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Heating-frequency-dependent thermal conductivity: An analytical solution from diffusive to
ballistic regime and its relevance to phonon scattering measurements
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The heating-frequency dependence of the apparent thermal conductivity in a semi-infinite body with periodic
planar surface heating is explained by an analytical solution to the Boltzmann transport equation. This solution is
obtained using a two-flux model and gray mean free time approximation and verified numerically with a lattice
Boltzmann method and numerical results from the literature. Extending the gray solution to the nongray regime
leads to an integral transform and accumulation-function representation of the phonon scattering spectrum, where
the natural variable is mean free time rather than mean free path, as often used in previous work. The derivation
leads to an approximate cutoff conduction similar in spirit to that of Koh and Cahill [Phys. Rev. B 76, 075207
(2007)] except that the most appropriate criterion involves the heater frequency rather than thermal diffusion
length. The nongray calculations are consistent with Koh and Cahill’s experimental observation that the apparent
thermal conductivity shows a stronger heater-frequency dependence in a SiGe alloy than in natural Si. Finally
these results are demonstrated using a virtual experiment, which fits the phase lag between surface temperature
and heat flux to obtain the apparent thermal conductivity and accumulation function.
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I. INTRODUCTION

The diffusion process of Fourier’s law of heat conduction
breaks down whenever the characteristic length or timescale
of a problem is smaller than the energy carrier’s mean free
path (MFP) or mean free time (MFT, i.e., relaxation time),
respectively. Understanding the corresponding MFP or MFT
distributions is crucial for understanding the thermal conduc-
tivity in nanostructured materials [1] or ultrafast process [2–4]
and thus would help in designing and optimizing a wide range
of applications, such as heat dissipation and chip cooling [5,6],
thermoelectric energy conversion [7,8], and nanomedicine [9].
All studies of the thermal conductivity accumulation function
to date have used MFP as the independent variable of
the accumulation, including both modeling [1,10–15] and
experiments [2,16–19].

One approach to measuring the accumulation function is
by varying the size of a small heat source to restrict the range
of phonons that can fully participate in the heat conduction. In
this way, Minnich et al. [16,20] reported direct measurements
of the phonon accumulation function using optical heat sources
with sizes first in the range of tens of microns, then tens
of nanometers [21]. Based on a related steady-state solution
to the Boltzmann transport equation (BTE) [22], a cutoff
approximation was made that phonons with MFPs larger than
the spot size were fully ballistic and contributed negligibly
to heat conduction. Thus, the measured apparent thermal
conductivity was taken to represent the contribution of the
phonons with MFP less than the spot size.

The other method used to obtain the accumulation function
is by varying the heating frequency. Koh and Cahill [2] first
measured heating-frequency-dependent thermal conductivity
and reported the thermal conductivity per MFP, the derivative
of the accumulation function. For several semiconductor

*Corresponding author: cdames@berkeley.edu

alloys, they found that the thermal conductivity measured
by time domain thermoreflectance (TDTR) depended on
heating frequency even at frequencies below 10 MHz. Similar
measurements were extended to higher heating frequency
(200 MHz) by Regner et al. [18] using frequency domain
thermoreflectance (FDTR). In both approaches, the thermal
conductivity accumulation function was calculated using Koh
and Cahill’s cutoff assumption that phonons with MFPs longer
than the Fourier-law penetration depth would not conduct heat,
evaluated using either the bulk [2] or frequency-dependent [18]
thermal diffusivity.

This approach of using some form of truncated Fourier
law is very common in the accumulation measurements and
data interpretation [2,16–18,23,24]. Since these experiments
are specifically designed so that nondiffusive effects are
significant over much of the measurement range, the question
arises whether the Fourier law is an appropriate treatment
for these measurements. A quantitative assessment of Koh
and Cahill’s cutoff assumption [2] by comparison with a
more rigorous analysis is still needed. Thus, nondiffusive
solutions to the BTE have attracted great attention recently.
There are numerical efforts on solving the BTE to obtain the
accumulation function [20,25,26]. Most recently, to deeply
understand the nondiffusive transport, there are also reports
on analytical solutions. Collins et al. [27] and Hua and
Minnich [28] analytically solved the BTE for transient thermal
grating. Regner et al. [29] obtained analytical solutions to
the BTE for time-periodic surface heating in both planar and
spherical geometries. They applied this solution to investigate
the effects of penetration depth and heating source size, as well
as the suppression function.

For such periodic heating experiments, an important re-
search topic is developing more rigorous analytical tools to
relate the measured macroscopic properties to the fundamental
microscopic properties. For example, in FDTR [18] the goal
is to use the measured phase lag between surface temperature
and heat flux to obtain a phonon accumulation function. An
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FIG. 1. Conceptual comparison between Fourier (traditional)
(Ref. [18]) and BTE (this work) approaches for obtaining the phonon
accumulation function from measured temperature phase lag data in
FDTR.

additional challenge in the extraction of accumulation func-
tions from some TDTR [2,16] or FDTR [18] experiments is
that the measurements potentially involve subcontinuum phe-
nomena in both timescale (modulation frequency) and length-
scale (laser spot size). Isolating the effects of each mechanism
also needs to be explored. For steady-state problems where
only lengthscales matter, rigorous BTE solutions are known
and yield a Fredholm integral equation that connects measure-
ments to a MFP-based accumulation function [15,26]. Here,
we consider the complementary case where the subcontinuum
phenomena arise purely from a periodic timescale effect by
using an infinite plane source to eliminate any spot size
effects.

Below, we build up a BTE-based framework to interpret the
experimental quantities and bridge them to the nondiffusive
properties, as shown in Fig. 1. We first obtain an analytical
solution to the gray BTE with a planar heat source [29].
Then, we extend this gray model to the nongray regime,
which helps explain the heating-frequency-dependent thermal
conductivity observed for semiconductor alloys [2]. Next we
present a scheme by which transient measurements can be
analyzed using the BTE rather than Fourier’s law, summarized
in Fig. 1 and discussed in Sec. II C. Finally, a virtual experiment
is considered. For periodic planar heating, the results show
that the phonon accumulation function is more appropriately
expressed with respect to MFT than MFP; similarly, if
a cutoff approximation is used in analyzing the measure-
ments, it is more appropriate to use the heater timescale
directly rather than the corresponding Fourier-law penetration
depth.

II. DESCRIPTION OF MODEL

For brevity, here we present the problem statement, outline
the solution, and give the key theoretical results. Derivation
details are deferred to the Appendices, including the two-flux
BTE (Appendix A); solutions for temperature, heat flux, pen-
etration depth, and phase lag (Appendix B); the relationship
between effective carrier velocities in one-dimensional (1D)
and three-dimensional (3D) models (Appendix C); and the
solution using the 3D velocity treatment (Appendix D).

FIG. 2. (Color online) Schematic of two-flux BTE model of a
semi-infinite solid with a planar periodic heat source of angular
frequency ωH . The distribution of equilibrium BTE temperature
(solid purple line) is depicted for one instant in time as well the
envelope of its amplitude (dashed black line).

A. Periodic heating problem and BTE

We consider heat conduction in a semi-infinite solid with
periodic plane-source heating on the surface, including the
case where the heating frequency is high enough that nondif-
fusive effects cannot be neglected. In current TDTR and FDTR
experiments, the fastest heating frequencies (∼10 to 200 MHz
[2,17,18]) are still several orders of magnitude smaller than
typical semiconductor phonon vibrational frequencies ω.
Thus, quantum wave effects should be negligible and phonon
wave packets can be treated as particles, so that the BTE is
applicable [30].

We start from the transient 3D BTE, which is complicated
and time consuming to solve for an arbitrary geometry.
However, as indicated in Fig. 2, the present problem is greatly
simplified. The translational symmetry of the planar heating
eliminates the y and z spatial coordinates from consideration.
The two-flux treatment, which assumes isotropic phonon
intensities over the forward and backward hemispheres but
with two different amplitudes [31], greatly simplifies the
wave vector dependence. Furthermore, the time dependence is
simply steady-periodic in response to the heater frequency ωH.

