
PHYSICAL REVIEW B 91, 165402 (2015)

Strongly interacting Majorana fermions

Ching-Kai Chiu, D. I. Pikulin, and M. Franz
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1

and Quantum Matter Institute, University of British Columbia, Vancouver BC, Canada V6T 1Z4
(Received 21 November 2014; revised manuscript received 12 March 2015; published 2 April 2015)

Interesting phases of quantum matter often arise when the constituent particles—electrons in solids—interact
strongly. Such strongly interacting systems are, however, quite rare and occur only in extreme environments of
low spatial dimension, low temperatures or intense magnetic fields. Here we introduce a system in which the
fundamental electrons interact only weakly but the low energy effective theory is described by strongly interacting
Majorana fermions. The system consists of an Abrikosov vortex lattice in the surface of a strong topological
insulator and is accessible experimentally using presently available technology. The simplest interactions between
the Majorana degrees of freedom exhibit an unusual nonlocal structure that involves four distinct Majorana sites.
We formulate simple lattice models with this type of interaction and find exact solutions in certain physically
relevant one- and two-dimensional geometries. In other cases we show how our construction allows for the
experimental realization of interesting spin models previously only theoretically contemplated.
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I. INTRODUCTION

When fermions partially occupy a band that is flat their
kinetic energy is quenched and interactions, even when nomi-
nally weak, can have a profound effect on the ground state of
the system. This paradigm is realized, with spectacular results,
in two-dimensional (2D) electron gases in perpendicular
magnetic field where the interplay between the flat Landau
level band structure and the Coulomb interaction gives rise
to the fractional quantum Hall effect (FQHE) with all its
remarkable phenomenology [1,2]. More recently, it has been
realized that magnetic field is not necessary for the formation
of FQHE states: One can obtain these, at least in principle,
from lattice models that are tuned so that their conduction
band is (nearly) flat and at the same time exhibits a nonzero
Chern number making it topologically nontrivial [3–8]. When
these conditions are met one can achieve FQHE without
magnetic field and there has been considerable interest in such
systems recently. In practice, however, it is not clear how a
lattice system with a topologically nontrivial flat band could
be realized experimentally because the occurrence of a flat
band typically requires considerable fine tuning of the overlap
integrals which are given in solids by crystal chemistry and this
is, in most cases, not continuously tunable. Proposals exist to
artificially engineer such systems in optical lattices and dipolar
spin systems [9,10].

In this study we introduce a physical lattice system in
which a completely flat band can be obtained by tuning a
single parameter. The band is unusual because its fundamental
degrees of freedom are Majorana fermions [11–14]. In the flat
band regime the Hamiltonian is dominated by the interaction
term and the system is therefore inherently strongly correlated.
Its phenomenology differs substantially from the FQHE
paradigm. Interesting phases nevertheless arise and we explore
them in some detail.

The specific system we consider is depicted in Fig. 1 and
consists of an Abrikosov lattice of vortices in the surface state
of a strong topological insulator (STI) that has been made
superconducting, either intrinsically as suggested by recent
experiments [15,16], or through the proximity effect with

FIG. 1. (Color online) Schematic depiction of the system based
on the Fu-Kane model [22]. Superconducting order is induced in
the surface of a strong topological insulator (STI) gapping out the
protected surface states with the Dirac dispersion. Magnetic field B is
then applied to induce Abrikosov vortices in the SC order parameter
�(r). Each vortex hosts an unpaired Majorana zero mode γ j .

an adjacent ordinary superconductor [17–21]. Theoretically,
the situation is described by the Fu-Kane model [22] which
also famously predicts that each vortex in the SC order
parameter binds a Majorana zero mode. Tentative experimental
evidence for such zero modes has been recently reported in
Bi2Te3/NbSe2 heterostructures [23].

When two vortices are brought together their Majorana
wave functions start overlapping and, generically, the zero
modes split. In the vortex lattice one thus expects formation
of a Majorana band whose bandwidth increases as the lattice
becomes denser. This is indeed observed in analytical and
numerical calculations [24–30]. However, as we discuss in
more detail below, in the special case when the chemical
potential μ of the STI coincides with the Dirac point of the
surface state (hereafter referred to as the neutrality point) the
band formation can be avoided. This is because the Fu-Kane
model at the neutrality exhibits an extra “chiral” symmetry
and, as observed by Teo and Kane [31], vortex defects are then
in topological class BDI described by an integer (as opposed
to Z2 valued) invariant. Physically, this means that the total
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number of exact zero modes in the system is equal to the
total vorticity, i.e., the total number NV of vortices present in
the system. This is to be contrasted with the Z2 classification
that applies away from the neutrality point and implies (NV

mod 2) exact zero modes.
The above considerations imply that at the neutrality

point the chiral symmetry present in the Fu-Kane model
prohibits Majorana zero modes from hybridizing, independent
of their detailed geometric arrangement. The Majorana band
that arises in the vortex lattice therefore remains completely
flat. In this situation one may expect interactions to play an
important role in determining the collective quantum state of
the system. In what follows we explore some of the interesting
strongly correlated phases of Majorana fermions that arise in
such vortex lattice models. We find that, remarkably, certain
strongly interacting models of this type admit exact solutions
owing to the presence of an extensive number of conserved
quantities. In other cases exact solutions are not available but
the Hamiltonians can be mapped onto spin models, some of
which have been studied previously and some that appear new.

In Sec. II below we review the general symmetry arguments
that indicate the absence of the zero mode hybridization in the
Fu-Kane model at neutrality in greater detail. We then outline
how this physics arises in a concrete model calculation and
use this model in Sec. III to derive the form of the interaction
terms and estimate their strength, as well as discuss the effects
of small detuning from neutrality on the effective low-energy
Hamiltonian of the system. In Sec. IV we proceed to analyze
various interacting lattice models with Majorana fermions
that can arise in vortex lattices in different one- and two-
dimensional geometries. We conclude in Sec. V by discussing
prospects for experimental realization and observation of these
lattice models in physical systems and we speculate about
some novel phases of strongly interacting Majorana matter
that can be potentially engineered with the help of the tools
introduced in this study.

II. MAJORANA FLAT BANDS IN VORTEX LATTICES

A. Zero modes in Fu-Kane model

Fu and Kane [22] envisioned inducing superconductivity
in the surface state of a three-dimensional (3D) topological
insulator by covering it in with a thin film of an ordinary
s-wave superconductor such as Pb or Nb. Alternately, su-
perconductivity could appear as an intrinsic instability of
the surface state [15,16] or be induced in thin STI flakes
through their bulk by placing them on an SC substrate [23]. In
either case the second-quantized Hamiltonian describing such
a superconducting STI surface state can be written as

H =
∫

d2r�̂†
rHFK(r)�̂r , (1)

where �̂r = (c↑r ,c↓r ,c
†
↓r ,−c

†
↑r )T is the Nambu spinor and

HFK(r) =

⎛
⎜⎜⎜⎝

−μ vp− �(r) 0

vp+ −μ 0 �(r)

�∗(r) 0 μ −vp−
0 �∗(r) −vp+ μ

⎞
⎟⎟⎟⎠, (2)

with p± = px ± ipy and μ the chemical potential. The
diagonal 2 × 2 blocks describe the kinetic energy of the STI
surface state (single Dirac fermion with velocity v) while the
off-diagonal blocks encode the SC pair potential.

As the first step we are interested in finding the eigenstates
�n(r) of HFK(r) in the presence of a single Abrikosov vortex.
For a vortex placed at the origin we write

�(r) = �0(r)e−i(nϕ+θ), (3)

where �0(r) is a real function of the distance, ϕ represents the
polar angle, and θ denotes an arbitrary constant phase offset
due to other vortices that could be present in the system far
away from the origin. Integer n denotes the vorticity. Single
valuedness of the Hamiltonian dictates that �0(r) vanishes at
the origin. Energy considerations further show that �0(r) ∼
r |n| for small r .

To find the zero modes of HFK(r) in the presence of a
vortex it is useful to first perform a unitary transformation
H̃FK = UHFKU−1 with

U =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟⎟⎟⎠, (4)

which brings the Hamiltonian into the following form,

H̃FK =
(

M D

D† −M

)
, D =

(
�(r) p−
−p+ �∗(r)

)
, (5)

and M = diag(−μ,μ). The transformed Hamiltonian acts
on the modified Nambu spinor �̂r = (c↑r ,−c

†
↑r ,c

†
↓r ,c↓r )T .

