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Interatomic Coulombic decay (ICD) is a relaxation process induced by electronic correlation. In this work we
study the ICD process in a two coupled quantum wells (QWs) nanostructure. We study a simple one-dimensional
effective potential using experimental parameters of the semiconductor QW layers, i.e., using the single-band
effective-mass approximation. In our calculations we consider the discontinuity of the effective mass of the
electron in each of the QW layers. We control the ICD lifetime by changing the distance between the two wells.
The expected overall trend is a decrease of ICD lifetime with a decrease in the distance between the wells. We
show that the distance can be tuned such that the emitted ICD electron is trapped in a metastable state in the con-
tinuum, i.e., a one-electron resonance state. This causes the lifetime of the ICD to be an order of magnitude
smaller even at very long distances, and improves the efficiency of the ICD process. For the ICD to be the
dominant decay mechanism it must prevail over all other possible competitive decay processes. We have found
that the lifetime of the ICD is on the time scale of picoseconds. Therefore, based on our results we can design
an experiment that will observe the ICD phenomenon in QWs nanostructure. This work can lead to a design of
a wavelength-sensitive detector which is efficient even at low intensities.
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I. INTRODUCTION

Interatomic/intermolecular Coulombic decay (ICD) is a
very efficient and fast electron relaxation process relying
on the correlation between electrons. Such process occurs
by passing the excess excitation energy of one electron to
another electron in a neighboring atom or molecule, resulting
in the subsequent ionization of this electron. ICD was first
proposed by Cederbaum and co-workers in hydrogen-bonded
molecular clusters [1]. Past studies focused on weakly bounded
systems such as van der Waals clusters and weakly bounded
dimers [2–4], such as the helium dimer which is the most
weakly bound system in nature [5].

ICD was observed experimentally in noble-gas clusters
and dimers such as Ne, Ar, and He, and in hydrogen-bonded
systems such as water molecule dimers [6–12], as well as large
clusters of water molecules [13]. All past studies show that the
energy transfer in ICD through electron correlation happens
also at extremely long distances. This can occur due to the fact
that the ionized electron has a long de Broglie wavelength so
its wave function couples to the bound states involved in the
process.

There are several ways to trigger the ICD process. It could
be produced directly from photoionization of an inner-valence
electron [2] or as a result of multistage process such as
photoionization followed by Auger ionization [9,14]. Recently
another multistage resonant-Auger-driven ICD was proposed
which does not involve photoionization of an inner-valence
electron but requires just the excitation of this electron to
an unoccupied orbital [15]. This special process can yield a
very high sensitivity to the location and energies of the ICD
electrons, and can be studied in big molecules such as proteins
and DNA. It was shown both theoretically and experimentally
that the interatomic decay rate is strongly dependent on the
distance of neighboring atoms [2,3,8]. In this sense, the ICD

is more efficient as the distance between the atoms is smaller.
Moreover it was shown that the ICD lifetime decreases as the
number of neighbors increases [16,17].

Recently it was shown that coupled quantum dots can
undergo ICD [18–20]. Quantum dots (QDs) are solid structures
composed of semiconductors which confine electrons in three
dimensions and as such they serve as artificial atoms [21,22].
The ICD process in QDs was proven to be very efficient, in
comparison to other decay mechanisms which occur in the QD,
having lifetimes of picoseconds and less [18–20]. It was shown
that the ICD lifetime in QDs grows with the distance between
the dots. Quantum wells (QWs) and QDs are widely used in
optoelectronic devices such as laser diodes and photodetectors.
Compared to QDs, QWs are easier to grow and it is easier to
control their dimensions.

In this work, we study the ICD process in a nanostructure
composed of two coupled QWs with different widths; the ICD
works in the same manner as in molecular clusters and QDs.
An excited electron in one well passes its excess energy to
the electron in the neighboring well which is ionized. Excited
electrons in QWs have many relaxation pathways, such as
spontaneous photon emission and interaction with phonons.
These processes are competing with the ICD in our system.
For the ICD to be the dominant decay process it must have a
lifetime on the same time scale as the shortest decay process in
the system. Interband spontaneous photon emission is not the
most efficient decay process in QWs, and has a lifetime on the
time scale of nanoseconds [23]. Scattering of electrons with
longitudinal optic (LO) phonons, i.e., inter-subband relaxation
through vibrational modes of the lattice, is usually the most
efficient competing relaxation process with a lifetime on the
time scale of picoseconds [23–28].