Taking full advantage of the 1D nature of the transport
depicted in Fig. 2 involves some modeling subtleties. For
details, see Appendix D. In general, the group velocity for
a single polarization depends on the phonon frequency and
direction: v = v(ω,θ,φ), where θ is the polar angle measured
from the x axis and φ is the azimuthal angle. Due to the
symmetries and material isotropy of our problem, there clearly
is no φ dependence. To further simplify the θ dependence, we
use a two-flux approach, which is common in the radiation
literature [31] and is detailed in Appendix A. Within a two-flux
approximation, there are still two slightly different ways to
treat the group velocity vectors. For transient modeling, the
most common treatment [18,32] [Fig. 3(a)] approximates
all group velocity vectors as lying purely in the +x̂ or −x̂
directions, with a speed v1D(ω). A more realistic Schuster-
Schwarzschild or Milne-Eddington approach [31] [Fig. 3(b)]
uses an isotropic dispersion relation where all phonons of a
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FIG. 3. (Color online) Two different implementations of the two-
flux model of phonon radiation, as applied to the nominally 1D
problem of Fig. 2. (a) Phonons can travel only in the ±x̂ directions.
(b) Phonons travel isotropically with speed vω, while the net transport
remains 1D along ±x̂.

given frequency share the same speed vω. Below, we first
develop the BTE solution using the scheme of Fig. 3(a)
and verify it using a numerical lattice BTE (LBTE) method,
followed by extension to the scheme of Fig. 3(b).

The BTE solutions in the Appendices A and B are first
solved using a gray approximation, whereby all phonons
have the same MFT. Then, to allow for materials where the
phonons have a broad distribution of MFTs [1,10,15,16,18],
the solution is extended to the nongray regime in Sec. II B
using a similar method as Ref. [33]. In both cases we use an
isotropic Born–von Karman (BvK) dispersion with a Slack-
like Umklapp scattering law (BvKS model) [33]. Optical
modes are neglected due to their small group velocity; since
this also neglects their potential role as a thermal reservoir,
it is only appropriate below the corresponding Einstein
temperatures [32,34]. We lump the three acoustic polarizations
into a single branch, a common approximation [15,32,35,36],
which has previously been shown to give good agreement with
experiments for both bulk [37] and nanowires [35].

In the single mode relaxation time approximation, the BTE
has the form [38,39]

∂fω

∂t
+ vωμ

∂fω

∂x
= f 0

ω − fω

τω

, (1)

where fω is the distribution function, f 0
ω is the equilibrium

distribution function, vω is the magnitude of the group velocity,
μ = cos θ is the direction cosine, τω is the MFT, and the
subscript ω indicates quantities that depend on ω. In the
first scheme of Fig. 3(a), μ = ±1 = constant. We have also
performed the derivation following the more general scheme
of Fig. 3(b), with key results given in Appendix D.

As exemplified by FDTR [18,40], an important class of
experiments is based on the periodic surface heating of a
semi-infinite material, which obviously causes the surface
temperature to fluctuate at the same frequency, ωH . For
mathematical convenience, we prefer to solve the BTE using
surface temperature as the forcing and thus the surface heat
flux is the response. Since the solution is unique, once
the relationship between temperature and flux is found, the
solution applies just as well to the experimental situation.
Specifically, we choose to force the two-flux problem using
the boundary condition

T +(x = 0,t) = T∞ + �T exp(iωH t), (2)

where the superscript “+” means forward direction (later
the superscript “−” means backward direction), T∞ is the
ambient temperature, and �T � T∞ is the amplitude of the

T + oscillation. Building on this boundary condition, the BTE
of Eq. (1) can be solved for the gray two-flux model, as detailed
in Appendices A and B. The key results are the equilibrium
temperature Teq and surface heat flux q

′′
net, given in Eqs. (B3)

and (B6), respectively.

B. Apparent thermal conductivity: gray and nongray model

We define an apparent thermal conductivity using the ratio
of heat flux to equilibrium temperature gradient,

kapp,gray(ωH ) =
∥∥∥∥q

′′
net(ωH ,x,t)

− ∂Teq(x,t)
∂x

∥∥∥∥. (3)

Reassuringly, in the detailed solutions of q
′′
net(ωH ,x,t) and

Teq(x,t), we find that the dependencies on x and t appear
in exactly the same form and thus cancel out of kapp,gray.
Clearly, the definition in Eq. (3) simply approaches the bulk
value kFourier whenever Fourier’s law of heat conduction holds.
Substituting the relevant results from Appendix B, we find

kapp,gray(ωH ) = Bt (ωHτgray)kFourier, (4)

where τgray is the gray MFT and Bt (ωHτgray) captures the
subcontinuum effects of periodic heating and is found to be

Bt (ωHτgray) =
√

1 + d2 − 2d cos φ

1 + d2 + 2d cos φ

1√
a2 + b2

. (5)

Here a, b, φ, and d themselves are functions only of ωH τgray

and are defined and explained in Appendix A. The Bt function
is plotted in Fig. 4(a). For ωHτgray � 1, Bt (ωHτgray) → 1,
correctly recovering the Fourier limit.

FIG. 4. (Color online) (a) The suppression function Bt from
Eq. (5) and (b) the integral transform kernel ∂Bt/∂(ωH τω), as
functions of dimensionless heater frequency. These curves depend
only on the product ωH τω and are general to all materials. (b) Also
shows the MFT accumulation function A calculated for natural Si
at 300 K at two particular heater frequencies. Since A is a function
only of τω, in this plot ωH simply shifts the curve. The circle, square,
and diamond indicate the values at ωH τω = 1.73, chosen so that
Bt = 1

2 to facilitate a simplified cutoff algorithm to recover the MFT
accumulation (see Sec. II D).
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TABLE I. Comparison of integral transform results for the small timescale effect (present work) and the small lengthscale effect (Refs. [15]
and [26]). Analogous results also exist in terms of the accumulation functions [Eq. (14)]. Consistent with Ref. [15], �bulk is the bulk MFP, Lc is
the characteristic size, and �eff is the effective MFP. τω is analogous to �bulk, since both represent the intrinsic scattering in an infinite sample
at steady state for a phonon of frequency ω.

Timescale effect Lengthscale effect
(infinite sample size) (steady state)

Essential characteristic of subcontinuum
forcing

High heating frequency: ωH Small characteristic size: Lc

Input function Kτ (τω) K�(�bulk)
(property of bulk material) Thermal conductivity per MFT [W/m-s-K] Thermal conductivity per MFP [W/m2-K]

Kernel function Bt (ωH τω) = τeff,ω
τω

Bt

(
�bulk
Lc

) = �eff
�bulk

(captures subcontinuum phenomena) Characteristic time effect Characteristic size effect

Apparent thermal conductivity
(integral transform)

kapp(ωH ) = ∫ ∞
0 Kτ (τω)Bt (ωH τω)dτω kapp(Lc) = ∫ ∞

0 K�(�bulk)Bt

(
�bulk
Lc

)
d�bulk

Importantly, this Bt function depends only on ωHτgray and
not on any other material properties. As will be seen below in
Sec. II D, Bt also serves as a kernel in an important integral
transform that relates continuum (short MFT) and subcontin-
uum (long MFT) behaviors. Clearly the key physics separating
the two regimes of Bt is the timescale of the heating period
as compared to the MFT. Interestingly, a closely analogous
kernel (also known as a suppression function [25–27,29])
was previously identified for a related integral transform in
steady-state problems [15,26], where the physics separating
continuum and subcontinuum regimes is the lengthscale of a
small heater as compared to the bulk MFP. This analogy is
further detailed in Table I.

All of the discussion above is based on the gray MFT model.
However, in real materials the phonon MFTs (or MFPs) have
a broad distribution, typically spanning two to three orders
of magnitude [1,10,15,16,18], necessitating a nongray model.
Beginning from kinetic theory, in close analogy to Refs. [1]
and [15], we make a simple change of variables to write

kbulk =
∫ ∞

0
Kτ (τω)dτω. (6)

Here Kτ (τω) is the thermal conductivity per MFT,

Kτ (τω) = −1

3
Cωv2

ωτω

(
dτω

dω

)−1

, (7)

where the negative sign arises from swapping the limits of
integration from ω to τω, Cω is the specific heat per phonon
frequency, and polarization is lumped into Cω.