Passing into the polar coordinates and making use of the
identity p± = e±iϕ(−i∂r ± r−1∂ϕ) we may write

D =
(

e−i(nϕ+θ)�0(r) e−iϕ
(−i∂r − ∂ϕ

r

)
−eiϕ

(−i∂r + ∂ϕ

r

)
ei(nϕ+θ)�0(r)

)
, (6)

where we have set v = � = 1. We now temporarily focus on
the neutrality point where M = 0 and the Hamiltonian (5)
is purely off-diagonal. When looking for the zero modes the
off-diagonal form has a distinct advantage: The zero modes
necessarily have the spinor structure (ψ(r),0)T and (0,χ (r))T

where ψ(r) and χ (r) are two-component zero modes of D†

and D, respectively. For a singly quantized vortex (n = 1) it
is easy to show that there exists a normalizable zero mode of
D of the form,

χ0(r) = 1√
2

(
e−i(θ/2−π/4)

ei(θ/2−π/4)

)
f0(r), (7)

with

f0(r) = Ae− ∫ r

0 �0(r ′)dr ′
, (8)

while D† does not have a normalizable zero mode. The field
operator of the zero mode reads

γ = 1√
2

∫
d2r

[
ei(θ/2−π/4)cr↓ + e−i(θ/2−π/4)c

†
r↓

]
f0(r). (9)

As expected, the zero mode represents a Majorana particle,
γ † = γ . For μ �= 0 the structure of the zero mode wave
function becomes slightly more complicated [25]; in addition
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to the exponential decay it exhibits an oscillatory behavior
∼ sin kr where k is a wave vector close to the Fermi wave
vector kF = μ/v.

When multiple well-separated vortices are present in the
system then each will harbor a Majorana zero mode. Their
respective creation operators γj satisfy the anticommutation
algebra [11–14],

{γi,γj } = 2δij , γ
†
i = γi, (10)

characteristic of Majorana fermions. The latter follows directly
from Eq. (9) generalized to multiple vortices and the canonical
anticommutation relations for the electron operators crσ .
The expected non-Abelian exchange statistics of vortices
containing Majorana zero modes [32,33] becomes apparent
when one considers adiabatic exchange of two such vortices.
In what follows we shall deal with vortices pinned at fixed
positions and their non-Abelian properties will therefore not
play an essential role in our considerations.

B. Symmetry considerations

In the presence of multiple vortices that are closely spaced
the fate of the zero modes associated with a single isolated
vortex will depend on the symmetries of the underlying
Hamiltonian, as discussed in detail by Teo and Kane [31].
We now briefly review their analysis as relevant to the
Hamiltonian (2). To facilitate the discussion we rewrite the
latter in a more compact notation,

HFK = τ z( p · σ − μ) + τ x�1 + τ y�2, (11)

where � = �1 + i�2 and σ , τ are Pauli matrices in spin and
Nambu spaces, respectively. The Hamiltonian (11) respects the
particle-hole symmetry generated by � = σyτ yK (�2 = +1,
K denotes complex conjugation) and, for a purely real gap
function �, also the physical time reversal symmetry � =
iσ yK (�2 = −1). In the presence of vortices � becomes
complex and the time reversal symmetry is broken. The
Fu-Kane model with vortices therefore defines symmetry class
D in the Altland-Zirnbauer classification which according
to Ref. [31] implies a Z2 classification for the zero modes
associated with point defects such as vortices. Physically, this
means that a system with total vorticity NV will have (NV

mod 2) exact zero modes, in accord with the expectation that
any even number of Majorana zero modes will generically
hybridize and form complex fermions at nonzero energies.

However, in the special case when μ = 0, Hamiltonian (11)
respects a fictitious time reversal symmetry with �̃ = σxτ xK

(�̃2 = +1), even in the presence of vortices. At the neutrality
point, the two symmetries � and �̃ define a BDI class with
chiral symmetry � = ��̃ = σ zτ z. This, according to Ref.
[31] implies an integer classification of zero modes associated
with point defects. A system with total vorticity NV will
thus exhibit NV exact zero modes, irrespective of the details
such as the geometric arrangement of the individual vortices.
Below we illustrate how this interesting behavior emerges in
a concrete model calculation.

We remark that the Fu-Kane model at the neutrality point
coincides with the Jackiw-Rossi model [34] well known in
particle physics, where the μ = 0 condition is enforced by
the Lorentz invariance. An index theorem for Dirac fermions

applied to this model [35] is known to connect the total
vorticity with the number of protected fermionic zero modes.
This property of the Fu-Kane model has been previously noted
in Ref. [25].

C. Zero mode hybridization in a vortex lattice

We now study the zero mode hybridization using the
microscopic wave functions obtained above in Sec. II A. To
begin consider two vortices located at points R1 and R2, such
that |R1 − R2| 	 ξ . The two-vortex Hamiltonian H

(2)
FK still has

the structure displayed in Eq. (5) except that �(r) now encodes
vortices at R1 and R2. We can seek its low-energy eigenstates
in the basis spanned by the zero mode wave functions
�1(r) = (0,χ0(r − R1))T and �2(r) = (0,χ0(r − R2))T . If
we denote the two Majorana operators as γ1 and γ2 then the
zero mode splitting comes from the term it12γ1γ2 with the
overlap integral it12 = 〈�1|H (2)

FK |�2〉. At the neutrality point
the matrix element t12 trivially evaluates to zero because |�1〉
is orthogonal to H

(2)
FK |�2〉 for arbitrary positions R1 and R2.

The zero modes therefore remain exact as expected on the
basis of the symmetry argument presented above.

Away from the neutrality point we find [29]

it12 =
∫

d2rχ
†
0 (r − R1)(−M)χ0(r − R2)

= iμ sin

(
θ1 − θ2

2

)
F12, (12)

with F12 = ∫
d2rf0(r − R1)f0(r − R2); the overlap is pro-

portional to μ and is generally nonzero.
If there are many vortices in the system then the overlap

integrals remain zero at the neutrality point and are given by
a generalization of Eq. (12) when μ �= 0. A system of many
vortices in a superconductor (or a charged superfluid) is only
stable in the presence of an externally applied magnetic field
B [36]. To describe a realistic vortex lattice we must therefore
include magnetic field by performing a minimal substitution
p → p − τ z(e/c)A in the Hamiltonian (11). One can show
that the presence of A does not qualitatively change the zero
mode wave function (7) associated with an individual vortex.
However, the phase difference (θ1 − θ2)/2 in the overlap
integral Eq. (12) must be replaced by its gauge invariant
generalization,

ω12 =
∫ r2

r1

(
1

2
∇θ − e

c
A
)

· dl, (13)

where the integral is taken along the straight line between
vortex positions r1 and r2. This result can be obtained by
an explicit calculation but also follows from a simple general
argument: Because the overlap amplitudes |tij | are potentially
measurable physical quantities they cannot depend on an
arbitrarily chosen gauge. Some details of how one evaluates
the gauge invariant phases (13) in the vortex lattice geometry
are provided in Appendix A.

The low-energy effective Hamiltonian describing the Ma-
jorana zero modes in a vortex lattice can thus be written as

Hkin =
∑
i,j

tij sij γiγj . (14)
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Here we use a notation introduced in Ref. [37] where tij is a
real symmetric matrix representing the hopping strength while
sij = eiφij = ±i are the Z2 gauge factors. The sign ambiguity
arises from the fact that one can perform a local Z2 gauge
transformation γj → −γj without affecting the zero mode
commutation algebra (10). A product of sij factors along a
closed trajectory is, however, gauge invariant and physically
observable. It represents a Z2 gauge flux and should be thought
of as analogous to the magnetic flux expressed through the
Peierls factors in lattice models of charged particles. In
the vortex lattice for a general polygon formed by n vortices
the total phase is given by [37]∑

polygon

φij = π

2
(n − 2). (15)

In the context of Eqs. (12) and (13) the Z2 gauge factors arise
from the fact that half of the phase difference enters the overlap
integral (12) and the sin ωij function is thus not single valued in
the presence of vortices. The physics of the associated branch
cuts and how they give rise to the Z2 gauge factors is further
explained in Appendix A.