In our calculation we use an effective one-dimensional
potential which takes into account only one conduction band of
the QWs nanostructure; i.e., we use the single-band effective
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mass approximation. We compared the bound-state energies
and wave functions of this effective one-electron Hamiltonian
with the bound states calculated from the k · p method [29–33].
The k · p method takes into account contributions from eight
bands. Each QW produces a rectangular potential well in
the conduction band, the depth of which is calculated from
experimental measurements of the band gaps of each layer in
the nanostructure [34,35].

We also take into account the change in effective mass of
the electron. This effective mass is not constant over the entire
space but depends on the semiconductor layers that produce
the QW nanostructure. Here the real band structure and the
discontinuity of the effective mass are taken into account in
the ICD calculation. Furthermore, our QW nanostructure can
be grown in the laboratory in an easy manner compared to
QD systems. In this context the QW widths and the distance
between the wells can be controlled during the growth process.
Due to the fact that the parameters of the QW nanostructure in
the calculation are taken from real semiconductor properties,
one can carry out an experiment based on the results of this
paper. A brief description of such experiment will be given
below.

We study the ICD process here as a two-electron resonance
function which has a finite lifetime. We calculate the lifetime
of the ICD resonance states at different distances between the
neighboring wells. We report an unexpected result, showing
that although the wells are far apart from each other the
lifetime of the ICD resonance is an order of magnitude shorter
compared with the expected value. This unexpected short
lifetime enhances the efficiency of the ICD process over other
competitive relaxation processes even when the wells are far
apart and tunneling is unlikely to occur at these distances. We
explain the result using the one-electron resonance energies
of the ionized electron [36]. This one-electron resonance
originates from the rectangular shape of the two QWs, and
introduces a large density of continuum states which makes
the two-electron ICD process efficient and fast.

The paper is organized as follows: In Sec. II we introduce
a schematic representation of the ICD in the double-QW
nanostructure. We then move to the methods of calculating the
ICD lifetime and a proper representation of the Hamiltonian
in Sec. III. In Sec. IV we present our findings and explain our
results, before concluding in Sec. V.

II. SCHEMATIC REPRESENTATION OF THE ICD
PROCESS IN THE DOUBLE QUANTUM WELL

NANOSTRUCTURE

The ICD process we study in this work is based on two
electrons in two coupled QWs. A schematic presentation of
one QW nanostructure is shown in Fig. 1; this QW consists
of semiconductors and can be grown in the laboratory. By
attaching different layers of semiconductor materials such
that a semiconductor with a smaller band gap is sandwiched
between two semiconductors with a larger band gap, a QW
structure is created (see Fig. 1). Due to the difference in
the band gaps of each material in the different layers a well
structure is formed in the conduction band, and a barrier is
formed in the valence band.

FIG. 1. (Color online) QW nanostructure composed of two dif-
ferent semiconductor material thin layers. We have chosen the growth
direction to be along the x axis. The semiconductor with the smaller
band gap is sandwiched between two semiconductors with a larger
band gap. This spatial structure forms a well in the conduction band,
and a barrier in the valence band of the nanostructure. The semicon-
ductor with the smaller band gap is Inx2=0.53Gay2=0.47 As and has a
band gap of Eg = 0.74 eV. The semiconductor with the larger band
gap is Inx1=0.52Aly1=0.48 As and has a band gap of Eg = 1.45 eV. The
effective mass of the electron in In0.53Ga0.47 As and In0.52Al0.48 As is
mw

ef = 0.045me,m
b
ef = 0.075me, respectively [34,35].