Next, to construct an apparent thermal conductivity for
this nongray model, the phonon population is broken into
numerous bands �τω, each of which is approximated as gray
using Eq. (4). Summing up all the band-wise contributions [33]
yields the apparent thermal conductivity

kapp(ωH ) =
∫ ∞

0

[
−1

3
Cωv2

ωτω

(
dτω

dω

)−1]
τeff,ω

τω

dτω, (8)

which can also be written directly from kinetic theory [15].
Here τeff,ω] is the effective MFT of the phonon mode of
vibrational frequency ω. For low heating frequencies ωH � ω,
the continuum limit is recovered and τeff,ω(ω) = τω(ω), while

this equality breaks down severely for ωH � ω. Comparing
Eqs. (8) and (4) reveals the convenient identity Bt (ωHτω) =
τeff,ω

τω
, and finally the apparent thermal conductivity of the

nongray model simplifies to

kapp(ωH ) =
∫ ∞

0
Kτ (τω)Bt (ωHτω)dτω. (9)

Equation (9) is one of the major results of this work. It is
a Fredholm integral equation of the first kind and is closely
related to an analogous result for the steady-state size effect
in a nanostructure [e.g., Eq. (10) of Ref. [15] and Eq. (2) of
Ref. [26]]. Here the short timescale effect of periodic heating
reduces τeff,ω and thus kapp, just as the small lengthscale effect
of nanostructure boundary scattering [15] reduces �eff and
kapp, an analogy further detailed in Table I. Thus, the physical
meaning of Bt is to describe the strength of the periodic heating
effect in reducing kapp, as shown in Fig. 4(a). More detailed
discussion of the Bt function is in Sec. II D.

C. Experimental determination of kapp(ωH ) from phase lag

Experimentally, kapp(ωH ) is usually studied by analyzing
the phase [40], and occasionally amplitude [41], of the surface
temperature response to periodic surface heating. In this work
we consider the phase. A detailed example is presented below
in Sec. III C using a virtual experiment that is calculated
as follows. Extending the gray BTE result of Appendix B
[Eq. (B5)] to include nongray phenomena, the total heat flux
at the surface is

q
′′
net(x = 0,t) =

∫ ∞

0

1

2
v1DCω�T [1 − d exp(iφ)]

× exp(iωH t)dω. (10)

Similarly, for the equilibrium temperature at the surface,
the nongray extension of Eq. (B1) is

Teq(x = 0,t) − T∞

=
∫ ∞

0
1
2v1DCω�T [1 + d exp(iφ)] exp(iωH t)dω∫ ∞

0 v1DCωdω
. (11)

Thus, the surface phase lag ψ of the equilibrium temper-
ature with respect to the heat flux at the surface is obtained
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from

q
′′
net(x = 0,t)

Teq(x = 0,t) − T∞
= R exp[iψ], (12)

where both R and ψ are real numbers.
The physical origin of the phase lag in Eq. (12) is purely

due to subcontinuum effects, whereas the phase lags reported
in FDTR literature [18,40] involve both subcontinuum and
continuum effects. Those FDTR measurements use a small
(∼microns) spot size, and, as the angular heating frequency
ωH increases, the thermal penetration depth decreases, causing
the classical heat diffusion problem to transition from a
spherical point source regime to a plane source regime. The
corresponding phase lag thus increases from 0° (spherical
source) to 45° (plane source) due to purely Fourier-law effects.
In addition, at large ωH , nondiffusive effects also become
important, causing the phase to roll off even more quickly, the
effects of which have been analyzed using modified Fourier-
law models [18,40]. In contrast, the present work considers a
planar heat source, removing a lengthscale from the problem
and ensuring that the continuum Fourier-law solution exhibits
a constant phase of 45° for all frequencies. Any deviations
from 45° correspond unambiguously to nondiffusive effects
[Eq. (12)], which we analyze using a BTE rather than Fourier
treatment.

Taking the phonon dispersion relation [and thus Cω(ω) and
vω(ω)] as known, Eqs. (10) to (12) show how to calculate ψ

from ωHτω. In an experiment it is natural to attempt the inverse
problem: Given a set of measured ψ , what is the best estimate
of τω distribution? This is challenging but possible for a single
Fredholm integral equation [26,42]. However, inversion of
Eq. (12) to estimate τω is much more complicated because
it involves the ratio of two integrals. Thus, instead of solving
the general inverse problem, as shown in Fig. 1, here we use the
forward solution to fit a simple τω function with a small number
of adjustable parameters. For example, assuming a scattering
law such as τ−1

ω = Dωn, fitting experimental ψ yields D

and n. Finally, intermediate quantities such as Kτ (τω) and
kapp(ωH ) are then calculated from Eqs. (7) and (9), as shown
in more detail in Sec. III C. A key difference compared to
previous work [2,16] is that here the subcontinuum effects seen
in the measurements are analyzed self-consistently using a
subcontinuum BTE solution rather than a modified continuum
Fourier’s law.

D. k accumulation with respect to MFT

We now consider the different approaches to quantifying
the broad distribution of scattering strengths experienced by
phonons. Previously this has been described with an accu-
mulation function with respect to MFP, using a characteristic
size to provide confinement to MFP, such as heating laser spot
size [16] or Fourier-law penetration depth [2,18]. However,
for the periodic heating problem here we find the analysis to
be more natural and rigorous for accumulation with respect
to MFT rather than MFP. Fundamentally this is because the
key quantities in the BTE solution depend most directly on
ωH τω. In particular, for the planar source problem, non-Fourier
behavior is clearly due to the Bt (ωHτω) suppression function
given in Eq. (5). This is physically expected because the

forcing that drives subcontinuum behavior is fundamentally
a timescale, the heater frequency ωH , and thus should
be compared to another timescale representing the phonon
scattering, for which the most natural choice is τω.

It is also possible to recast Bt in terms of lengthscales.
A previous paper [2] implicitly did this by converting ωH

to a Fourier-law penetration depth using Lp = √
2k/CωH ,

where k is the bulk thermal conductivity and C is the total
volumetric specific heat, and converting �bulk = v1Dτω, so
that ωHτω → 2k�bulk

Cv1DL2
p
. This last form may be considered less

physically satisfying for several reasons: It involves a greater
number of material parameters, including some from the
dispersion relation; it invokes Fourier-law concepts for a
strongly non-Fourier regime; and there is ambiguity about
whether the k and C used should represent the full phonon
population or only a subset thereof (e.g., acoustic or acoustic
+ optical modes). In contrast, expressing the dimensionless
function Bt directly as a function of ωHτω makes it a universal
function general to any material. The Bt function depends only
on the combination ωHτω and is independent of the dispersion
relation and the specific scattering laws (D,n) separately.
Thus, for the heating-frequency-dependent measurement, we
conclude that the accumulation function with respect to MFT
is more suitable to capture the physics of the distribution of
phonon scattering. A more detailed comparison between MFT-
and MFP-based analyses is given in Sec. III C.

Similar to thermal conductivity accumulation with respect
to MFP [1,10,15,16], A(�bulk), we introduce the accumulation
function with respect to MFT as

A(τA) = 1

kFourier

∫ τA

0
Kτ (τω)dτω, (13)

where A(τA) represents the fraction of the total thermal
conductivity contributed by phonons with MFTs less than
τA and kFourier is the bulk thermal conductivity. After some
manipulations and integrating by parts [15], the apparent
thermal conductivity in Eq. (9) can be expressed as

kapp(ωH )

kFourier
= −

∫ ∞

0
A(τω)

dBt

d(ωH τω)
d(ωHτω). (14)

Like Eq. (9), this integral equation shows how to convert
between the bulk MFT spectrum represented by A(τω) and the
apparent frequency-dependent thermal conductivity kapp(ωH ),
via the kernel Bt , and has an analogous counterpart for length-
scale effects in steady state problems [15,26]. This integral
equation separates the bulk material properties, contained in
A(τω), from the effect of periodic forcing, contained in the
universal function dBt

d(ωH τω) (or Bt function).
Equations (9) and (14) also permit a graphical explanation

of why the apparent thermal conductivity depends on heating
frequency ωH . For example, from Eq. (14) we see that − dBt

d(ωH τω)
acts as a sampling window [red dashed curve in Fig. 4(b)],
which multiplies A(τω), with the area under the product
proportional to kapp. Since A(τω) is strictly a function of
τω, plotting A(τω) on an ωH τω axis requires specifying the
heating frequency, with larger ωH shifting the curve to the
right [compare blue and black curves in Fig. 4(b)]. Thus, as
ωH increases, there is less area under the product of the red
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and black curves than under the product of the red and blue
curves corresponding to lower kapp at higher ωH .