We note that according to Eq. (15) for both triangular and
square vortex lattices if tij are nonzero, Majorana fermions
move in a background of nontrivial Z2 flux. This makes
even the noninteracting problem interesting and leads to the
rich physics of “nucleated” topological phases, explored in
previous studies [38,39].

As already noted, for μ �= 0 the Majorana wave functions
exhibit Friedel-like oscillations with length scale set by kF =
μ/v. When intervortex distance d is such that kF d � 1 then
this leads to an oscillatory behavior of the overlaps tij with
the distance. Such oscillations in combination with disorder
in vortex positions have been studied and shown to produce
interesting effects [26,40]. In this study we focus on the regime
k−1
F > d � ξ where the oscillatory behavior can be neglected.

Oscillations in this regime have no effect on the hoppings
between near neighbors and are damped out by the exponential
decay of the wave functions on longer distances. As we will
show in the next section it is precisely this regime where the
interactions tend to dominate over the kinetic energy and this
is also where our interest lies.

III. INTERACTION EFFECTS

A. General considerations

We showed in the previous section that by tuning a single
system parameter in the Fu-Kane model (the global chemical
potential μ) one can eliminate the hybridization between
the Majorana zero modes bound to individual vortices. We
demonstrated how this occurs in a specific microscopic model
but we emphasize that this effect only depends on the system
symmetries and not on the microscopic details.

At the neutrality point, therefore, the Majorana band
associated with an arbitrary vortex lattice will be completely
flat and the many-body ground state will exhibit 2NV /2−1-fold
degeneracy under the conservation of fermionic parity. At
the noninteracting level this degeneracy is robust to any
symmetry-preserving perturbation. A question that naturally
arises is what physical effects (if any) are likely to remove

this extensive ground-state degeneracy in a physical system.
There are essentially two possibilities: (i) symmetry breaking
disorder and (ii) interactions. It is clear that local fluctuations
in the chemical potential μ, if allowed, will generate random
hoppings tij between nearby Majorana zero modes and these
will in turn remove the ground-state degeneracy. This is
because nonzero fluctuating μ breaks the fictitious time
reversal symmetry �̃ of the Fu-Kane Hamiltonian at neutrality
returning its zero mode classification back to class D. Majorana
fermion systems with random hoppings have been previously
considered in a number of studies [26,41,42].

In this work we focus on the interactions whose effects are
much less well understood. Accordingly, we shall consider
systems in which the interaction strength is much larger than
any perturbation arising from the disorder effects. We will
show that conditions under which such an assumption can be
justified can indeed occur in physical systems. Specifically,
we consider four-fermion terms that arise from Coulomb or
possibly other interactions present in the underlying solid
state system. Such interactions are generated even when both
particle-hole symmetry � and the fictitious time reversal
symmetry �̃ are respected. This allows for a genuinely
strongly correlated regime in which the physics is completely
dominated by interactions and the kinetic energy is quenched.

Under these assumptions the leading perturbation to the
degenerate manifold of Majorana zero modes will arise from
electron-electron interactions that are necessarily present in the
underlying solid. If we denote by γj the annihilation operator
of the Majorana zero mode belonging to the j th vortex then
the simplest interaction term that can be constructed has the
form,

Hint =
∑
ijkl

gijklγiγjγkγl, (16)

where gijkl are real constants representing the interaction
strength. The reality of gijkl follows from the requirement that
Hint be Hermitian. Furthermore, since the Majorana operators
obey the anticommutation algebra (10) only the part of gijkl

that is antisymmetric in all indices contributes to Hint. We note
specifically that according to Eq. (10) γ

†
i γi = γiγi = 1 and

the terms in Hint with two identical indices reduce to fermion
hoppings, e.g., giiklγiγiγkγl = giiklγkγl . However, such terms
are not Hermitian and one can show that since giikl = giilk they
identically vanish. The simplest interaction term thus involves
Majoranas located at four distinct vortices. Such a nonlocal
interaction may be expected to give rise to unusual physical
properties.

The expression in Eq. (16) is cumbersome because for every
group of four vortices it contains 24 distinct permutations of
the γ operators. It is thus preferable to rewrite Hint as a sum
over all distinct groups of four vortices in each of which we
define a specific ordering of γ ’s. For example, for the group
(γ1, γ2, γ3, γ4) we write the interaction term as

H1234
int = gγ1γ2γ3γ4, (17)

and similarly for other groups with γ ’s organized in order
of increasing index j . The interaction term H1234

int is allowed
to introduce in the Hamiltonian since H1234

int in the Majorana
operator basis automatically preserves particle-hole symmetry
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and is invariant under the time reversal operation γj → γj and
i → −i.

In the next subsection we shall discuss the microscopic
origin and the strength of coupling constants g. As we shall
see the coupling strength g depends on the zero mode wave-
function overlaps as well as the detailed form of the interaction
potential V (r). For our present purposes it will suffice to note
that since the Majorana wave functions decay exponentially
outside the vortex core, the largest g will occur for those
groups of four vortices that are packed closest together. In
the following we shall often consider examples of lattice
systems in which we retain only such dominant interactions
and neglect all g’s associated with groups of vortices that are
more spread out since they are smaller by factors ∼e−d/ξ where
d is the intervortex distance and ξ the SC coherence length.
For instance in the square vortex lattice we shall retain g�
associated with an elementary square plaquette and neglect
all other couplings.

B. Microscopic origin of the interaction terms

Suppose we have solved the single-electron problem in
the presence of N vortices. We thus have the complete set
of eigenfunctions �n(r) and eigenenergies En of H

(N)
FK . The

second quantized Hamiltonian (1) can then be written in a
diagonal form H = ∑′

n Enψ̂
†
nψ̂n + Eg , where

ψ̂n =
∫

d2r�†
n(r)�̂r , (18)

are the eigenmode operators. The sum over n is restricted to the
positive energy eigenvalues and Eg is a constant representing
the ground-state energy. At the neutrality point, according to
our preceding discussion, N of the ψ̂n eigenmodes coincide
with the exact zero modes belonging to the individual vortex
cores. We denote these γj with j = 1 . . . N .

The Coulomb interaction, appropriately screened, can be
written as

U = 1

2

∫ ∫
d2rd2r ′ρ̂(r)V (r − r ′)ρ̂(r ′), (19)

where V (r) is the interaction potential and ρ̂(r) = c
†
σ rcσ r

is the electron charge density operator. The latter can be
expressed in terms of modified Nambu spinors as ρ̂(r) =
�̂

†
r Oρ�̂r with Oρ = 1

2 diag(1,−1,−1,1). Next, by exploiting
the completeness of the eigenstates �n(r) we can invert
Eq. (18) to obtain

�̂r =
∑

n

�n(r)ψ̂n, (20)

and express the charge density in terms of the eigenmode
operators as

ρ̂(r) =
∑
n,m

[�†
n(r)Oρ�m(r)]ψ̂†

nψ̂m. (21)

Substituting this result into Eq. (19) and projecting onto the
zero mode subspace we arrive at the interaction between

Majorana modes of the form,

U0 = 1

2

∑
ijkl

γiγjγkγl

∫ ∫
d2rd2r ′ρij (r)V (r − r ′)ρkl(r ′),

(22)
where

ρij (r) = [�†
i (r)Oρ�j (r)]. (23)

Comparing Eqs. (22) and (16) we may read off an expression
for gijkl ,

gijkl = 1

2

∫ ∫
dr2dr ′2ρij (r)V (r − r ′)ρkl(r ′). (24)

At the neutrality point we can use Eq. (7) to write

ρij (r) = − i

2
sin

(
θi − θj

2

)
f0(r − Ri)f0(r − Rj ). (25)

In the vortex lattice when magnetic field is present the phase
difference is to be replaced by ωij defined in Eq. (13). Noting
the antisymmetry ρij (r) = −ρji(r), the expression for the
interaction parameter g defined in Eq. (17) for every such
group of four vortices can be written as

g = εijklgijkl, (26)

where εijkl is the totally antisymmetric tensor. This can be
further simplified, for the group of four Majoranas γ1 . . . γ4,
as

g = 8(g1234 + g4123 − g1324). (27)

The three distinct terms can now be evaluated with the help of
Eq. (25).