In our system the semiconductor with the smaller band
gap is In0.53Ga0.47 As. This semiconductor has a band gap of
Eg = 0.74 eV and the effective mass of the electron in this
layer is mw

ef = 0.045me. The material with the larger band
gap is In0.52Al0.48 As, which has a band gap of Eg = 1.45 eV
and the effective mass of the electron in this layer is mb

ef =
0.075me [34]. Both materials are lattice matched to InP; this
eliminates all the strain effects in the system.

The nanostructure we study of two coupled QWs is shown
schematically in Fig. 2. The left QW is wider than the right QW
and supports two bound states, while the right QW supports
only one bound state. The ICD process in this system is
based on the correlation between two electrons, each one in
a different QW. To initiate the ICD process we excite two
electrons from the valence band to the conduction band. We
propose an experiment to measure the ICD process using
two pulsed lasers at low temperature. In Fig. 2(a) we see a
schematic representation of the conduction band and valence
band of the coupled-QWs nanostructure. The first laser with a
frequency of ω1 matches the interband transition between the
first hole bound state and the first excited electronic bound state
located in the wider well [see Fig. 2(a)]. The second laser with
a frequency of ω2 matches the interband transition between the
first hole bound state and the electronic bound state located in
the narrow well [see Fig. 2(a)]. By aligning the two lasers to
excite the same spot (perpendicular to the growth direction)
on the sample, we can treat the problem as one-dimensional.
This first step, proposed in Fig. 2(a), initiates the ICD process.

The starting point of the ICD, in which the two electrons
are in the conduction band, is presented in Fig. 2(b). One can
see that the electron located in the left well is in the excited
state while the other electron is in the bound state located in
the right well. As a result of the correlation between the two
electrons, i.e., repulsive interaction, the electron in the left well
decays to the ground state of the system transferring its excess
energy to the electron on the right well which is ionized as a
result of the electronic correlation [see Fig. 2(c)]. By applying
low bias to the QWs nanostructure we should sense the change
in the dark current due to the ICD process.
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FIG. 2. (Color online) The ICD process in the two coupled quan-
tum wells nanostructure. (a) Schematic representation of the valence
and conduction bands of a double-QW nanostructure composed of the
materials shown in Fig. 1. To initiate the ICD process we need to excite
the two electrons from the valence band to the conduction band. Each
electron is excited with a different laser frequency ω1,ω2. (b) Here
we focus on the conduction band of the double-QW nanostructure.
Due to the excitation, one electron is in an excited state located on
the left well and the second electron is in the bound state located on
the right well. (c) Due to the correlation between the electrons, the
ICD process occurs. The electron in the left well transfers its extra
energy to the electron in the right well which is ionized.

There are a few requirements for the ICD process. First, the
bound-state wave functions of the electrons in the two wells
should not overlap each other. If the bound states overlap then
tunneling of an electron from one well to the other can take
place. This process can overcome the ICD process. Second,
the electronic correlation has to be large enough to make the
ICD effective. Since the correlation depends on the distance
between the electrons we need the wells to be close enough for
the correlation to be effective. Therefore, on one hand the wells
need to be far apart to prevent tunneling from prevailing; on the
other hand the wells should be close enough to allow effective
correlation between the electrons. The third requirement is
determined by the conservation of energy in the process. Thus
we need the relaxation energy of the electron in the left well
to its ground state to be larger than the ionization energy of
the electron in the right well. This is shown schematically in
Fig. 2; i.e., �EL > �ER .

III. METHODS

The one-dimensional effective Hamiltonian we use consists
of two electrons in the double quantum well nanostructure
shown schematically in Fig. 2. The interaction between the
two electrons is a soft Coulombic repulsion. We take into
consideration that the electrons in the experiment do not
change their momentum in the y and z directions. In our
calculation we include only the dimension parallel to the layer
growth direction x (see Fig. 1); in this direction a double-QW
nanostructure is formed. The Hamiltonian of the system is
given by

Ĥ (x1,x2) = Ĥ0(x1,x2) + Vint(x1,x2)