Solving the inverse problem to estimate accumulation
functions from the measured apparent thermal conductivity
has also attracted much attention recently [2,18,26,29,42].
To obtain a simple analytical expression that still captures
the main physics, we develop an approximation method here.
Referring to Fig. 4(a), we approximate Bt as a Heaviside step
function,

Bt (ωHτω) ≈ H (1.73 − ωHτω) ≈ H (0.28 − fH τω). (15)

We elect to place the step edge at ωHτω = 1.73, found
numerically, because that is where Bt = 1

2 , as indicated by the
circle in Fig. 4(a). Equation (15) makes the sampling window
− dBt

d(ωH τω) a Dirac δ function, and thus from Eq. (14)

kapp(tc)

kFourier
≈ A(τω = tc), (16)

where tc ≈ 1.73
ωH

≈ 0.28
fH

is a characteristic time. This means with
kapp(ωH ), we can directly recover A(τω), the accumulation
function with respect to MFT, without inverse integral trans-
forms, numerical manipulation, or knowledge of the dispersion
relation. This approximation will be shown to give reasonable
results for model calculations of pure materials and alloys, as
detailed in Sec. III B.

A physical interpretation of Eq. (15) is that phonons
with τ > tc contribute nothing to heat conduction, while
phonons with τ < tc contribute fully. Thus Eq. (15) is a
cutoff approximation, similar in spirit to Koh and Cahill’s [2]
postulate comparing the bulk phonon MFP to the Fourier-law
penetration depth. However as noted above, for systems
where the subcontinuum forcing is periodic heating, it is
more physical to define any cutoff condition in terms of the
timescales rather than lengthscales.

E. Numerical lattice BTE for verification of gray model

To verify the analytical BTE solutions of our gray model,
we use a numerical method, the lattice BTE (LBTE) [32]. A
detailed explanation can be found in Ref. [32]. The essence of
this method is to constrain the phonons by lattice site. The time
step �t and space step �x are related by �x = v1D�t . We
use �x = 0.025�gray and represent the semi-infinite domain
with a large but finite thickness 20�gray. This is sufficient
because at even the lowest ωH of interest (e.g., ωHτgray =
10−2, which approaches the diffusive limit), 20�gray is still at
least double the penetration depth. The chosen simulation time
is 10π

ωH
, which has been verified as long enough to reach the

steady-periodic solution independent of the initial condition.

III. CASE STUDY: Si AND SiGe

Silicon has been chosen as the main example. For the gray
LBTE, to make a direct comparison with Regner et al. [18]
we use the same parameters: a gray MFP of 41 nm, specific
heat of 1.66 × 106 J/m3-K, and 3D sound velocity of vSound =
6733 m/s. For the nongray model, we use the same BvK
dispersion and scattering parameters as our previous work [15].

A. Gray model

1. Equilibrium temperature and penetration depth

Detailed derivations for the gray model are given in
Appendices A and B. The equilibrium temperature amplitude
is ‖ Teq(x)−T∞

�T
‖ = 1

2

√
1 + d2 + 2d cos φ exp(−x b

v1Dτgray
), from

Eq. (B2), with v1D = 1√
3
vω, as discussed in Appendix C.

This spatial profile is compared to the Fourier limit in
Fig. 5. When the phonons have sufficient time to reach local
equilibrium (ωHτgray � 1), the analytical solution approaches
the Fourier limit, with increasing deviations for larger ωHτgray.
For instance, at the surface x = 0, the difference between
BTE and Fourier solutions for the amplitude of equilibrium
temperature oscillation ||Teq(x = 0) − T∞|| increases from
0.7% at ωHτgray = 10−4 to 6.8% at ωHτgray = 10−2. As
seen in Fig. 6(a), for even larger ωHτgray this BTE surface
temperature amplitude approaches half of the Fourier limit.
This surface temperature slip indicates the nondiffusive effect
because the amplitude of the backward flow T −(x = 0) − T∞
at the surface is much smaller than that of the forward flow
T +(x = 0) − T∞, which is taken as a boundary condition:
See Appendix B.1 in the high frequency regime. Thus, after
averaging, the equilibrium amplitude Teq(x = 0) − T∞ at high
ωH is only half of the forward amplitude.

The BTE result for the penetration depth at which temper-
ature amplitude decays to e−1 of its surface value is

Lp = v1Dτgray

b
. (17)

Compared to the familiar Fourier-law penetration depth

Lp,F , this is Lp = Lp,F

√
1
2 ωH τgray

b
. This Lp is identical to

the results obtained by Regner et al. [29] using a Milne-
Eddington approximation. Figure 6(b) shows that Lp correctly

FIG. 5. (Color online) Spatial distribution of the amplitude of
normalized equilibrium temperature for three different heating
frequencies. The analytical BTE solution of Eq. (B2) (blue solid line)
is compared with the classical Fourier limit (Ref. [43]) (black dashed
line). Because our boundary condition uses �T as the amplitude of
only the T + oscillation, the resulting solution for Teq exhibits slip at
higher frequencies.
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FIG. 6. (Color online) Heating-frequency dependence of (a) the
surface temperature amplitude ||[Teq(x = 0) − T∞]/�T || and (b)
penetration depth Lp for the gray model. The analytical BTE
solutions (blue solid lines) for surface temperature from Eq. (B2)
and penetration depth from Eq. (B4) are verified by numerical
LBTE solutions (black diamonds). The BTE solutions considering
3D velocity are included for comparison (black dot dashed lines).
The Fourier limits (dashed) are also shown for comparison at low
heating frequency.

approaches the Fourier limit for ωHτgray < 0.1, while ap-
proaching a constant for ωHτgray > 2. These BTE solutions
have been verified by the LBTE calculations across all
frequency regimes, as shown in Fig. 6 by the black diamonds.

The penetration depth in the 3D BTE solution has the
same form as Eq. (17) except v1D is replaced with v3D =
βvω, where the coefficient β depends on the choice of 3D
solution scheme (Appendix D; β = 2/3 in our method).
Thus, the surface temperature amplitude is ‖ Teq(x=0)−T∞

�T
‖ =

1
2

√
1 + d2

3D + 2d3D cos φ3D . In this 3D case, due to the
phonon’s angular distribution only part of their energy is
directed along the x direction, making the temperature am-
plitude smaller than the 1D case, as shown in Fig. 6(a). The
3D penetration depth is v3Dτgray

b
, differing from the 1D Lp by

only a coefficient. Thus, after normalizing the 1D penetration
depth to �gray,1D = v1Dτgray and the 3D penetration depth to
�gray,3D = v3Dτgray, the functions become identical, as shown
in Fig. 6(b).