C. Estimate of the interaction strength

Since according to our analysis in Sec. II the hopping
amplitudes between Majorana fermions tij can be tuned
to zero by adjusting the chemical potential the system
will be in the strong interaction regime for any nonzero
value of g. In practice, of course, we need g sufficiently
large to be able to observe the interaction effects in a sample
with realistic levels of disorder and at nonzero temperature
T . We thus require an estimate of g relevant to a realistic
situation. For concreteness, we consider the vortex lattice in
the Bi2Te3/NbSe2 heterostructure discussed in Ref. [23].

In this situation we expect the Coulomb interaction to be
well screened so that it is essentially pointlike on the scale
set by the SC coherence length ξ , i.e., V (r) � V0δ(r). The
expression (24) for the coupling constant simplifies, becoming

gijkl = 1

2
V0

∫
dr2ρij (r)ρkl(r). (28)

Evaluation of the coupling constant in this limit thus involves
an estimate of V0, calculation of the overlap integral implied
by Eq. (28), and a determination of the geometric prefactors
coming from the phases θi indicated in Eq. (25). We begin with
the latter as the phases are determined purely by the vortex
lattice geometry. We first consider an elementary square in
an infinite periodic square vortex lattice. The phase difference
structure is discussed in Appendix A and is consistent with the
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one obtained in [37]. We then obtain g� = −2V0F1234 where

F1234 =
∫

d2r�4
j=1f0(r − Rj ). (29)

For a linear one-dimensional (1D) arrangement of the four
vortices one similarly obtains g = −V0F1234.

To estimate F1234 we must adopt some specific form for the
radial part f0(r) of the Majorana wave function, which in turn
depends on the order parameter profile �(r) near the vortex
through Eq. (8). In the vicinity of a singly quantized vortex the
latter is well approximated by [36]

�(r) = �0 tanh (r/ξ ), (30)

with �0 the asymptotic gap value far from the vortex. To
facilitate analytical treatment we further expand Eq. (30) at
small distances as �(r) ≈ �0(r/ξ ), which then leads to a
normalized wave function,

f0(r) � 1

πξ
e−r2/2πξ 2

, (31)

where we employed the BCS definition of the coherence length
ξ = v/π�0. The above approximation is valid for r � ξ ; for
larger radii f0(r) crosses over to a simple exponential depen-
dence ∼e−r/ξ . The advantage of the approximate form (31)
is that the overlap integral in Eq. (29) is Gaussian and can be
easily evaluated. For four vortices forming a square with a side
of length d one obtains

F1234 = 1

2π2ξ 2
e−d2/πξ 2

. (32)

For d � ξ one again expects a crossover to a simple exponen-
tial behavior ∼e−d/ξ .

To complete the estimate we need the characteristic value
of V0. Assuming the screened Coulomb interaction between
electrons of the form VTF(r) = (e2/r)e−r/λ with λ the Thomas-
Fermi screening length, we find V0 = ∫

d2rVTF(r) = 2πe2λ.
Putting everything together we thus arrive at an estimate,

g� � −2e2λ

πξ 2
e−d2/πξ 2

. (33)

A more transparent expression arises if we introduce the Bohr
radius a0 = �

2/me2 � 0.52 × 10−10m and the associated en-
ergy scale ε0 = e2/2a0 � 13.6 eV,

g� � −ε0
4

π

a0λ

ξ 2
e−d2/πξ 2

. (34)

To estimate the typical interaction strength we take the
experimentally measured [23] coherence length ξ � 29 nm.
The value of the screening length λ in this system is not
known but we note that it should be significantly longer than
the screening inside a typical metal (or a superconductor)
because in the setup of Ref. [23] the surface layer of the STI is
separated from the SC substrate by the insulating bulk of the
STI crystal with thickness h � 3–10 nm. The STI surface state
itself should not screen efficiently because of its low density
of states. A simple exercise in elementary electrostatics shows
that the screening length in this situation is then bound from
below by distance h. This can be seen, for instance, by noting
that the screening field can be attributed to the relevant image
charge placed distance h below the SC surface. We can thus

use distance h as a rough estimate for the screening length
λ � 10 nm to obtain an estimate for the interaction strength
g� � (10.6 meV) × e−d2/πξ 2

. An even stronger interaction
could be achieved in a material with a shorter coherence
length or longer Thomas-Fermi screening length λ. Because
of the exponential dependence on the intervortex distance d,
the interaction effects will be most pronounced when d does
not exceed ξ by a wide margin. For instance, when d = 2ξ we
obtain a respectable g� ≈ 3meV interaction scale.

The interaction strength is to be compared with the direct
hopping amplitude, which under the same assumptions as
above becomes

t12 � μe−d2/4πξ 2
. (35)

Strong correlation regime obtains when μ is tuned such
that |t12| � |g�|. In a typical experiment μ is controlled by
a combination of chemical doping and electrostatic gating.
The latter is a continuous process in which, presumably, the
average μ can be tuned as close to zero as desired. From
this perspective, achieving the interaction dominated regime
should not present a significant problem, except of course
that one must also ensure that the interaction effects are not
obscured by disorder. We further discuss disorder effects in
Sec. IV C.

IV. LATTICE MODELS WITH INTERACTING
MAJORANA FERMIONS

We now proceed to study specific interacting models in one
and two spatial dimensions. We focus on lattice geometries
whose building blocks are either 1D line segments or square
plaquettes because they most naturally accommodate the four-
fermion interaction terms (16). We begin with 1D structures
which can be physically realized by inducing SC order in a nar-
row strip on the surface of an STI and then applying magnetic
field of appropriate strength perpendicular to the surface. In 2D
we focus on vortex lattices with square symmetry. We note that
although in most conventional superconductors natural vortex
lattices are triangular [36], there exist materials with a strong
fourfold anisotropy in which square vortex lattices have been
experimentally observed [43–46]. To engineer more complex
vortex structures one could also employ various techniques that
generate vortex pinning [47–49]. This involves, essentially,
perturbing the superconductor in a controlled fashion on the
nanoscale to create a pattern of regions with locally suppressed
SC order parameter �(r). Such regions then attract and pin
vortex cores due to the lower condensation energy. With
sufficiently strong pinning one can, in principle, create an
almost arbitrary arrangement of vortices, including systems
with, e.g., multiply quantized vortices which are otherwise
energetically unstable.

A. One-dimensional lattice models

One may expect on symmetry grounds that one-
dimensional vortex lattice structures will arise when a strip
of a superconducting thin-film material is deposited on the
STI surface and subjected to a perpendicular magnetic field.
Theoretical calculations within the Ginzburg-Landau theory
indeed predict a single line of vortices forming along the long
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FIG. 2. (Color online) Lattice structures for models with strongly interacting Majorana fermions. (a) Simple 1D chain, (b) two-leg ladder,
and (c) diamond chain. (d) Simple square lattice with two types of plaquettes characterized by interaction strength g1 and g2, and (e) the
modified square lattice with alternate sites (rendered in red) occupied by double vortices. The arrows in panels (b) and (c) indicate our choice
of the Z2 gauge factors for the Majorana hopping terms consistent with Eqs. (14) and (15).

axis of the strip at low fields and more complicated structures
with multiple lines at higher fields [50]. Some of these predic-
tions have been confirmed experimentally [51]. Importantly,
these calculations also indicate that the intervortex distance in
such configurations is typically much smaller than the distance
between vortices and the strip edge. This means that the inter-
actions between Majorana zero modes bound to vortices will
dominate over any residual interactions with low-energy Dirac
fermions present in the ungapped surface of the STI (note also
that the density of states of the latter vanishes when μ ≈ 0).