= ĥ(x1) + ĥ(x2) + Vint(x1,x2), (1)

where the electrons’ positions are represented by x1,x2. The
Hamiltonian in Eq. (1) contains a sum of two noninteracting
one-electron Hamiltonians ĥ(x1),ĥ(x2) which are coupled by
the interaction between the electrons Vint. The one-electron
Hamiltonian is given by

ĥ(xi) = P̂ (xi)
1

meff(xi)
P̂ (xi) + V (xi). (2)

The first term in Eq. (2) is the kinetic energy term where
P̂ (xi) is the momentum operator. The kinetic energy operator
takes into account the effective mass of the electron in the
different semiconductor layers of the QW depicted in Fig. 1,
i.e., the effective mass presented in Eq. (2) as meff(xi), and
it is discontinuous in x. The second term in Eq. (2) is the
potential energy in the conduction band of the double-QW
nanostructure represented schematically in Figs. 2(b) and 2(c).
This is an effective potential that takes into account only one
conduction band; it will be given explicitly in the next section.
The interaction between the electrons Vint(x1,x2) in Eq. (1)
is the soft Coulombic repulsion between the electrons and is
given by

Vint(x1,x2) = λ̃√
(x1 − x2)2 + α exp[−β(x1 − x2)2]

,

(3)

λ̃ = e2

4πεr

.

The interaction strength λ̃ in Eq. (3) is set from the relative
permittivity of the layers. For the semiconductors used in our
system (see Fig. 1) the relative permittivity is εr

∼= 10ε0, where
ε0 is the vacuum permittivity [37]. The last term in the square
root in Eq. (3) is introduced to avoid the singularity of the
potential at x1 = x2 but to keep the Coulombic force when
the electrons are far apart. The ICD process has a finite lifetime.
We want to calculate the decay rate of this process and ensure
that the lifetime is at least on the same time scale as the shortest
decay process in the system. We calculate the decay rate of
the ICD process using the Fermi golden rule formula [23,28],
such that it is given by

	 = 2π

�
|〈
f (x1,x2)|H̃ |
i(x1,x2)〉|2ρ(Ec). (4)

The lifetime of the ICD process is given by τ = 1
	

. The
functions 
f ,
i are the eigenstate wave functions of the
unperturbed Hamiltonian Ĥ0 defined in Eq. (1). 
i represents
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the initial step of the ICD where the two electrons are in
the bound states of the corresponding wells [see Fig. 2(b)].

f depicts the final step of the ICD where one electron
is in the ground state and the second electron is ionized
to the continuum [see Fig. 2(c)]. These functions are either
symmetric (singlet) or antisymmetric (triplet) with respect to
the exchange of the two electrons. These are formed from
the eigenstate wave functions of the one-electron Hamiltonian
proposed in Eq. (2) and are given by


i(x1,x2) = 1√
2

[
ψL

b2(x1)ψR
b1(x2) ± ψL

b2(x2)ψR
b1(x1)

]
,

(5)

f (x1,x2) = 1√

2

[
ψL

b1(x1)ψc(x2) ± ψL
b1(x2)ψc(x1)

]
;

ψL
b1,ψ

L
b2 are the two bound-state wave functions localized in

the left well of the double QW shown in Fig. 2 with energies of
EL

b1,E
L
b2, respectively. ψL

b1 is the ground-state wave function
of the QW, and ψL

b2 is the excited state wave function. ψR
b1 is

the bound-state wave function localized in the right well with
energy of ER

b1. ψc is the continuum-state wave function of the
electron which is ionized from the right well [see Fig. 2(c)].
The energy of this continuum state Ec is determined by the
conservation of energy in the ICD process, and is given by

EL
b2 − EL

b1 = Ec − ER
b1. (6)

In the calculation of the decay rate 	 we assume that only one
electron is ionized to the continuum and its momentum in the
y,z directions does not change. Accordingly, we consider a
one-electron and one-dimension density of continuum states
ρ(E). It is calculated at the energy of the ionized ICD electron
Ec given from the conservation of energy in the process
depicted in Eq. (6). In the next section we are going to show
the results of the calculations to the lifetime of the ICD process
using the Fermi golden rule given in Eq. (4).