2. Surface heat flux and phase lag

The surface heat flux for the gray BTE model is shown
in Fig. 7(a), normalized to the Fourier limit q ′′

Fourier =
kFourier�T

√
ωH

α
, where α is the thermal diffusivity and verified

by LBTE simulations. The BTE solution clearly converges
to the Fourier result for small heater frequencies. In the
opposite limit we find q ′′

BTE
q ′′

Fourier
= 1

2
√

ωH τgray
from Eq. (B6), which

means Fourier’s law overpredicts the heat flux caused by a
prescribed surface temperature oscillation. This is equivalent
to the BTE solution exhibiting a reduction in apparent thermal
conductivity. From Eq. (B5) the heat flux amplitude in this
large ωHτgray limit is q ′′

BTE = 1
2ν1DC�T . It is independent of

τgray, which means nondiffusive transport. As with the surface

FIG. 7. (Color online) Heating-frequency dependence of the
gray BTE results for (a) the amplitude of surface heat flux and (b)
phase lag of the surface temperature compared to surface heat flux.
The analytical BTE solution of surface heat flux from Eq. (B6) and
phase lag from Eq. (B8) (blue solid lines) are verified by a numerical
LBTE solution (black diamonds). The BTE solutions considering 3D
velocity effects are also shown (black dot dashed lines). The Fourier
limits (dashed lines) are recovered at low heating frequency.

temperature, in the 3D case the heat flux is also smaller than
the 1D case.

The phase lag of the surface equilibrium temperature
as compared to surface heat flux is ψgray = tan−1(− 2d sin φ

1−d2 ),
which is shown in Fig. 7(b). For small ωH τgray the BTE solution
of Eq. (B8) correctly approaches the well-known Fourier limit
for planar periodic heating, ψ = 45◦. In the large ωH τgray

limit, the heat transport gradually becomes nondiffusive, and
the phase lag decreases to zero. In the 3D case, the phase lags
exactly match those of the 1D BTE solution because ψgray for
both is independent of the group velocity and thus β.

3. Apparent thermal conductivity of gray model: Dependence on
heater frequency or penetration depth

The ωH -dependent apparent thermal conductivity, which is
defined in Eq. (4) for the gray model, is shown in Fig. 8(a).
As ωHτω increases, kBTE/kFourier decreases monotonically to
zero, with the same results for both 1D and 3D gray models.
Because of the emphasis on MFPs in this field, it is common
to transform ωH to a corresponding Fourier-law penetration
depth using Lp,KC =

√
2αlow
ωH

, where the subscript KC denotes
the Koh and Cahill treatment [2] and αlow is the thermal diffu-
sivity in the limit of low heating frequency, e.g., the classical
handbook value. In Koh and Cahill’s approach [2], Lp,KC acts
as a cutoff threshold such that phonons with bulk MFPs longer
than Lp,KC do not contribute at all to heat conduction. Regner
et al. [18] used a very similar cutoff conduction except that
the critical penetration depth was defined using the apparent
thermal diffusivity, namely, Lp,Regner =

√
2α(ωH )

ωH
, where now

α(ωH ) itself depends on heater frequency through kapp(ωH ). In
the low-frequency limit, Lp,Regner = Lp,KC = Lp, where the
latter is the e−1 penetration depth for the BTE solution given
in Eq. (B4), while at high frequency Lp,Regner < Lp,KC < Lp.
To facilitate comparisons with the LBTE results of Regner
et al. [18], Fig. 8(b) plots our results in terms of Lp,Regner. The
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FIG. 8. (Color online) (a) Normalized apparent thermal conduc-
tivity of Si at 300 K for the gray model as functions of (a) heating
frequency and (b) Fourier-law penetration depth. The analytical BTE
solutions of Eq. (4) (solid lines) and numerical LBTE results (black
diamonds) are in excellent agreement with each other, and both
recover the classical Fourier limit (dashed lines) where appropriate.
The results from an LBTE simulation by Regener et al. (Ref. [18])
are also shown for comparison (open circles).

comparison shows excellent agreement between our analytical
and LBTE solutions over the entire Lp range. Furthermore,
it is reassuring that these results for kBTE also exhibit very
good agreement with the LBTE results of Regner et al. [18]
even though the two approaches began with different surface
forcing conditions (prescribed T + in our case; prescribed q

in Ref. [18]). The two LBTE solution in Fig. 8(b) do exhibit
some minor disagreement (∼2.7%) in the transition regime,
although the reasons for this are not known.

B. Nongray model: Heating-frequency-dependent thermal
conductivity

To account for the typically broad distribution of phonon
FMP [1,10,15,16,18], we incorporated the phonon MFP
distribution for two model materials into Eq. (8) and obtained
the nongray kapp(ωH ), as shown in Fig. 9, based on the
analytical gray solution of Sec. II B. The nongray model
captures the characteristic of the long MFT tail [see Fig. 10(c)],
which results in a stronger heating-frequency dependence than
in the gray model (τgray = 6.0 ps). Although the natural Si mea-
surements by Koh and Cahill [2] and Wilson and Cahill [24] did
not exhibit any clear ωH effect, those experiments were limited
to fH, max = ωH, max/2π = 10 MHz–17.6 MHz, respectively,
which according to the calculations of Fig. (9) corresponds
to a reduction by less than 3%, which likely is difficult to
observe above experimental noise.

However, strongly ωH -dependent kapp for several semicon-
ductor alloys, namely Si1−xGex , In1−xGaxP, and In1−xGaxAs,
has been observed [2,24]. We use the undoped 6 μm thick
Si0.4Ge0.6 film of Ref. [2] for comparison with our present
nongray model. We normalize those measurements using
a bulk reference value for undoped Si0.4Ge0.6 of kFourier ≈
8.3 W/m-K [44]. To model the Si0.4Ge0.6, we use the virtual
crystal approximation [45] and a BvK dispersion [15] based

FIG. 9. (Color online) Heating-frequency dependence of appar-
ent thermal conductivity for Si (black dashed line) and Si0.4Ge0.6

(red solid line) for the nongray BTE model described in the text. The
measurements (Ref. [2]) (points) of Si0.4Ge0.6 and Si are also included
for comparison.

on a primitive unit cell density of 2.3 × 1028 m−3 and averaged
sound velocity of 4630 m/s. The main scattering mechanism
in Si0.4Ge0.6 is alloy scattering. The alloy scattering coefficient
Aalloy = 6.7 × 10−42 s3, obtained by fitting the reference value
of kFourier [44], is more than three orders of magnitude larger
than Aisotope for natural Si [15]. The resulting kapp(ωH ) for
the alloy is calculated from Eq. (9) and shown in Fig. 9 (red
line). Comparing the nongray calculations for Si and Si0.4Ge0.6

reveals the important observation that the kapp suppression
occurs at much lower frequencies in the alloy than in the
pure single crystal. For example, at fH = ωH/2π = 10 MHz,
the reduction is only 2.7% for Si but 25% for Si0.4Ge0.6.
This indicates that phonons with large MFTs play a more
important role in the thermal conductivity of the alloy than
in the pure crystal, consistent with earlier calculations of the
MFP distributions of these materials [1,46,11]. We also note
that an FDTR measurement of crystalline Si up to 100 MHz
showed stronger frequency dependence [18]. For consistency
in comparing results for Si and Si1−xGex alloy, in Fig. 9 we
elect to only show the results that were both obtained using
the same TDTR technique [2].

Figure 9 also compares our Si0.4Ge0.6 calculation with the
corresponding experimental data from Ref. [2]. The measure-
ments have the same general trend but show an even stronger
ωH effect. There are two important distinctions between
the model and experiment that could explain the stronger
suppression seen in the latter. First, considering the very
broad MFP distribution expected for Si1−xGex , [1,11], the film
thickness of 6 μm may cause additional suppression, which
is not captured in the present calculation for a semi-infinite
substrate. Also, a size-effect reduction may arise from the
finite Gaussian beam radii used in the experiment (6.5–15 μm),
whereas the model deals with an infinite plane source.

Although due to the different experimental geometries
these calculations cannot be directly compared to Koh and
Cahill’s measurement [2], the modeling results still are
insightful because they use the BTE to isolate an ωH effect
in reducing kapp. Furthermore, this reduction can be strong
in semiconductor alloys even for fH = ωH /2π as small as
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f

f

FIG. 10. (Color online) Comparison of MFP and MFT approaches to analyzing a virtual experiment. (a) Calculated ideal phase lag (black
solid line) for BvKS Si, and the same with ±2° error to represent a virtual experiment (circles) (b) Left axis: Penetration depth dependent
thermal conductivity using power-law MFT fit from virtual experiment (circles). Right axis: Actual accumulation function A(�bulk) including
all scattering (solid line). (c) Left axis: Characteristic time tc dependent thermal conductivity using power-law MFT fit from virtual experiment
(circles). Right axis: Actual accumulation function A(τω) including all scattering (solid line).