1. Linear chain

A simple linear chain depicted in Fig. 2(a) is described by
an interacting Hamiltonian of the form,

Hint = g1

∑
j

αjβjαj+1βj+1 + g2

∑
j

βjαj+1βj+1αj+2. (36)

Here αj and βj denote two Majoranas in the two-site unit cell j .
In a uniform chain g1 = g2 but we consider here a more general
case of dimerized bond lengths leading to alternating couplings
g1 and g2. The Hamiltonian (36) can be brought to a more
familiar form by performing a Wigner-Jordan transformation
suitable for Majorana fermions [71] to spin variables σj ,

αj =
(

j−1∏
k=1

σx
k

)
σ z

j , βj = i

(
j−1∏
k=1

σx
k

)
σ z

j σ x
j . (37)

One obtains

Hint = −g1

∑
j

σ x
j σ x

j+1 − g2

∑
j

σ z
j σ z

j+2, (38)

an interesting variant of the XY model, with nearest neighbor
spin interactions along x and next nearest interactions along
z. This is an example of a spin model that would not naturally
arise in a system where fundamental degrees of freedom are
electron spins. Yet it emerges here from a very simple and
natural structure composed of interacting Majorana fermions.

Adding direct hopping terms (assuming again a dimerized
lattice) described by

Hkin = it1
∑

j

αjβj + it2
∑

j

βjαj+1, (39)

gives, in the spin representation,

Hkin = −t1
∑

j

σ x
j − t2

∑
j

σ z
j σ z

j+1. (40)

The full Hamiltonian H = Hint + Hkin is not exactly solvable
for a general set of parameters but has several special points
in the parameter space where exact solutions are known.
These include an anisotropic XY model for g2 = t1 = 0 and
a transverse field Ising model when g1 = t2 = 0 or when
g1 = g2 = 0. A detailed exploration of the phase diagram of
this model is beyond the scope of this study and we leave it to
future work. It is clear, however, that the model exhibits a rich
phase diagram with gapped and gapless phases, some of which
are topologically nontrivial and carry unpaired Majorana zero
modes at the edges.

2. Two-leg ladder

Next we consider a two-leg ladder shown in Fig. 2(b). The
interacting Hamiltonian is given by the first term in Eq. (36).
This model is exactly solvable for an arbitrary interaction
strength g on the square plaquette. To see this note that each
four-fermion term commutes with the Hamiltonian and is
therefore a constant of motion. Furthermore, adding hopping
t along the rung does not spoil the model’s integrability,
although hopping t ′ along the legs does. After the WJ
transformation (37) the Hamiltonian can be written as H =
H0 + H′ with

H0 = −g
∑

j

σ x
j σ x

j+1 − t
∑

j

σ x
j , (41)

H′ = −t ′
∑

j

(
σ

y

j σ z
j+1 − σ z

j σ
y

j+1

)
. (42)
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The signs of t and t ′ terms here reflect the Z2 gauge factors
indicated in Eq. (15). At the neutrality point (t = t ′ = 0)
and assuming g > 0 the ground state is a doubly degenerate
ferromagnet. In the fermion language this corresponds to
complex fermions cj = 1

2 (αj + iβj ) on each rung either all
occupied or all empty. Turning on t �= 0 removes the twofold
degeneracy. Since this is a gapped state one expects it to remain
stable against the perturbation H′ as long as t ′ remains weak.

3. Diamond chain

As the final 1D example we consider a diamond chain
depicted in Fig. 2(c). The interacting Hamiltonian is

Hint = g1

∑
j odd

γjαjβjγj+1 + g2

∑
j odd

γj+1αj+1βj+1γj+2,

(43)

where once again we allow for the possibility of dimerization.
We observe that products αjβj commute with Hint and with
one another. They can thus be replaced by classical variables
isj = ±i. The Hamiltonian becomes

Hint = i
∑
j odd

(g1sj γjγj+1 + g2sj+1γj+1γj+2), (44)

describing a simple 1D chain with hoppings g1 and g2 between
nearest neighbor sites. Because there are no closed loops in
such a linear chain we can adopt a gauge in which sj = 1
for all j . The Hamiltonian (44) then coincides with the
Kitaev chain model [52]. Accordingly, its spectrum is gapped
whenever g1 �= g2. For an open ended chain with sites labeled
j = 1 . . . ,2N the phase with g1 < g2 is topological and has
unpaired Majorana zero modes bound to its two ends while
g1 > g2 corresponds to the trivial phase. g1 = g2 marks the
critical point separating the two phases. Adding Hkin to the
interacting Hamiltonian (43) spoils its integrability but again
we may expect the gapped phases to be robust against small
detuning from the neutrality point.

B. Two-dimensional lattice models

We now turn to 2D lattice geometries. A simple square
lattice depicted in Fig. 2(d) is not exactly solvable and we
shall discuss its phase diagram below. We consider first a
modified square lattice shown in Fig. 2(e) which represents
a somewhat artificial but exactly solvable 2D geometry with
strong interactions. It is obtained by populating one sublattice
with doubly quantized vortices each containing two exact
Majorana zero modes α j , β j . The dominant interaction terms
in this arrangement are of the form,

Hint = g
∑

j ,ν

α jβ jα j+νβ j+ν + g′ ∑
j ,δ1,δ2

α jβ jγ j+δ1γ j+δ2 ,

(45)
where δ = ±x̂,±ŷ are the nearest neighbor vectors while ν

second neighbor vectors on the square lattice. The model is
solvable because once again products α jβ j commute withHint

(and with one another) and can thus be replaced by classical
variables is j = ±i. The resulting Hamiltonian is bilinear in
the γ operators residing on the single vortex sites and can
be analyzed in a straightforward fashion. Depending on the

relative sign and amplitude of the couplings g and g′ various
phases are possible, including a gapless metallic phase when
g 	 g′ > 0 and, interestingly, dispersionless flat band at zero
energy when g < 0 and |g| 	 |g′|. A detailed discussion of
this model is given in Appendix B.

A simple square lattice model depicted in Fig. 2(d) cannot
be reduced to a noninteracting problem and we study it by a
combination of approximate analytical techniques and by exact
numerical diagonalization on small clusters. To facilitate the
discussion we consider a dimerized situation with couplings
g1 and g2 on alternating rows of plaquettes, described by

Hint = g1

∑
j

α jβ jα j+xβ j+x + g2

∑
j

β jα j− yβ j+xα j+x− y.

(46)
In the limit g2 = 0 the system breaks up into a collection of
two-leg ladders already discussed above. Assuming g1,g2 � 0
the exact ground state is a direct product of the ground states
of the individual ladders. In the language of Ising spins defined
in Eq. (37) these are doubly degenerate 1D ferromagnets. The
ground state thus exhibits a 2Ny -fold degeneracy, where Ny is
the number of unit cells in the y direction. The spectrum of
excitations is gapped and the lowest excited state at energy
2g1 has one of the spins reversed. Inclusion of nonzero g2 can
be seen to suppress the ferromagnetic order in the individual
ladders by promoting excitations. A reasonable conjecture is
that the gapped phase persists all the way to the isotropic
point g2 = g1 which marks a quantum phase transition to
another gapped state that is adiabatically connected to a set
of independent ladders that occur at g1 = 0.

We have performed a standard mean-field (MF) analysis by
decoupling Hint in all possible channels involving Majorana
bilinears on nearest and next nearest neighbor bonds. At
g2 = 0 this procedure yields the exact ground state with �1 =
g1〈iα jβ j 〉 = ±g1 and all other order parameters zero. The two
possible signs correspond to two degenerate ferromagnetic
ground states on each ladder. Interestingly, this solution
persists as the mean-field ground state for all values of
g2 < g1. At g2 = g1 the MF theory predicts a strong first-order
transition to a state characterized by the nonvanishing order
parameter �2 = g2〈iβ jα j− y〉 = ±g2 which then persists all
the way to g1 = 0 where it becomes the exact ground state
of Hint. To ascertain the accuracy of the MF solution we
carried out exact numerical diagonalizations (ED) of Hint for
a system containing Nx × 4 lattice sites with Nx up to 19
(see Appendix C). Some representative results are displayed
in Fig. 3. These indicate that the MF treatment provides a
reasonable approximation for g2/g1 � 1 but breaks down
when the two couplings are comparable. Specifically, ED
indicates a continuous phase transition at g2 = g1 with the
gap closing smoothly at that point.