IV. RESULTS AND DISCUSSION

The lifetime of the ICD process can be manipulated
by controlling the physical dimensions of the double-QW
potential shown schematically in Fig. 2. The dimensions of
the different semiconductor layers in the QWs nanostructure
were optimized to increase the yield of the ICD process, i.e.,
to reduce its competition with other decay processes existing
in the system. In our calculations we use the parameters of
the conduction bands of the QW nanostructure suggested in
Sec. II. The only parameter varied in our calculation is the
distance between the two coupled QWs.

To evaluate the lifetime of the ICD process at a specific
distance between the wells we first calculated the eigenvalues
and eigenstates of the one-electron Hamiltonian proposed
in Eq. (2); in our calculation we used only one conduction
band, i.e., the single-band effective mass approximation [23].
The effective one-dimensional potential in this Hamiltonian
is a piecewise potential of the double-QW nanostructure
(see Fig. 2). The potential well depth and the effective
mass of the electrons in the different layers is based on
the QW structure proposed in Fig. 1. We calculated this
Hamiltonian’s eigenvalues by demanding the continuity of
the function and flux at the discontinuity points of the
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FIG. 3. (Color online) The one-dimensional effective potential
representing the conduction band of the coupled-QWs nanostructure.
The depth of the well is V0 = −500 meV, the width of the left
and right well respectively is WL = 53.96 Å, WR = 20.05 Å, and
the distance between the wells, i.e., the barrier width, is d = 163 Å
(solid red line). The upper panel shows the calculation of the
bound-state energies and wave functions using the constant piecewise
potential, i.e., using the single-band effective mass potential. The
lower panel shows the bound-state energies and wave functions using
the k · p approximation, which takes into account eight bands from
the conduction and valence bands. In both calculations the effective
mass is discontinuous in x. The first bound-state wave function is
located on the left well ψL

b1 (solid blue line). The second bound-state
wave function is located on the left well ψL

b2 (solid green line). The
third bound-state wave function is located on the right well ψR

b1 (solid
black line).

potential. The bound-state wave functions were required to be
square-integrable functions, and by using the transfer matrix
method we calculated also the scattering-state wave functions
of this Hamiltonian [38,39]. To ensure that the effective
one-dimensional potential is accurate enough, we compared
the bound-state energies and wave functions with a calculation
done using the k · p method [29–33]. In this method we take
into account eight bands from the conduction and valence
bands, and calculate the electronic bound state energies and
wave functions.

The three bound-state wave functions and their energies
in the double-QW nanostructure are shown in Fig. 3 for a
specific distance between the wells of d = 163 Å. We present
in Fig. 3 the bound-state wave functions and energies from the
the two methods. First is the calculation from the effective one-
dimensional potential (upper panel); this is the bound-state
wave functions we use to calculate the ICD decay rate. Second,
to compare our single-band effective mass approximation, we
calculated the bound-state energies and wave functions using
the k · p method (lower panel). In both calculations presented
in Fig. 3 the depth of the wells is V0 = −500 meV, while the
widths of the left and right wells are WL = 53.96 Å,WR =
20.05 Å, respectively.

We obtained in both calculations that the left well supports
two bound states while the right well supports only one bound
state (see Fig. 3). The ground-state wave function ψL

b1 and
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TABLE I. Ecb
b : The three bound-state energies using the single-

band effective mass approximation, i.e., taking into account only
one band from the conduction band of the double QW. E

k·p
b : The

bound-state energies using the k · p approximation, i.e., taking into
account eight bands from the conduction and valence bands of the
double QW. χk·p

cb : The percentage of the conduction band contribution
to the bound states using the k · p approximation.