∼10 MHz, frequencies at least two orders of magnitude
lower than what might be expected based on a typically
used dominant phonon MFT of ∼100 ps [2]. However, the
lower frequency onset is also consistent with more detailed
calculations of the MFT accumulation. For instance, in the
case of Si0.4Ge0.6, we find the range of important MFTs spans
from ∼20 ps to ∼130 ns (10%–90% cutoffs), a range of over
6000:1. This breadth, and the shift towards timescales much
larger than the dominant phonon expectation of ∼100 ps, is
also consistent with earlier calculations of the MFP distribution
of Si1−xGex alloys by ourselves [1,46] and others [11].

C. Measuring accumulation function with respect to MFT
instead of MFP: a virtual experiment

To show how the framework of Fig. 1 can be used to
measure the accumulation function, we performed a virtual
experiment based on the phase lag between surface tem-
perature and surface heat flux, as shown in Fig. 10. The
calculations are for Si at 300 K, using a BvK dispersion
with strong umklapp (τ−1

ω = 1.53 × 10−19T · ω2, with unit
of s−1) and weak impurity (Aimpurity = 2.54 × 10−45 s3). For
completeness in fitting we also included a finite boundary
scattering length (�bdy = vτbdy = 5.7 mm) [15], although this
has a negligible impact on the room temperature calculations
presented here. In Fig. 10(a), the ideal ψ response is calculated
for the model (solid line), while the virtual experiment has ψ

points randomized within ±2° to represent measurement error
(empty circles). Following the flowchart of Fig. 1, we fit this
ψ(ωH ) data with Eq. (12) using a known single-branch BvK
dispersion relation and unknown scattering power law τ−1

ω =
Dωn. This two-parameter fit yields D = 1.43 × 10−19T s−3

and n = 2.00, in very good agreement with the actual umklapp
parameters used. With the fitted D and n, we calculate kapp(ωH )
from Eq. (9), then convert kapp(ωH ) from frequency domain to
length domain in Fig. 10(b) and time domain in Fig. 10(c).

These results support the argument for representing accu-
mulation, and developing cutoff approximations, with respect

to MFT rather than the much more common approach with
respect to MFP. To see this, we compare the actual accumula-
tions functions (lines) with their approximate reconstructions
(circles), using both time- and length-based approaches. For
the reconstructed data in Fig. 10(b) (red circles), for the x

axis we convert ωH to Lp,Regner using Lp,Regner =
√

2α(ωH )
ωH

and the y axis to kapp/kFourier. If the penetration depth cutoff
postulate [16,18] is suitable for periodic planar heating, this
plot of kapp/kFourier versus Lp,Regner (circles) should match
the actual accumulation function A(�bulk) (line). However,
as shown in Fig. 10(b), the agreement is poor, with the two
curves differing by a factor of ∼8 along the �bulk axis.

The agreement is much better using the MFT approach. For
the reconstructed curve of Fig. 10(c) (blue circles), we now
change the x axis to characteristic time tc ≈ 1.73

ωH
and the y

axis to kapp(tc)/kFourier. [Recall that the coefficient 1.73 gives
the best step-function approximation to the actual suppression
function of Fig. 4(a).] Now, if the MFT cutoff postulate is
appropriate, this plot of kapp/kFourier versus tc should recover
the actual MFT accumulation function A(τω). As shown in
Fig. 10(c), the agreement is excellent over more than three
orders of magnitude of MFT. An approximate justification for
this MFT-based cutoff treatment was discussed in Fig. 4(a).
The kernel function Bt acts as a sampling function, which
heavily suppresses the contributions from phonons with MFT
longer than the characteristic time tc, crudely following the
shape of a step function. Therefore, ωH is directly related to
cutoff MFT, which can be used to probe the accumulation
function over MFT. Thus, the comparisons between actual
and reconstructed data in Figs. 10(b) and 10(c) confirm that
for this periodic planar heating system, a cutoff approach is
much more appropriate in the MFT domain than MFP domain.

IV. SUMMARY AND CONCLUSIONS

An analytical solution to the BTE for the periodic plane-
source heating problem has been obtained based on the
gray MFT model. This model has been verified by our

165311-9



FAN YANG AND CHRIS DAMES PHYSICAL REVIEW B 91, 165311 (2015)

LBTE simulations as well as LBTE results from the liter-
ature [18]. The BTE solution was extended to the nongray
MFT regime through a frequency-integrated gray-medium
treatment [27,30]. This model shows how to construct an
accumulation function with respect to MFT from measured
phase lag data, both directly and from an intermediate calcu-
lation of the apparent thermal conductivity. The BTE solution
confirms that the fundamental reason for the frequency-
dependent thermal conductivity is that phonons with MFTs
longer than the characteristic heating time conduct less heat
than classically expected. Therefore, for a system such as this,
which is driven purely by a fast timescale, it is most natural
to describe the breakdown of Fourier’s law using an apparent
thermal conductivity that depends on the driving timescale,
rather than converting it to some equivalent lengthscale such as
a classical penetration depth. The timescale description is also
cleaner than the lengthscale description because the former
does not introduce other material properties such as diffusivity.
The model has been applied to Si and Si0.4Ge0.6, and it agrees
qualitatively with the experimental reports [2,24] that heating
frequencies up to 20 MHz cause a strong suppression of
thermal transport in the alloy but a negligible suppression
in natural Si. This model has also been applied to a virtual
FDTR experiment, which fits the phase lag between surface
temperature and heat flux to fix the parameters of a power-law
MFT. The results show that a cutoff approach is much
more accurate using timescales than equivalent converted
lengthscales, with the former giving very good agreement
with the actual MFT accumulation function used for over four
orders of magnitude of τω.
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APPENDIX A: BTE SOLUTIONS IN FORWARD AND
BACKWARD DIRECTIONS

This appendix describes the solution of the BTE [Eq. (1)].
Rather than directly solving for the distribution function, we
make the radiation analogy and use phonon intensity [39].
The phonon intensity per unit time, per unit area, per phonon
frequency, and per unit solid angle is

Iω =
∑

s

|vω,s |�ωD(ω)fω, (A1)

where s represents the polarizations and D(ω) is the density
of states of the sth branch. For simplicity we lump the three
acoustic branches into one, as discussed in Sec. II A. Thus, in
the 1D case of Fig. 3(a), the BTE is recast as

∂Iω

∂t
+ v1D

∂Iω

∂x
= I 0

ω − Iω

τω

, (A2)

where v1D = vω√
3

is the effective group velocity in the x

direction (see Appendices C and D) and I 0
ω is the equilibrium

phonon intensity. Strictly, I 0
ω is an average over all phonon

directions and frequencies [30,47]. This is trivial for the gray
MFT solution since there is only one ω to consider. However,
in the general nongray case, the corresponding BTE can
only be solved numerically using techniques such as Monte
Carlo [47], discrete ordinates [34,48], finite volumes [49],
or the LBTE method [18]. On the other hand, analytical
solutions have great advantages for understanding the essential
physics and reducing computational time. To facilitate such an
analytical solution for the general nongray case, we assume
that the true I 0

ω integral can be approximated adequately by
a simpler form whereby phonons with the same frequency
reach their own equilibrium. This approach has been used
previously [27,30], and the resulting “frequency-integrated
gray-medium” treatment was found to yield surprisingly good
agreement with numerical solutions of the full nongray BTE
for Si and PbSe [27]. Combining this assumption with the
governing equation in Eq. (A2) and periodic heating boundary
conditions described in the next subsection, the BTE is
analytically solvable.

