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Radiative properties of multicarrier bound excitons in GaAs
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Excitons in semiconductors can have multiple lifetimes due to spin-dependent oscillator strengths and
interference between different recombination pathways. In addition, strain and symmetry effects can further
modify lifetimes via the removal of degeneracies. We present a convenient formalism for predicting
the optical properties of k = 0 excitons with an arbitrary number of charge carriers in different sym-
metry environments. Using this formalism, we predict three distinct lifetimes for the neutral acceptor
bound exciton in GaAs, and confirm this prediction through polarization dependent and time-resolved
photoluminescence experiments. We find the acceptor bound-exciton lifetimes to be To × (1,3, 3

4 ), where
To = (0.61 ± 0.12) ns. Furthermore, we provide an estimate of the intralevel and interlevel exciton spin-relaxation
rates.
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I. INTRODUCTION

The radiative properties of excitons in semiconductors
are of fundamental interest in current semiconductor physics
as well as of technological interest due to their impact on
optoelectronic device performance. While the optical selection
rules for the recombination of a conduction band electron and
valence band hole are well understood [1,2], the selection
rules for excitonic complexes with more than two carriers are
complicated due to the multiple spin and angular degrees of
freedom. In high-symmetry environments, exciton lifetimes
can be modified by interference between different recombi-
nation pathways [3–5]. Reducing the symmetry can modify
exciton lifetimes by energetically separating excitonic states,
thus removing the possibility for interference. Alternately, in
quantum dots, spin selection rules forbid the so-called dark
exciton from recombining, creating a radiative bottleneck
in applications requiring bright sources [6] or alternatively
a possible long-lived storage state for quantum information
applications [7].

In this work, we provide a convenient and general
framework for describing the optical properties of arbitrary
k = 0 excitonic complexes. We use the second quantization
formalism [8] for calculating dipole matrix elements of an
excitonic complex with an arbitrary number of electrons
and holes in a III-V direct band-gap semiconductor. Using
a generalized Weisskopf-Wigner theory, we show how spe-
cial spontaneous emission eigenstates and multiple radiative
lifetimes may emerge. We predict three radiative lifetimes
of the neutral acceptor bound-exciton (A0X) in bulk GaAs.
We confirm the theory by performing polarization dependent
and time-resolved photoluminescence experiments on the A0X
system.

II. FORMALISM

Exciton lifetimes in III-V direct band gap semi-
conductors can be derived from the dipole operator

μ = er for band-to-band recombination between a j = 1
2

conduction-band electron and a j = 3
2 valence-band hole

[1,2]. In the second quantization formalism, the dipole
operator is
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where em (hm) is the annihilation operator for an electron (hole)
in the angular momentum state m, H.c. is the Hermitian conju-
gate, and μo is a spin-independent constant (Appendix A). We
define the coordinate system x̂, ŷ, and ẑ to be oriented along
the [100], [010], and [001] crystallographic directions. The
hole angular momentum state is labeled with the opposite sign
of the corresponding unoccupied electron angular momentum
state. This dipole operator can be conveniently used to
calculate the dipole matrix element between exciton states
with an arbitrary number of charge carriers. For example, the
dipole matrix element pij corresponding to the recombination
of a two-carrier exciton with electron spin − 1

2 and hole spin
+ 3

2 is

p0, e
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,

where |0〉 is the semiconductor vacuum state.
We describe the radiative lifetimes of excitons using

a generalized Weisskopf-Wigner theory. The spontaneous
emission rates from a set of degenerate excited states to a set
of degenerate ground states are the eigenvalues of αS, where
S = p†·p (Appendix D). Here, p is a matrix of the vector dipole
matrix elements pij = 〈g,i|μ|e,j 〉 between ground state i and
excited state j , α = (1/4πε)(4ω3n3/3�c3), ω the frequency
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of the transition, ε the permittivity of the material, n the index
of refraction, and c the speed of light. The time dependence of
the excited state probability amplitudes b satisfy

d

dt
b = −α

2
S b, (2)

corresponding to exponential decay. Physically, Eq. (2) implies
that radiative lifetimes are modified by constructive or destruc-
tive interference between different recombination pathways.
In addition, it highlights how exciton states organize into
spontaneous emission eigenstates (eigenvectors of S) with
decay rates given by the eigenvalues of αS.