ψbs Ecb
b (meV) E

k·p
b (meV) χ

k·p
cb (%)

ψL
b1 −388 −388 0.91

ψR
b1 −210 −222 0.88

ψL
b2 −69 −128 0.8

the bound-state wave function located in the right well ψR
b1 in

both calculations are almost identical. The excited bound state
wave function located in the left well ψL

b2 has a mild difference
between the two calculations. The bound-state energies are
presented in Table I using the two approaches; Ecb

b represents
the energies calculated using the one-dimensional effective
potential, and E

k·p
b represents the energies calculated using

the k · p method. In the last column of Table I we present the
percentage of the conduction band contribution to the bound-
state energies and wave functions χ

k·p
cb using the k · p method.

By comparing the results from both approaches we obtained
that the ground-state energies EL

b1 are identical. The energies
of the bound states located in the right well ER

b1 are very close.
In these two bound-state energies we can see that χ

k·p
cb

∼= 90
is very high. There is a bigger difference in the energy of the
excited bound state located in the left well EL

b2; this is due to
the fact that the percentage of the conduction band contribution
to that bound state is only χ

k·p
cb = 80.

From this comparison we can see that the bound-state
energies and wave functions are very similar; there is a slight
shift in the bound-state energy containing more valence band
contribution. This changes will not change the result of the
ICD decay rate significantly. Furthermore in both methods
changing the distance between the wells d did not change
the bound-state energies. This comparison between the bound
states obtained from the k · p method and the one-dimensional
effective piecewise potential has shown that we can use the
single-band effective mass approximation in the calculation of
the ICD decay rate.

In all the calculations of the ICD lifetime all the potential
parameters remained constant and only the distance between
the wells was varied. We calculated the energy of the ionized
electron, i.e., the energy of the continuum state ψc in Eq. (5).
The energy of this continuum state is Ec = 109.3 meV which
is derived from the conservation of energy requirement in the
ICD process given in Eq. (6). Although the bound-state ener-
gies and wave functions are hardly changed with the distance
between the wells, the spacial structure of the continuum-state
wave function changes with the distance. In Fig. 4 we show the
two continuum-state wave functions at two different interwell
distances. As one can see the continuum-state amplitudes and
shapes are changing with the distance between the wells. These
changes affect the ICD lifetime, due to the fact that the overlap
between the bound-state wave functions vanishes and therefore
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|
ψ
c
|
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|
ψ
c
|

x (A)

d

d

FIG. 4. (Color online) The continuum-state wave functions of the
ionized electron ψc due to the ICD process. The different panels
refer to different distances between the wells in the one-electron
potential given in Fig. 3. Upper panel: The distance between the
wells is d = 163 Å. Lower panel: The distance between the wells is
d = 136.8 Å. The continuum state has an energy of Ec = 109.3 meV
in both panels. This energy is set from the conservation of energy
in the ICD process; see Eq. (6). One of the continuum states ψc

describes the electron arriving from ∞ while the other continuum
state describes the electron that arrives from −∞ (solid black and
dashed magenta lines, respectively). The edges of the left and right
wells in the double-QW nanostructure are shown in solid blue and
solid red lines, respectively.

only the continuum-state wave functions couple between the
bound-state wave functions.

We calculated the decay rate of the ICD process using the
Fermi golden rule formula in Eq. (4), while changing the dis-
tance between the wells. Here we separated between the singlet
and triplet eigenfunctions of the unperturbed Hamiltonian
in Eq. (5). In Fig. 5(a) we show the lifetime of the ICD
as a function of the distance between the wells using the
triplet functions; we got similar results also for the singlet
functions. We expect the lifetime to grow as the distance
between the wells increases, due to the fact that as the distance
increases the correlation between the electrons decreases and
so does the decay rate. In Fig. 5(a) we see that the overall
trend follows this expectation except around the point of
d = d0 = 136.8 Å. At this point we see a surprising sharp
drop in the lifetime. One can see that although the distance at
this point is quite large, we get a very short lifetime of several
picoseconds. This is an order of magnitude shorter then what is
expected.