Equation (A2) can be solved by different approximation
methods such as two-flux (or Schuster-Schwarzschild) model
and Milne-Eddington model [31]. Both models assume the
phonon intensities are isotropic over the forward and backward
hemispheres but with different amplitudes [31], respectively.
Some differences between these models are discussed in
Appendix D. In the usual way, we multiply Eq. (A2) by μ

and integrate over forward and backward hemispheres of solid
angle. Thus, the BTE in Eq. (A2) separates into two coupled
equations with respect to the forward flux q+ and backward
flux q−. For truly 1D transport as depicted in Fig. 3(a), μ = 1.
We will first study this case and discuss the general 3D case
of Fig. 3(b) in Appendix D.

In the forward direction, Eq. (A2) of the gray model
becomes

∂q+

∂t
+ v1D

∂q+

∂x
= q0 − q+

τgray
. (A3)

The counterpart equation in the backward direction has the
same form except with q− instead of q+. The equilibrium q0

couples the forward and backward fluxes,

q0 = 1
2 (q+ + q−). (A4)

The net heat flux is conveniently expressed as

q
′′
net = q+ − q−. (A5)

Substituting Eq. (A4) into Eq. (A3), after algebraic ma-
nipulation a pair of equations for the forward and backward
direction is obtained,

τgray
∂2q+

∂t2
+ ∂q+

∂t
− τgrayv

2
1D

∂2q+

∂x2
= 0 (A6)

and

τgray
∂2q−

∂t2
+ ∂q−

∂t
− τgrayv

2
1D

∂2q−

∂x2
= 0. (A7)

For the boundary conditions, a sinusoidal temperature is
imposed in the positive direction at x = 0, as shown in
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TABLE II. Key coefficients of the BTE solution, including simplified forms in low- and high-frequency limits. These expressions are
derived using a gray MFT, but they can also be extended to a nongray solution with τω, as explained in Sec. II B. Therefore the expressions in
this table apply for both τgray and τω.

Coefficient Low ωH limit High ωH limit

a =
√

ωH τω

2

√
ωH τω +

√
(ωH τω)2 + 1

√
ωH τω

2

(
1 + ωH τω

2

) ≈
√

ωH τω

2 ωH τω + 1
8ωH τω

≈ ωH τω

b =
√

ωH τω

2

√
−ωH τω +

√
(ωH τω)2 + 1

√
ωH τω

2

(
1 − ωH τω

2

) ≈
√

ωH τω

2
1
2 − 1

16(ωH τω )2 ≈ 1
2

cos φ = b

a
1 − ωH τω ≈ 1 1

4ωH τω
≈ 0

sin φ = −2b −√
2ωH τω ≈ 0 −1 + 1

8(ωH τω )2 ≈ −1

d = b

a+ωH τω
1 − √

2ωH τω ≈ 1 1
4ωH τω

≈ 0

Eq. (2). Since the domain is semi-infinite, deep inside the
body the distribution must return to the equilibrium intensity
corresponding to the ambient temperature, namely

T +(x = ∞,t) = T −(x = ∞,t) = T∞. (A8)

To transform these T boundary conditions to corresponding
constraints on q+ and q−, we linearize the response. The
temperature oscillations of the heat source are limited to
�T � T∞, which is typical in the measurements [2,16,20,40].
In this case, the temperature variation is a linear response to
the heat flux variation in each direction, such as

dq+ ≈ 1
2v1DCdT + = 1

2v1DdU+, (A9)

where C is the volumetric specific heat and U is the volumetric
energy density. The factor of 1

2 arises from only integrating
over the hemisphere. Using Eq. (A9), both temperature
boundary conditions from Eqs. (2) and (A8) are transformed
to heat flux boundary conditions.

1. Nondimensionalization and solution in the forward direction
with gray MFT

For convenience we define the dimensionless time as γ =
t

τgray
, location as χ = x

v1Dτgray
, and forward energy flux as

Q+(χ,γ ) = Q+(x,t) = q+(x,t) − q+(x = ∞,t)

q+(x = 0,t = 0) − q+(x = ∞,t)
,

(A10)

with a similar form for Q− after substituting q+ → q−, except
keep the denominator q+(x = 0,t = 0) term the same. As
x → ∞, from Eqs. (A8) and (A9) we have q+(x = ∞,t) =
q−(x = ∞,t) = q∞, and the governing Eq. (A6) simplifies to

∂2Q+

∂γ 2
+ ∂Q+

∂γ
− ∂2Q+

∂χ2
= 0. (A11)

Applying Eqs. (A9) and (A10) to Eqs. (2) and (A8), we
obtain the boundary conditions

Q+(χ = 0,γ ) = exp(iωHτgrayγ ) (A12)

and

Q+(χ = ∞,γ ) = 0. (A13)

Now the governing Eq. (A11), which is hyperbolic tele-
graph type, can be solved by a standard Laplace transform

method. After taking the Laplace transform of Eqs. (A11)–
(A13) with respect to time, the resulting ordinary differential
equation in χ is readily solved, and finally an inverse
Laplace transform is used to obtain the time domain solution.
During the inverse transform, the singularity problem is
overcome using the Cauchy integral theorem [50]. Finally, we
obtain the dimensionless temperature in the forward direction
as

Q+
gray(χ,γ ) = exp(−bχ ) exp(iωHτgrayγ − iaχ ), (A14)

where a and b are purely real and are given in Table II.

2. Solution in the backward direction with gray MFT

Beginning from Eq. (A7), the backward direction counter-
part of Eq. (A11) is

∂2Q−

∂γ 2
+ ∂Q−

∂γ
− ∂2Q−

∂χ2
= 0. (A15)

However, there is only one obvious boundary condition,

Q−(x = ∞,t) = 0. (A16)

At x = 0, the heat flux in the negative direction is a
depth-integrated response to the positive direction heat flux,
which is not specified in advance (recall that for convenience
our boundary condition at x = 0 was defined purely in terms
of Q+). Without one more boundary condition it would appear
that we cannot solve Eq. (A15). However, energy conservation
can provide the required constraint, as follows. Since the
form of the governing equations in the forward and backward
directions are exactly the same, we seek a solution of Eq. (A15)
with the same form as Eq. (A14) while allowing for different
amplitude and phase,

Q−(x,t) = d exp(−bχ ) exp(iωHτgrayγ − iaχ + iφ). (A17)

Here d is the amplitude coefficient and φ is the phase shift,
where d and φ are purely real and are determined by energy
conservation. Since there is no heat generation in the material,
it must always be true that

∇ · q
′′
net + ∂U

∂t
= 0, (A18)

where the phonon energy density in Fig. 3(a) is

U = q+ + q−

v1D

. (A19)
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Substituting the forward and backward solutions into
Eq. (A18), for the real part we obtain

[−(a − ωH τgray) + d(a + ωHτgray) cos φ + db sin φ]

× sin(ωH t) + [b + d(a + ωHτgray) sin φ − db cos φ]

× cos(ωH t) = 0, (A20)

where the coefficients a, b, φ, and d are all only functions of
ωH τgray. Since Eq. (A20) is valid at all times, the coefficients
of sin(ωH t) and cos(ωH t) must both be zero. Thus, we
obtain

d = b

a + ωH τgray
(A21)

and

cos φ = b

a
, (A22)

as given in Table II.

APPENDIX B: SOLUTIONS FOR TEMPERATURE AND
HEAT FLUX IN GRAY MODEL

Using the positive and negative flux solutions from
Appendix A, we now obtain the equilibrium temperature,
penetration depth, net heat flux, phase lag on the surface, and
apparent thermal conductivity.

1. Temperature and penetration depth

The equilibrium temperature is obtained by conserving the
total energy density [35]. From the linear response of Eq. (A9)
the equilibrium temperature is obtained from

Ueq(x,t) − U∞ = C[Teq(x,t) − T∞]. (B1)

Thus, the amplitude of the equilibrium temperature oscil-
lation is∥∥∥∥Teq(x) − T∞

�T

∥∥∥∥
= 1

2

√
1 + d2 + 2d cos φ exp

(
−x

b

v1Dτgray

)
, (B2)

where the term exp(iωH t − ix a
v1Dτgray

) does not appear because
it has unity amplitude. To facilitate comparisons with the
Fourier limit, it is convenient to recast this result in terms of the
thermal diffusivity α by using α = v2

1Dτgray = 1
3v2

gτgray, where
the two forms correspond to 1D and 3D variations depicted in

Fig. 3. The result is∥∥∥∥Teq(x) − T∞
�T

∥∥∥∥ = 1

2

√
1 + d2 + 2d cos φ

× exp

(
−x

√
ωH

2α

b√
ωH τgray

2

)
. (B3)

Equation (B3) also directly gives the thermal penetration
depth, Lp,

Lp =
√

2α

ωH

√
1
2ωHτgray

b
= Lp,F

√
1
2ωH τgray

b
, (B4)

where Lp,F =
√

2α
ωH

is the Fourier limit of Lp. Various limits
of the BTE solution are shown in Table III and serve as useful
checks, such as verifying that the low ωH limit recovers the
classical Fourier solution.