Before applying this formalism to the three-carrier acceptor
bound-exciton system, as an example we treat the simpler
two-carrier light-hole exciton. Light-hole excitons, consisting
of an mj = ± 1

2 valence hole and a conduction electron, split
from heavy-hole excitons (mj = ± 3

2 ) in reduced symmetry
environments such as quantum dots, quantum wells, and
strained GaAs. The formalism yields the expected four
spontaneous emission (SE) recombination rates [3]:
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independently because of the orthogonal polarizations (σ+
and σ−) of the transitions. On the other hand, constructive
and destructive interference of the ẑ recombination pathway
leads to a bright and dark exciton. While it is experimentally
challenging to observe the brightest light-hole exciton due its
ẑ polarization, this exciton has recently been observed using
magnetic-field measurements in strain-engineered quantum
dots [9]. We note that identification could alternatively be
made through lifetime measurements at zero magnetic field.

III. ACCEPTOR BOUND EXCITON SYSTEM

We now turn to the neutral acceptor-bound exciton (A0X),
consisting of two j = 3

2 holes and one j = 1
2 electron bound to

a substitutional acceptor impurity [10,11]. By recombination
of the electron with one of the holes, A0X decays radiatively to
a neutral acceptor (A0, a hole bound to an acceptor). Effective
mass theory can be used to show that A0 has hydrogenic
levels 1s, 2s, etc. In high-purity p-type GaAs, A0X to A0

1s, 2s, etc. photoluminescence (PL) is readily observed and
provides a useful probe for resonant excitation, as shown in
Fig. 1. Remarkably, the ensemble transition linewidths of this
solid-state ensemble system are less than 40 μeV (spectral
linewidths in Fig. 1 are limited by the instrument resolution)
(see Appedix H).

Though the origin of the A0X fine structure was once a
controversy, strain experiments support hole-hole and crystal
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FIG. 1. (Color online) PL spectrum of |A0X〉 → |A0,ns〉 and free
exciton (FE) transitions using above band and resonant excitation. The
A0X �3-�5 splitting is clearly resolved. The spectrum left of the cut
was taken using above band excitation at 815 nm. The spectrum right
of the cut used resonant excitation of |A0,1s〉 → |A0X,�5〉. Because
of spin relaxation between A0X states, the different excitation
conditions result in different �3 to �5 intensity ratios left and right of
the cut. The inset shows an energy level diagram and cartoon of the
A0-A0X system. T = 2.3 K.

field coupling as the dominant mechanisms for splitting the
12 fold degenerate A0X [12,13]. In this scheme, the two holes
lie in antisymmetric spin states with total spin 0 and 2 [12].
Hole-hole coupling splits the j = 0 states from j = 2 states. In
zinc-blende semiconductors, which possess crystal fields with
Td symmetry, the j = 2 states further split into two manifolds:
�5 with multiplicity 3 and �3 with multiplicity 2. The full
specification of A0X also includes the spin of the electron,
denoted as ↑ or ↓ (Fig. 2).

Our theory and experiments show that A0X has multiple
radiative lifetimes. To find the A0X radiative lifetimes, we first
compute the dipole matrix elements pij = 〈A0,i|μ|A0X,j 〉 for
the different A0 and A0X states (Appendix C). The eigenvalues
of p†·p are the radiative recombination rates of A0X. An
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FIG. 2. (Color online) Full energy level diagram for A0X and A0

system. The spin of the electron is denoted by ↑,↓. Intralevel and inter-
level relaxation cause a decay of the polarization visibility [Fig. 3(b)].
Electron spin flips are not allowed, as depicted schematically by the
dashed line. The crystal fields that split �3 and �5 lead to x̂, ŷ, ẑ
oriented along the crystallographic axes.
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energy splitting between excited states causes a fast oscillation
in the Weisskopf-Wigner theory which destroys the coupling
between nondegenerate states (Appendix C). As such, only
degenerate excited states are included in the dipole matrix
when calculating the eigenvalues of p†·p.