To show that this is indeed a result of ICD we also calculated
the overlap between the bound-state wave functions of the
right well with those on the left well by treating the wells as
separate systems. The results are shown in Fig. 5(b). As one
might intuitively expect, we see that as the distance between
the wells increases the overlap between the bound-state wave
functions in the two different wells decreases. This overlap
is a measure of the tunneling in the system, which means
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FIG. 5. (Color online) (a) The lifetime of the ICD process τ as
a function of the distances between the wells d . (b) The overlaps
between bound-state wave functions of the two wells (treating each
well separately) as a function of the distance between the wells. The
overlap of the bound state in the right well and the ground state in the
left well is shown by solid red line. The overlap of the bound state
in the right well and the first excited state in the left well is show by
dashed blue line.

that tunneling is effective at small distances. When tunneling
occurs in our system the ICD is not a dominant process.
Around the special point of d0 the overlap between the
bound-state wave functions of the two wells is very small
so we know that the tunneling is not effective. This is in
contrast to smaller distances where the lifetime is short but
the overlap is large enough to make tunneling the dominant
process.

In order to explain this interesting result, we need to
examine the expression for the ICD decay rate given in Eq. (4).
One possible reason for the increased decay rate could lie in the
shape of the continuum wave function in the region between
the wells. We can look at the continuum-state amplitude at two
different distances—at d0 and at d1 = 163 Å (see Fig. 4)—and
observe only a small difference in the amplitudes of these two

wave functions. This cannot be the reason for such a significant
change in the lifetime.

Another factor that may affect the decay rate is the density
of states in the continuum at the energy of the escaping
electron ρ(Ec). The density of continuum states in the free
one-electron picture follows ρfree ∝ 1√

Ec
. If this was the case in

our system the trend in the lifetime should not change because
the energy of the escaping electron Ec = 109.3 meV remains
constant with the distance. Due to the structure of the potential,
the density of states has peaks which are correlated with this
structure. We calculated the density of continuum states for the
one-electron Hamiltonian in Eq. (2) (used also for the lifetime
calculations) at different distances by choosing vanishing
boundary condition in a large box ψ(x = ±L/2) = 0 [40,41].
We evaluated numerically the one-dimensional density of
states in the energy of the continuum states, i.e., energies above
the threshold, by calculating the following expression in a large
box:

ρ(E) = 1

L

(
�E

�n

)−1

. (7)

We normalized this density of states by dividing it by the
length of the box L.

Figure 6(a) shows the density of the continuum states of the
one-electron Hamiltonian ĥ(xi) as a function of the continuum
energy in two different structures, i.e., two distances between
the wells. The solid blue line is at the distance d0, and the
red dashed line is at a distance of d1 = 163 Å. One can see
that although the background remains the same in both plots,
the peaks appear at different energies. Furthermore at d0 there
is a peak in the density of states at the energy of the ionized
ICD electron Ec, while at the other distances such as at d1 the
energy of the ionized ICD electron, which is also Ec, shows
no peak in the density of states. This means that the decay
rate will be an order of magnitude larger than expected at the
distance of d0. This explains the sharp drop in the ICD lifetime
in Fig. 5(a) around the point d0.

One can calculate the resonance states of the one-electron
Hamiltonian ĥ(xi) given in Eq. (2) by imposing outgoing
boundary conditions on the Schrödinger equation [36]. The
resonance picture of the one-electron Hamiltonian can help
in understanding the density of states picture. The resonance
energies on the complex energy plane for interwell distance of
d0 are shown in Fig. 6(b). It is evident that the position of the
resonance energies matches the peaks in the density of states
[see Fig. 6(a), solid blue line].

This can be explained by the fact that the resonance states
are connected directly with the poles of the S matrix in the
complex plane [36]. When the poles of the S matrix are
isolated from each other, and close enough to the real axis,
one can associate the peaks in the cross section with real part
of the poles of the S matrix [42]. The cross section depends on
the density of states via the S matrix or Green operator [43],
such that the peaks in the density of states should appear at
the energies of the poles, i.e., the positions of the resonance
states.