2. Heat flux

The net heat flux is calculated by Eq. (A5). At the surface,
x = 0, the heat flux amplitude is

‖q ′′
net‖ = 1

2v1DC�T
√

1 + d2 − 2d cos(φ). (B5)

Normalizing this to its Fourier limit we find∥∥∥∥ q
′′
net

q
′′
Fourier

∥∥∥∥ = 1

2

√
1 + d2 − 2d cos(φ)

ωHτgray
, (B6)

which correctly reduces to unity for small ωH τgray, as shown
in Table III.

3. Phase lag

For thermal conductivity experiments, measuring the phase
lag between surface temperature and heat flux is more practical
and accurate than measuring the temperature or heat flux
amplitude directly because the phase lag is less sensitive to
intensity instabilities [40]. To extract the phase lag, we express
the ratio of heat flux to equilibrium temperature variation as
a complex function with the purely real amplitude Rgray and
phase lag �gray,

q
′′
net(x,t)

Teq(x,t) − T∞
= Rgray exp(iψgray). (B7)

The time and space terms all cancel from the right-hand
side. Substituting for q

′′
net(x,t) and Teq(x,t), the phase lag is

TABLE III. Low- and high-frequency limits for various key results of the gray BTE model.

Low ωH τω limit High ωH τω limit

Temperature amplitude
∥∥ Teq,ω (x)−T∞

�T

∥∥ exp
(−x

√
ωH

2α

)
1
2 exp

(− x

2
√

ατω

)
Penetration depth Lp Lp,F =

√
2α

ωH
2
√

ατω = 2�gray

Surface heat flux amplitude
∥∥ q

′′
net

q
′′
Fourier

∥∥ 1 1
2
√

ωH τω

Phase lag ψgray
π

4 0

Apparent thermal conductivity kapp,gray kFourier
kFourier
ωH τω
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found to be

tan(ψgray) = −2d sin φ

1 − d2
. (B8)

The Fourier result is again recovered in the low ωHτgray

limit, as shown in Table III.

APPENDIX C: RELATIONSHIP BETWEEN 3D AND 1D
GROUP VELOCITY

We consider the relationship between the 1D velocity v1D

and the actual group velocity vω. The present work uses a heat
source in the y-z plane. Due to the translational symmetry of
the heating surface and the fact that the material’s dispersion
relation is taken to be isotropic, the net heat flow must
propagate normal to the yz plane (i.e., along the x axis),
suggesting a 1D treatment. However, the constituent phonons
still travel in all 4π steradians, so some care is required
in converting their actual group velocities to an equivalent
1D velocity v1D . In the 3D phonon dispersion with a single
polarization, all phonons of frequency ω travel with a group
velocity of magnitude vω, but due to their angular distribution
only part of their energy is directed along the x direction.
Therefore, in this work, the relationship v1D = 1√

3
vω is

used [51,52]. In ideal gases, this gives the relationship between
the thermal velocity and sound velocity [51]. In solids and
liquids at low temperature the phenomenon is known as second
sound [53,54], where it has been studied by models [55–57]
and experiments in helium [58], NaF [59,60], NaI [60], SiTiO3

(Ref. [61]), etc. More fundamentally, this 1√
3

factor can also
be understood as a consequence of collisions randomizing the
directions of the velocity vectors [51], resulting in the effective
1D velocity v1D for energy propagation.

This velocity relation can also be verified by comparing
the equilibrium temperature in Eq. (B2) (or surface heat
flux) at low heating frequency ωH with the Fourier limit.
The Fourier limit of temperature amplitude is ‖ Teq(x,t)−T∞

�T
‖ =

exp(−x
√

ωH

2α
). Comparing with our 1D model in Eq. (B2), we

can obtain their relation that v1D =
√

α
τgray

= 1√
3
vω.

APPENDIX D: RELATIONSHIP BETWEEN 3D AND 1D
BTE MODELS

This appendix extends the BTE solution from 1D velocity
v1D in Fig. 3(a) to the more general case in Fig. 3(b). We also
explain the similarities and subtle distinction between our two-
flux treatment and the more common Schuster-Schwarzschild
and Milne-Eddington approximations.

As done in Appendix A for the strictly 1D solution, for
3D we can also obtain the governing equation for phonon
intensity,

∂Iω

∂t
+ vωμ

∂Iω

∂x
= I 0

ω − Iω

τω

. (D1)

The key difference and challenge when solving Eq. (D1)
is in dealing with the angle dependence of the x-direction
velocity, as expressed by vωμ. This is commonly treated
by multiplying the equation by various moments of μ and
integrating over solid angle. We also use the common two-flux

approximation that the radiative intensity is hemispherically
isotropic with different values in the forward and backward di-
rections [31]. With this assumption, the governing Eq. (D1) can
be simplified. For the mth moment in general, Eq. (A1) is mul-
tiplied by μm and integrated over the forward and backward
hemispheres. In the forward direction, the mth moment q+

ω,m is

q+
ω,m = 2π

∫ 1

0
I+
ω μmdμ. (D2)

The 2π arises from integrating over azimuthal angle. For
m = 0 and separating the forward and backward directions,
the two-flux treatment becomes the Schuster-Schwarzschild
approximation [31]. If both m = 0 and m = 1 moments
are used and the integration ranges over 4π steradians, it is the
Milne-Eddington approximation [29,31]. Since we are more
interested in the heat flux, it is convenient to separate the
forward and backward fluxes and use the first moment q+

ω,1
because it directly gives the fluxes of interest, for example,

q+
ω,1 = 2π

∫ 1

0
I+
ω μdμ. (D3)

Thus, the BTE in the forward direction is recast as

∂q+
ω,1

∂t
+ βvω

∂q+
ω,1

∂x
= q0

ω,1 − q+
ω,1

τω

, (D4)

where the coefficient β depends on the moment used (β =
2/3 here for m = 1). If we replace βvω by the effective 3D
group velocity v3D = βvω, then Eq. (D4) is exactly the same as
Eq. (A3) after the substitution v1D → v3D . This v3D involves
an integration of the first moment over 2π steradians, causing
it to differ from the bulk group velocity vω.

To obtain the solution in the backward direction, we also
use energy conservation, the 3D version of Eq. (A18). The
phonon energy density is

Uω = η
q+

ω,1(x,t) + q−
ω,1(x,t)

vω

, (D5)

where η = 2 arises from integrating Iω with respect to the solid
angle. Thus, with Eq. (D5), we can also solve the BTE in the
negative direction using the same method in Appendix A and
obtain the amplitude d3D and phase shift φ3D in the backward
direction

tan φ3D = 2βηωH τωb

(βηωHτω)2 − a2 − b2
(D6)

and

d3D = − b

(2βηωH τω + a) sin φ − b cos φ
. (D7)

These general expressions can also be applied to the 1D case
as we discussed before, such as the phase lag ψgray given by
tan(ψgray) = − 2d sin φ3D

1−d2
3D

. When β = 1 and η = 1, they exactly

recover the 1D solution, as shown in Appendices A and B.
The general expression for temperature in Eq. (B2), surface
heat flux in Eq. (B5), phase lag in Eq. (B8), and apparent
thermal conductivity in Eq. (4) all have the same forms except
replace the 1D quantities v1D , φ1D , and d1D with 3D quantities
v3D = βvω, φ3D , and d3D . All the other parameters are the
same.
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