The A0X spontaneous emission rates in spherical symmetry
and no hole-hole spin coupling are proportional to

3
2 ⊗ 3

2 ⊗ 1
2︷ ︸︸ ︷(

1,1,2,2,2,2, 1
3 , 1

3 , 1
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3

)
.

When hole-hole spin coupling is introduced, j = 0 states split
from j = 2 states, but the spontaneous emission rates remain
unchanged:

j=0︷︸︸︷
(1,1) ,
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.

With the inclusion of the zinc-blende crystal fields (which
cause a �5-�3 splitting), we find that the spontaneous emission
rates become proportional to

�1︷︸︸︷
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.

Whereas previous studies of A0X report only one lifetime
[14,15] (To = (1.6 ± 0.6) ns), a full study including spin and
symmetry shows that A0X has multiple lifetimes differing by
up to a factor of 4. We can experimentally test this theory by
studying the polarization dependence of photoluminescence
(PL). If the system starts in an incoherent mixture of the four
ground A0 states, excitation light of polarization ε̂i resonant
with �n will create an excited state density matrix in the �n

subspace proportional to

ρ(�n)
e = M (�n)†

εi
M (�n)

εi
, (3)

where M (�n)
εi

= p(�n) · ε̂i, ε̂i is the incident polarization and
p(�n) are the dipole matrix elements corresponding to �n

(Appendix G). Equation (3) is valid in the limit of low excited
state population. The PL emission from the states in �n with
polarization εf is proportional to

PL(�n) = tr
(
M (�n)

εf
ρ(�n)

e M (�n)†
εf

)
. (4)

Equation (4) can be used to compute the arbitrary polarization
dependence of A0X-A0 transitions. In the case of exciting �n

with linear polarization at an angle φi in the x-y plane and
collecting linearly polarized light at φf (φn = 0 corresponds to
polarization along [100]), the angle dependent PL intensity is
given by

PL(�5) = Io

18
[5 + 4 cos(2φi) cos(2φf) + sin(2φi) sin(2φf)],

PL(�3) = Io

36
[4 + 3 sin(2φi) sin(2φf)] ,

PL(�1) = Io

18
,

where Io is a constant. These functions are plotted in Fig. 3(a)
for �3 and �5. Here, we note that this simple angular
dependence of excitonic PL can be used to verify the relative
importance of spin-spin and spin-crystal field coupling for

A0X, once a subject of debate, without the need for applied
strain or magnetic fields (Appendix G) [12,13]. In the case
where crystal fields have an observable effect (i.e. A0X in
GaAs), the excitonic PL can also be used to determine crystal
orientation, e.g., �5 emission will be strongest when exciting
along [100] and collecting [100].

IV. METHODS AND RESULTS

We measure the polarization dependence of the A0-A0X
transition using resonant continuous-wave (CW) excitation.
Experiments were performed on a p-type GaAs crystal
(6 μm GaAs grown by molecular beam epitaxy on a GaAs
substrate, Na = 1.2 × 1014 cm−3). The sample was mounted
without strain in pumped liquid He (1.9 K) and excited
with a Ti:Sapphire laser. Figure 3(a) shows the polarization
dependence of |A0X〉 → |A0,2s〉 emission under resonant
excitation of |A0,1s〉 → |A0X〉 with ŷ and 45◦ polarized
excitation. The polarization visibility C = Imax/Imin observed
is somewhat less than would be expected from the ideal theory.
The difference can be explained by relaxation between A0X
spin states.