From this discussion we conclude that the efficiency of the
ICD process is enhanced at the distance of d0. This makes
the ICD lifetime on the same time scale of the dominant
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FIG. 6. (Color online) (a) The density of continuum states for
the one-electron Hamiltonian ĥ(xi) of the system for two different
interwell distances, calculated numerically by solving the problem
in a large box L = 15 870 Å. The density in a distance of d = d0 =
136.8 Å, which is where there is a sharp drop in the lifetime of the
ICD [see Fig. 5(a)], is shown by the solid blue line. The density for
a distance of d1 = 163 Å is shown by dashed red line. We can see
that that the background of this plot is the density of free particles
in one dimension. The peaks in the density are correlated with the
structure of the potential; therefore at different distances we see
different pictures of the density of continuum states and its peaks.
The continuum-state energy of the ICD electron escaping the system
is marked on the plot as Ec and it does not change with the distance.
(b) Resonance solutions of the one-electron Hamiltonian in Eq. (2)
on the complex plane with a distance of d = d0 = 136.8Å between
the wells. One can see the correlation between the resonance position
and the peaks in the density of states.

competing decay process in the QWs nanostructure. The
reason for this significant enhancement is that the ionized ICD
electron is temporarily trapped in a shape-type resonance state.
This trapping enables us to get an efficient ICD ionization
that competes with other decay processes even at very
long distances. Therefore the calculations of the shape-type

resonances as a function of the distance between the two QWs
provide us a powerful computational tool for designing an
experiment to observe the ICD phenomenon.

Note that based on the ICD mechanism presented here a
photodetector which is wavelength sensitive even at very low
intensities can be constructed. The idea is simple. The initial
situation is such that the two electrons are in the valence band
as shown in Fig. 2(a). The doubly excited state shown in
Fig. 2(b) associated with the ICD resonance is obtained by
applying one laser with the frequency ω1 while assuming that
there is external radiation with the fundamental frequency ω2

(when the frequency of the laser we use is ω2 then the external
radiation that will lead to the formation of ICD currents will be
ω1). When the external radiation is very weak the transition of
the relevant electron from the valence to the conduction band
will be efficient when the one-photon energy would match the
excitation energy of the electron from the valence bound state
to the bound state in the conduction band. A measured current
will indicate the existence of a weak external radiation with
the prescribed frequency.

In a practical experimental setup a small bias would be
applied to the nanostructure. Such bias would in turn shift the
position of the ICD resonances as well as the one-electron
resonance and bound states. However the method we present
here to design the nanostructure could be easily modified
to incorporate the bias potential. If the range of the applied
voltage is known then the whole calculation could be
performed with the field incorporated in it, yielding the
energies of increased ICD rate with the bias. Note that if the
bias introduced is small enough there will be a large potential
barrier and therefore the deviation from the unbiased results
are expected to be negligible.

V. CONCLUDING REMARKS

In this work we propose an ICD process in a realistic
structure of two coupled QWs. The system we studied is based
on real physical parameters of QWs in semiconductor mate-
rials. The one-electron effective potential is set from the band
structure of the semiconductor materials in the QW nanos-
tructure. We also take into account the discontinuity in the
effective mass of the electrons in the different QW layers, and
the permittivity of the layers. The ICD lifetime depends very
strongly on the distance between the wells. The overall trend is
that by increasing the distance between the wells the lifetime
is increasing. Our results show that the shortest ICD lifetime
in our system is of several picoseconds. This means that the
ICD is on the same time scale of inter-subband relaxation with
LO phonons which is the dominant inter-subband relaxation
process in QWs. By designing a sample which matches the
ICD conditions and with enough double-QW periods, this
phenomenon should be observable experimentally.

The main result of this paper shows that the parameters of
the potential can be manipulated such that the ICD process
is enhanced. The ionized electron is temporarily trapped in
a shape-type resonance state; this resonance state introduces
a peak in the density of continuum states resulting in a
very short lifetime of the ICD process on the time scale
of picoseconds, even at a very long distance between the
wells. Based on our result and understanding of the ICD
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process, we can design an experiment which will show this
phenomenon in nanostructures. This can lead to designing a
photodetector which is very sensitive to wavelength even at
very low intensities.
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