We expect the gapped phases of the 2D model to remain
robust against small detuning from the neutrality point.
However, at the criticality, such detuning is likely to drive
the system into another phase, adiabatically connected to
the noninteracting system of Majorana fermions described
by the Hamiltonian (14). Our conjectured phase diagram
describing this situation is displayed in Fig. 3(e). The gapped
phases in the interaction dominated regime are separated
from the hopping dominated phases by topological phase
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FIG. 3. (Color online) Interacting system of Majorana fermions on the simple square lattice. (a)–(c) The finite size scaling analysis
of the many-body excitation energies of the system obtained by exact numerical diagonalization. Details of the numerical procedure are
described in Appendix C. Energies of the two lowest excited states are plotted as a function of 1/Nx for g2 = 0.5 in (a) and g2 = 1.0
in (b). The excitation energies extrapolated to Nx → ∞ are displayed in (c) as a function of g2. This plot shows that the gap closes at
g2 = g1 indicating a phase transition. We note that the first excited state here exhibits degeneracy that grows with a system size. (d) Shows
the order parameter �1 = −i〈α1β1〉 as a function of g2 for various system sizes. The infinite system extrapolation is obtained by assuming
�1 � c0 + c1/Nx + c2/N

2
x . The order parameter goes to zero continuously at g2 = g1 supporting the notion of the continuous phase transition.

In (a)–(c) g1 = 1.0 is held constant. (e) The schematic phase diagram for the simple square lattice system.

transitions. This can be seen by analyzing the noninteracting
Hamiltonian (14). It describes spinless fermions with charge
conjugation symmetry. Since the time reversal symmetry is
absent the system is in topological class D which has integer
classification in d = 2. Assuming that tij is dominated by
first and second neighbor hoppings t and t ′ the system is
gapped and one can easily calculate the corresponding Chern
number C = sgn(t2t ′) = ±1. Recalling furthermore that for
small chemical potential t,t ′ ∝ μ, as shown in Sec. II, we
obtain C = sgn(μ), leading to the phase diagram illustrated
in Fig. 3(e). The interaction dominated phases by contrast
are adiabatically connected to systems of decoupled two-leg
ladders and are thus topologically trivial with C = 0.

C. Physical feasibility and proposed experimental observations

Models discussed in this section can be engineered in a
laboratory provided that several conditions are met. The key
requirement is the ability to tune the chemical potential μ of
the STI surface state to the close vicinity of the neutrality
point. Although the most common STIs in the Bi2Se3 family
do not naturally grow in this regime, the neutrality point can
be reached in these via chemical doping and by electrostatic
gating in the thin film or flake geometry. Remarkably,

tantalizing evidence for intrinsic surface superconductivity
with Tc � 9 K and �0 � 5 meV has recently been re-
ported [16] in the topological insulator Sb2Te3 whose growth
chemistry has been tuned to achieve neutrality. Although the
mechanism behind the emergence of superconducting order
in this material is presently not known, if confirmed, this
system could form an ideal platform for the exploration
of the lattice models with interacting Majorana fermions.
In other, more recently discovered STI materials, such as
the ternary Bi2Te2Se, the μ ≈ 0 condition naturally obtains
in a stoichiometric crystal [53,54]. Quaternary compounds
Bi2−xSbxTe3−ySey can in turn be robustly tuned into their
neutrality point [55].

The samples must also be sufficiently clean so that the
interaction effects are not obscured by disorder. The situation
here resembles fractional quantum Hall systems where the
sample quality is of paramount importance. Disorder that
breaks the chiral symmetry of the Fu-Kane model, such
as the fluctuating scalar potential, will generate random
Majorana hopping between the adjacent vortices. These must
be negligible compared to the interaction scale g that we
estimated to be of the order of several meV. Disorder that
does not break the symmetry, such as irregularities in the
vortex positions or fluctuations in the SC pairing amplitude,
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will not generate hopping terms but will introduce a random
component δg in the interaction strengths. Understanding
the effect of disorder in a strongly interacting system is a
difficult problem, one that lies beyond the scope of this study.
By thinking about those interacting models that are exactly
solvable (such as the two-leg ladder and the diamond chain)
we may conclude that weak disorder |δg| � |g| will have
negligible effect on the gapped phases but could affect the
nature of the critical points in some cases. In models that are not
integrable disorder could lead to more interesting phenomena
such as the many-body localization. This, obviously, is a
potentially interesting topic for future studies.

The most obvious experimental tool to probe the interacting
systems we described in this study is scanning tunneling
microscopy (STM). This technique is uniquely suited to image
vortex lattices at the nanoscale [46] as well as to detect
bound states present in the vortex cores [56,57]. A first step
towards observing the complex phenomena associated with
interactions will be to resolve a single Majorana zero mode in
the vortex core of the Fu-Kane model and its splitting as a result
of hybridization with another zero mode localized in a nearby
vortex. We note that once a suitable sample with μ ≈ 0 has
been fabricated this should be a relatively easy task because in
this limit Fu-Kane model predicts a single vortex core state at
zero energy separated from all other core states by a gap whose
amplitude is close to the full SC gap �0 [58,59]. With the SC
gap of the order of meV, as seen in Ref. [23], a state of the art
STM should have no problem clearly resolving the zero modes
and their splitting due to hybridization or interaction effects.

Once the zero modes are detected the next step will consist
of establishing the effect of interactions in small clusters of
vortices. This, again, should be relatively straightforward.
Interaction effects are easy to distinguish from simple hy-
bridization because they require four or more vortices to occur.
Thus, a smoking gun test for the interaction effect is to probe
the zero mode splitting in a group of two, three, and four
vortices. Hybridization, if present, will split the zero modes in
all cases while interaction will only cause splitting in the last
case. When the interaction effect is confirmed in such small
clusters then one can move onto larger lattices which will, for
correct geometries, show interesting collective phenomena.

We have discussed in this section some specific examples of
vortex lattice geometries that lead to simple interacting models
with Majorana fermions. Even these basic structures display
interesting behaviors. The actual experimental vortex lattice
geometries will depend on the details of the physical samples
and we shall not attempt here to specify the precise conditions
for the formation of a given structure. Instead, we note that
since STM can be used to map out both the lattice structure
and the electronic state of vortices, theory will work best in
conjunction with experiment to unveil the physics of strong
interactions in these systems.

V. OUTLOOK

When the chemical potential is tuned to coincide with
the Dirac point in the superconducting surface of a strong
topological insulator Majorana fermions bound to the vortex
cores show a completely flat band, protected by the chiral
symmetry. In this regime the nature of the ground state

is determined by interactions between the Majorana zero
modes and the system must be regarded as inherently strongly
correlated. We gave examples of lattice geometries in one and
two dimensions for which the ground state of the strongly
interacting system can be found exactly. In other cases, such
as the simple 1D Majorana chain, the exact solution of the
interacting problem is unknown but the Hamiltonian maps
onto an interesting spin problem which can be studied by
standard techniques such as the density matrix renormalization
group (DMRG). Although well understood theoretically, spin
models in 1D often face significant hurdles when it comes
to their experimental realizations. For instance, the fine
details of quantum criticality in the transverse field Ising
model—perhaps the most widely studied 1D spin model—
have been only recently mapped out experimentally [60]. Our
construction may thus enable other experimental realizations
of these well-studied models. In addition, it may help realize
spin models that do not naturally occur in systems whose
fundamental degrees of freedom are spins, as in the case of the
interacting 1D Majorana chain.

Interesting phenomena occur also in two-dimensional
systems. The simple square lattice shows an intriguing phase
diagram with both topological and trivial gapped phases as
well as a quantum phase transition that cannot be described
by mean-field theory. Further interesting phases in 2D may
arise in lattices with triangular symmetry which we have not
considered in this study.

Physical realizations of interacting systems with Majorana
fermions in some respects similar to ours have been previously
discussed in the context of semiconductor quantum wire
networks [61–63]. The existence of Majorana fermions in
the individual quantum wires has been established by recent
ground-breaking experiments [64–70]. However, assembling
these into large arrays with uniform properties and tunable
interaction and hopping parameters appears to be a much more
difficult challenge, one that will likely require new experi-
mental methodologies. By contrast, scaling the systems of few
vortices with Majorana zero modes, such as those observed in
Bi2Te3/NbSe2 heterostructures [23], to large lattices required
in our proposal seems to be rather straightforward. The key
issue that must be surmounted to achieve the strong correlation
regime here is the ability to tune the system to its global
neutrality point. In addition, local fluctuations of the chemical
potential must remain sufficiently small as to render disorder
effects negligible compared to the interaction energy scale. We
estimated in Sec. III that the characteristic interaction energy
in Bi2Te3/NbSe2 heterostructures is ∼10 meV. We emphasize
that only disorder strength averaged over distances comparable
to intervortex spacing d (of the order of 10–100 nm) must
be small compared to the interaction energy, which should be
achievable in clean STI samples.