We investigate the effect of interlevel relaxation on the
diminished polarization visibility with time- and polarization-
resolved measurements. Either the �5 or �3 transitions were
excited resonantly with 2 ps Ti:sapphire pulses, spectrally
filtered to obtain 16-ps pulses with 0.03 nm bandwidth.
Photoluminescence to |A0,2s〉 was collected and imaged using
a combined spectrometer/streak camera setup with a timing
resolution of 27 ps. Four excitation conditions were studied,
resonant excitation of �5 or �3 with ŷ or 45◦ linearly polarized
light. PL polarized parallel and perpendicular to the excitation
polarization was collected. The complete time-resolved data
set is shown in Fig. 3(b).

We observe a strong initial polarization visibility at t = 0
that later decays because of interlevel relaxation. The initial
polarization visibility of C = 7.2 ± 1 for �5 − y excitation is
close to the ideal value 9 for no excited state relaxation. (The
uncertainty here is due to the uncertainty in the t = 0 time.)
The decay of polarization visibility indicates the existence
of spin flip processes on the same timescale as the radiative
lifetime.

V. DENSITY MATRIX MODEL

We use the time-resolved data to obtain estimates of the
inter and intralevel relaxation rates in the exciton system
[Fig. 3(b)]. The time resolved data were fit to a 12 state density
matrix model including interstate relaxation (Appendix E). In
the model, an optical pulse of a given polarization coherently
creates an excited state density matrix given by Eq. (G1). The
subsequent time evolution of the excited state density matrix
ρ satisfies

dρ

dt
= 1

i�
[Ho,ρ] − 1

2
{ρ,αp†·p} + L(ρ),

where Ho is a diagonal matrix of the excited state energies, the
second term describes radiative recombination and L(ρ) is the
Linbladian operator describing phenomenological relaxation
between excited states (Appendix E). From the solution ρ(t),
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FIG. 3. (Color online) (a) Dependence of light emitted from �3 and �5 on incident and collected polarization for A0X → A0 relaxation in
resonant CW excitation. The dark green line shows the angle of excitation polarization, with horizontal x̂ corresponding to [100]. The polar
plots show the PL emitted at the corresponding collection polarization angle. The ideal theory curves depict the polarization dependence in
the absence of excited state relaxation. The theory curves give the angular PL dependence expected from the density matrix model fit to the
time-resolved data [Fig. 3(b)]. The data are PL collected from the |A0X,�n〉 → |A0,2s〉 transition while exciting the �3 or �5 line at x̂ or

1√
2
(x̂ − ŷ) = −45◦ polarizations (Fig. 1). All the data are normalized using the same constant. The normalization between the ideal curves and

the theory curves is arbitrary. T = 2.3 K. (b) The �3 and �5 PL as a function of time for polarizations x ∝ [100], y ∝ [010], 45◦ ∝ [110], and
−45◦ ∝ [11̄0] after an excitation pulse at t = 0. The lines are a simultaneous fit of the density matrix model to the 16 observed time dependent
PL curves. Best fit parameters are given in the text.

we calculate the relative PL intensity emitted into different
polarizations using Eq. (4).

This model gives a good fit to the observed time dependence
of A0X emission [Fig. 3(b), Appendix F]. The 16 curves in
Fig. 3(b) are fit simultaneously using 6 fit parameters: overall
spontaneous emission rate (1.48 ns−1), interlevel relaxation
(0.89 ns−1), intralevel �3 relaxation (3.6 ns−1), intralevel �5

relaxation (1.8 ns−1), temperature (4.7 K) and overall intensity
normalization (5100 counts). These relaxation rates are shown
schematically in Fig. 2. The resulting A0X radiative lifetimes
are To(1,3, 3

4 ) where To lies in the range 0.49 to 0.74 ns. A
detailed error analysis found the main source of uncertainty
in the spontaneous emission rate to be due to an ambiguity in
the choice of the background level (Appendix F). Since hole
spin flips are predicted to be much faster than electron spin
flips [16,17], we do not include electron spin flip processes in
the model (shown schematically in Fig. 2). Temperature was
included as a fit parameter because the effective temperature
for bound excitons can be larger than the bath temperature
[18].

