pd-CNT one.
First of all, the embedded tube turns out to be fully filled by
the propagating states. At the same time, the transmission is
suppressed for holes, which is presumably attributed to a short
and high Schottky barrier at the external contact. The internal
contact indeed has a high resistance for both electrons and
holes. This agrees well with the existing experimental data,
which show that Al-contacted CNTFETs are n-FETs [41].
The elongation of the Al contact is idle, because 50% of
the transmission maximum is still being achieved for the
2-nm-long contact. The transmission coefficient at a relevant
energy range is well below the ballistic limit, which agrees
with the existing experiment [41] as well.
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