The ultimate goal of these constructions is to find novel
phases that cannot be adiabatically deformed into phases of
weakly interacting fermions or interesting phase transitions
that do not have a free particle description. That such phases
or transitions can indeed occur in these systems could be
anticipated because Majorana interactions of the form Eq. (16)
play a pivotal role in the construction of various “interaction
enabled” topological phases introduced in the seminal work
by Fidkowski and Kitaev [71]. Our work indicates how such
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interactions can be generated and controlled in a system that
is now physically accessible thanks to the recent experimental
breakthroughs [15–21,23]. We note that recently a specific
model was formulated by Lapa, Teo, and Hughes [72] that
produces an interaction enabled topological crystalline phase
(which has no analog in a weakly interacting system) and also
employs Majorana interaction of the type discussed in this
work as the key component. One can show that such a phase
can be in fact constructed from the ingredients introduced in
this study [73].
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APPENDIX A: PHASE FACTORS, BRANCH CUTS, AND
THE Z2 GAUGE STRUCTURE

In this Appendix we outline the computation of the relevant
phase factors that enter the overlap integrals for Majorana zero
modes in Eq. (13) and the interaction amplitudes (25). We also
explain how the Z2 gauge factors that appear in the Majorana
tight binding model arise from branch cuts present in the vortex
lattice.

Although the method outlined here is applicable to an
arbitrary arrangement of vortices, we focus, for the sake of
concreteness, on a periodic vortex lattice such as the one
depicted in Fig. 4. Following [29] we define the phase θj that
enters the definition of the Majorana wave function (7) at a
point rj immediately to the right of the given vortex center, to
avoid the phase singularity. The overlap integral between the
two vortices at r i and rj is then given, according to Eq. (18),
as tij = μFij sin ωij with

ωij =
∫ rj

r i

(
1

2
∇θ − e

�c
A
)

· dl, (A1)

1 2

34
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FIG. 4. (Color online) Phase factors and branch cuts in a square
vortex lattice. Oriented solid lines indicate integration paths between
the reference points located just to the right of each vortex center.
Dashed lines represent a specific choice of the branch cuts discussed
in the text.

where we have restored �. The integrand in Eq. (A1), which
we henceforth call �, is closely related to the superfluid
velocity [36],

vs = �

m∗

(
∇θ − e∗

�c
A
)

= 2�

m∗ �. (A2)

Here e∗ = 2e and m∗ are, respectively, the effective charge and
mass of the Cooper pair. The superfluid velocity distribution
in the vortex lattice can be calculated in a straightforward
way [36] which we review below for completeness. It is
related to the supercurrent j s = e∗nsvs where ns represents
the superfluid density.

The calculation proceeds by taking the curl of j s ,

∇ × j s = ns

e∗
�

m∗

(
∇ × ∇θ − e∗

�c
B

)
, (A3)

and noting that

∇ × ∇θ = 2πẑ
∑

j

δ(r − rj ), (A4)

where rj are the vortex positions and we are assuming that the
SC interface lies in the x-y plane. We now use the Ampère’s
law ∇ × B = (4π/c) j s to eliminate the current from Eq. (A3).
We thus find the London equation for B in the vortex lattice,

B − λ2
L∇2 B = 1

2
�0ẑ

∑
j

δ(r − rj ), (A5)

where λ2
L = mc2/4πe∗2ns is the London penetration depth

and �0 = hc/e the flux quantum. For a periodic lattice the
equation can be solved by Fourier transforming,

B(r) = 1

2
�0ẑ

∑
G

eiG·r

1 + λ2
LG2

, (A6)

where the sum extends over all reciprocal vectors G of the
vortex lattice. From the knowledge of B one can reconstruct
the supercurrent via Eq. (A3) and from it vs . Finally,

�(r) = π
∑

G

iG × ẑ

λ−2
L + G2

eiG·r . (A7)

The gauge invariant phase factors ωij can now be determined
by a straightforward integration of �(r) indicated in Eq. (A1).

The above method works for any vortex lattice but in cases
with high symmetry, such as the square lattice, the phase fac-
tors can be deduced without performing a detailed calculation.
Consider the lattice depicted in Fig. 4. The integration paths
between points rj have been chosen to consist of straight line
segments and circular segments. The latter are needed to avoid
the phase singularities located at each vortex center. In the
following we think of these as having an arbitrarily small radius
so that the contribution to the line integral along the circular
segment comes exclusively from the adjacent singularity. Now
consider the path C1 indicated in Fig. 4. The corresponding line
integral

∮
C1

� · dl = ∫
(∇ × �) · dS can be seen to equal to π ;

it encloses two vortices, each contributing flux π and a half
quantum of magnetic flux in the opposite direction contributing
−π . We furthermore note that counting just the contribution of
the circular line segments around the vortices one gets the same
answer π for the total flux. We are thus led to a conclusion that
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the straight line segments do not contribute to ωij . This same
conclusion can be reached by similarly examining the path C2

which contains total flux −π . Thus, in the square vortex lattice,
we can determine the phase factors ωij by simply adding up the
contributions from the circular segments around the individual
vortices, which are given by their angular length divided by
two. This leads to the phase factors ωij = ±π/2 indicated
in the figure, a result that can be confirmed by an explicit
calculation using Eq. (A7).

The above arguments contain an important subtlety that
has to do with branch cuts. Consider, for instance, the path
indicated in Fig. 4 between points 1 and 2. Had we chosen
a path avoiding the vortex from below (instead of going
above it) we would have found the phase to be −π/2. More
generally, ωij changes to ωij ± π , depending on which way
we decide to avoid the singularity. The magnitude of tij is
independent of this choice but its sign depends on it because
sin (ωij ± π ) = − sin ωij . This is the origin of the Z2 gauge
structure in Eq. (14). The latter is inherent to the tight binding
models with Majorana fermions and arises here from the
physics of branch cuts. In order to consistently determine the
signs of tij , which become physically relevant when there
exist closed loops in the model, one must define ωij in a
globally unique fashion. This can be done by specifying branch
cuts across which �(r) changes discontinuously. A branch
cut emanates from each vortex core and can be chosen to
terminate in another vortex core. An example of a specific
choice of branch cuts is given in Fig. 4. Integration paths
that do not intersect any branch cuts then furnish a globally
consistent definition of the gauge invariant phase factors ωij .
Different choices of branch cuts correspond to different Z2

gauges for Majorana fermions, but they leave the physical
observables unchanged. The phase factors indicated in Fig. 4
have been obtained in accord with this prescription. They
define a periodic lattice with two vortices per unit cell and
are consistent with the Grosfeld-Stern rule Eq. (15). The same
phase factors are used for the computation of the interaction
amplitudes in Sec. III.

APPENDIX B: EXACTLY SOLVABLE 2D MODEL

The building block for the solvable Majorana model in two
dimensions is a doubly quantized vortex defined by Eq. (3)
with (n = 2). The solution for the Majorana wave function
goes along similar lines as for the single vortex [34]. We search
for zero mode solutions of operator D defined in Eq. (6) with
n = 2 in the form,

χm(r) = 1√
2

(
ei((1−m)ϕ+θ/2−π/4)um(r)

e−i(mϕ+θ/2−π/4)vm(r)

)
. (B1)

We substitute this into D to obtain

�0(r)um(r) +
(
∂r − m

r

)
vm(r) = 0,

�0(r)vm(r) +
(

∂r − 1 − m

r

)
um(r) = 0. (B2)

It is known [34] that these equations have normalizable real
solutions for m = 0,1, for which it holds

u1 = v0, v1 = u0. (B3)

This observation allows us to write the field operator of the
zero modes,

α(r) ∝ [ei(ϕ+θ/2−π/4)cr↓ + e−i(ϕ+θ/2−π/4)c
†
r↓]u0(r)

+ [ei(θ/2−π/4)cr↓ + e−i(θ/2−π/4)c
†
r↓]v0(r),

β(r) ∝ i[ei(ϕ+θ/2−π/4)cr↓ − e−i(ϕ+θ/2−π/4)c
†
r↓]u0(r)

− i[ei(θ/2−π/4)cr↓ − e−i(θ/2−π/4)c
†
r↓]v0(r). (B4)

It is easy to show that the density is then given by

ραβ ∝ [
u2

0(r) − v2
0(r)

]
. (B5)

This expression depends only on the distance from the vortex
core. It decays exponentially on distances longer than the
coherence length ξ .