Using the best fit model parameters from the time resolved
experiment, we are now able to predict the polarization
dependence of PL in resonant CW excitation in the presence
of spin relaxation. These curves are shown in Fig. 3(a) as
“theory,” and agree well with the experimental data.

VI. CONCLUSION

We presented a convenient and general formalism for
calculating the optical properties of k = 0 excitons in III-V
semiconductors with an arbitrary number of carriers. We used
this formalism to derive a model of the optical properties of

A0X in strain-free bulk GaAs which predicts three distinct ra-
diative lifetimes. The model was confirmed using polarization
and time-resolved experiments. The results are in contrast to
previous reports for this system and highlight the importance
of a unified treatment of all recombination pathways when
deriving the radiative properties of multicarrier excitons.
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APPENDIX A: DIPOLE OPERATOR

The vector dipole operator μ = er for transitions between
the conduction band and the heavy-hole or light-hole band in
a zinc-blende direct band gap semiconductor (e.g., GaAs, InP,
etc.) can be derived from the electron and hole basis functions.
We derive the dipole operator in second quantization, which
is convenient for calculating recombination rates for excitons
with more than two charge carriers.

The valence band angular momentum states arise from
coupling between p-like orbital states and the electron spin 1

2
[19]. These couple together to form total angular momentum
3
2 and 1

2 :

1 ⊗ 1
2 = 3

2 ⊕ 1
2 .
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The | 3
2 ,± 3

2 〉 states are known as heavy holes, | 3
2 ,± 1

2 〉 as light
holes, and | 1

2 ,± 1
2 〉 as split-off holes. Spin-orbit interaction

splits the j = 3
2 from the j = 1

2 states and typically the j = 1
2

split-off holes can be ignored in experiments.
Using angular momentum addition rules, the heavy hole

and light hole states are∣∣ 3
2

〉 = 1√
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|X − iY,↓〉 ,

∣∣ 1
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〉 = 1√
6
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3
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∣∣− 1
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〉 = − 1√
6

|X + iY,↓〉 +
√

2

3
|Z,↑〉 ,

∣∣− 3
2

〉 = − 1√
2

|X + iY,↑〉 ,

where X,Y,Z are electron orbital wave functions transforming
as x,y,z and ↑,↓ is the spin of the electron [2]. The hole angular
momentum state has the opposite sign of the corresponding
electron angular momentum. The conduction-band states are
|S,↑〉 and |S,↓〉 where S denotes a spherically symmetric pe-
riodic part of the Bloch wave function. In spherical symmetry
and for a k = 0 exciton, the coordinate system can be taken
to lie in an arbitrary direction. However, for an exciton with
nonzero momentum k, the coordinate system must be taken
with the z axis in the k direction, thus somewhat complicating
further analysis [2]. In what follows, we will restrict our
discussion to k = 0 excitations.

These basis functions can be used to calculate matrix
elements of the dipole operator μ. As an example, the dipole
matrix element for recombination of a spin down electron with
a + 3

2 heavy hole is〈
3
2

∣∣μ|S,↓〉 = e√
2

(〈X| + i〈Y |)r|S〉〈↓|↓〉

= e√
2

[〈X|x|S〉x̂ + i〈Y |y|S〉ŷ].

The ordering of the matrix element 〈f |V |i〉 reflects the
transition occurring, in this case an electron moving from the
conduction band to the valence band. In a bulk cubic crystal,
by symmetry the matrix elements

〈X| x |S〉 = 〈Y | y |S〉 = 〈Z| z |S〉 ≡ 1

e
μo

are all identical. Further simplifying, we find this transition
results in the production of right handed circularly polarized
light: 〈

3
2

∣∣μ|S,↓〉 = μo

x̂ + iŷ√
2

.

The same procedure can be used to find the other dipole matrix
elements.