We are now interested in the dominant interactions between
the Majoranas in such a model. For this we notice that the
interaction is the largest for the combinations gα jβ jα j+νβ j+ν

and g′α jβ jγ j+δ1γ j+δ2 depending on how strong the screening
of the Coulomb interactions is. The corresponding interaction
strengths are proportional to exp[−|R j+ν − R j |/Rc], where
Rc is the Coulomb screening length, and exp[−(|R j −
R j+δ1 | + |R j − R j+δ2 |)/ξ ].

Consider first the case Rc < ξ . The dominant interaction
is the g′ term as the Coulomb interaction on the long length
scale decays faster than the overlap of the Majorana wave
functions. This interaction term dominates as it does not
involve the smallness due to the screening of the Coulomb
interaction, only due to the decay of the Majorana wave
functions. Following the observation of the previous section
that ρij ∝ sin ((θi − θj )/2), we see that the interaction is
proportional to sin ((θ j+δ1 − θ j+δ2 )/2). This is the interaction
of the form ραβργγ . The rest of the terms in (27) are canceling
each other, since α j and β j are different by as if they had a
phase difference π .

As we noted in the main text, the products iα jβ j commute
with the Hamiltonian and with each other. Thus they are
conserved quantities s j = ±1 signaling the occupation of
the Andreev states c j = 1

2 (α j + iβ j ). This means that we
can trace out these degrees of freedom from the model and
obtain the hopping amplitudes between the single-vortex sites.
The relevant phase differences θ are depicted in Fig. 5(b).
We consider for illustration two possible configurations of
s j : ferromagnetic (all +1 or all −1) and antiferromagnetic
(staggered on the two sublattices). It is easy to see that for
the FM configuration the hopping amplitudes on a given bond
contributed by the two adjacent double vortex sites add up
while for the AF configuration they cancel. Therefore, in the
AF case the resulting hopping model produces a completely
flat Majorana band. Meanwhile for the FM configuration the
hopping model will be of the form indicated in Eq.(5) of the
main text with the nearest neighbor hopping t = 2g′. The
energy spectrum then consists of a pair of dispersing bands
with energies,

Ek = ±4g′
√

sin2

(
kx + ky

2

)
+ sin2

(
kx − ky

2

)
, (B6)

where k ranges over the reduced Brillouin zone. Occupying
the negative energy states in Eq. (B6) clearly produces
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(a) (b)

FIG. 5. (Color online) Modified square lattice structure. (a) A site
with the doubly quantized vortex surrounded by singly quantized
vortices. The dominant type of interaction within such a node is
shaded in yellow. (b) Phase difference structure for a choice of gauge
in the modified square lattice.

lower ground-state energy than occupying a flat band at zero
energy, therefore hinting that the FM state is the ground
state of the system. To prove this we should also consider
all other possible occupations of the lattice. Our numerics
in the systems up to 6 × 6 unit cells shows that the FM
state is the stable ground state of the system. There is no
reason this should change in larger systems. For the screened
Coulomb interaction, therefore, a gapless metallic phase with
the excitation spectrum (B6) is produced.

Now consider the case Rc > ξ . Here the dominant inter-
action is between the double vortices. If the interaction is
the usual Coulomb repulsion, g 	 g′ > 0, then the preferred
occupation s j of the double vortices is antiferromagnetic and
the hopping model obtained is the flat Majorana band, as
discussed above. Smaller terms involving four single vortex
sites can split this degeneracy, but the model thus obtained
is not integrable. If the interaction is attractive, g < 0, |g| 	
|g′|, then the preferred occupation of the double vortices is
ferromagnetic and the resulting model is the same as for
the screened Coulomb, a gapless dispersing Majorana band
Eq. (B6).

APPENDIX C: 2D SINGLE MAJORANA VORTEX LATTICE

The exact diagonalization study of the system on the
simple square lattice is performed by transforming the
Hamiltonian (46) to the fermionic basis, α j = c

†
j + c j , β j =

i(c†j − c j ). The Hamiltonian then becomes

Hint = − g1

∑
j

(2N j − 1)(2N j+x − 1)

+ g2

∑
j

(c†j − c j )(c
†
j+x − c j+x)

× (c†j−y + c j−y)(c†j−y+x + c j−y+x), (C1)

where N j = c
†
jc j denotes the number operator and j indicates

the 2D coordinate (n,m) of the unit cell. If we were to
directly diagonalize the many-body Hamiltonian, only a small
system can be numerically treated. Fortunately, Hint can be

block-diagonalized by defining the fermion parity operators,

F̂ x
n = (−1)

∑
m Nn,m , F̂ y

m = (−1)
∑

n Nn,m , (C2)

which commute with the Hamiltonian Hint and among them-
selves. Their eigenvalues (±1) are good quantum numbers and
label the different blocks of the Hamiltonian. However, these
operators are not independent since they are connected by the
total fermionic parity operator F̂ = ∏

n F̂ x
n = ∏

m F̂
y
m.

We consider separately the cases when the number Nx of
unit cells in the x direction is odd and even. The Hamiltonian
can be easily block-diagonalized by Fx

n = ±1 and F
y
m = ±1.

We are able to numerically solve the block-diagonalized
Hamiltonian for a system containing Nx × 4 unit cells with Nx

up to 19 as follows. We first find one of the degenerate ground
states |G〉 in the parity sector Fx

n = 1 and F
y
m = 1 for all n

and m. We then use the operator Âm̃ = ∏
n αn,m̃ to generate

the remaining ground states. Note that Âm̃ commutes with Hint

but anticommutes with all F̂ x
ñ . When it acts on a ground state

it thus flips the sign of all Fx
ñ generating a new ground state

in a different parity sector. When we subsequently apply Âm̃′

with m̃′ �= m̃ to this new ground state all Fx
ñ flip back. This

construction indicates that there exist at least two degenerate
ground states. For even Nx , our numerical results support the
twofold ground-state degeneracy. For odd Nx , Âm̃ also flips
the sign of F

y
m̃. Since the number of F̂

y
m̃ operators is Ny and

F
y
m̃ = ±1 the degenerate ground states are given by

∣∣Fy
m̃± = ±1

〉 =
∏
m̃−

Âm̃−|G〉. (C3)

It follows that the number of the degenerate ground states is
at least 2Ny . This agrees with the degeneracy that occurs in
the extreme anisotropy limit g2 = 0, already discussed in the
main text.

Interestingly, the systems with even and odd Nx exhibit
different physical properties even in the thermodynamic limit.
When Nx is even, by performing a Z2 gauge transformation
α2l,m → −α2l,m, the Hamiltonian Hint changes the sign. That
is, when the many-body state has energy E, the state after
the gauge transformation has energy −E. This many-body
version of the particle-hole symmetry shows that g1,g2 � 0
describes identical physics as g1,g2 � 0. However, for odd
Nx , α2l,m → −α2l,m does not simply flip the sign of Hint due
to the frustration at the boundary with the periodic boundary
condition. Hence, systems with positive g1 and g2 are different
from those with negative g1 and g2 in this case.

After obtaining the many-body wave functions of the
ground states from the exact diagonalization, the order
parameter �1 = −i〈α jβ j 〉 can be computed as a ground-state
expectation value in different parity sectors. We mainly focus
on odd Nx . Because Âm̃ = ∏

n αn,m̃ connects the ground states
in the different parity sectors, �1 must be computed in only
one of the parity sectors, say Fx

ñ = 1 and F
y
m̃ = 1 for all ñ and

m̃, as shown in Fig. 3(d). The expectation value flips the sign
when we consider the ground state with parity F

y
m = −1.
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