We can now introduce creation operators (e†m) [8,20] for the
creation of an electron in the angular momentum state m and
some particular but unspecified spatial state. Because of the
antisymmetrization requirement, the creation and annihilation

3
2

hole
1
2 − 1

2 − 3
2

− 1
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3 ẑσ+

σ+√
3

σ−√
3

σ−
(
σ± = x̂±iŷ√

2

)

FIG. 4. (Color online) Dipole matrix elements for exciton recom-
bination [1]. The labeled arrows show the polarization of light emitted
upon recombination of the corresponding electron-hole pair.

operators satisfy anticommutation relations

{em,e†n} = δmn,

{e†m,e†n} = 0,

{em,en} = 0,

(A1)

where the anticommuator is defined as {a,b} = ab + ba. We
will also introduce creation operators for holes using h

†
m,k =

e−m,−k; i.e., the linear and angular momentum of the hole has
the opposite sign of the unfilled electron state [8]. Instead of
labeling the band index, we restrict hole creation/annihilation
operators to act in the valence band and electron operators
in the conduction band. For example, an exciton state can be
written as

|em1 ,hm2〉 = e†m1
h†

m2
|0〉 ,

where |0〉 is the semiconductor vacuum state with a filled
valence band and empty conduction band.

The dipole operator can be written in second quantization
as

μ =
∑
mn

μmnhmen + μ∗
mne

†
nh

†
m, (A2)

where we have restricted m to be in the valence band and n

to be in the conduction band, and μmn = 〈m| er |n〉 [8]. The
first term corresponds to exciton annihilation and the second to
exciton creation. Using the matrix elements calculated above,
the dipole operator for a conduction band electron recombining
with a heavy hole or light hole is

μ = μo

[
x̂ + iŷ√

2

(
h 3

2
e− 1

2
+ 1√

3
h 1

2
e 1

2

)

− x̂ − iŷ√
2

(
h− 3

2
e 1

2
+ 1√

3
h− 1

2
e− 1

2

)

+
√

2

3
ẑ
(
h− 1

2
e 1

2
+ h 1

2
e− 1

2

) + H.c.

]
. (A3)

Each term in the dipole operator [Eq. (A3)] conserves angular
momentum, i.e., the total electron and hole spin z projection
is transferred to the photon during recombination. The dipole
operator is shown schematically in Fig. 4.
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FIG. 5. Hole-hole coupling causes the j = 2 states to be split
from the j = 0 states. Crystal fields breaking spherical symmetry
and split �3 and �5. The degeneracy of the level is shown in the
bottom right corner.

APPENDIX B: BASIS STATES FOR A0X

The A0X consists of two holes and one electron. Hole-hole
coupling dominates, while the crystal fields split the levels
further [12]. From the two holes, there are four possible total
spin states: 3

2 ⊗ 3
2 = 0 ⊕ 1 ⊕ 2 ⊕ 3 [21]. The two holes in

A0X lie in a symmetric spatial state. On account of the Pauli
principle, the spin state must therefore be antisymmetric with
respect to interchange, resulting in only total spin 2 and 0 being
allowed.

We will use

h†
m1

h†
m2

|0〉 = 1√
2

(|m1,m2〉 − |m2,m1〉) (B1)

as shorthand for the creation of an antisymmetric state of
two holes [8]. Note that the ordering of the creation operators
matters, consistent with the commutation relations in Eq. (A1).
Using this notation, we can write the total angular momentum
states |j,m〉 for the coupling of the two holes as

|2,2〉 = h
†
3
2
h
†
1
2
|0〉 ,

|2,1〉 = h
†
3
2
h
†
− 1

2
|0〉 ,

|2,0〉 = 1√
2

(
h
†
3
2
h
†
− 3

2
+ h

†
1
2
h
†
− 1

2

) |0〉 ,

|2,−1〉 = h
†
1
2
h
†
− 3

2
|0〉 ,

|2,−2〉 = h
†
− 1

2
h
†
− 3

2
|0〉 ,

|0,0〉 = 1√
2

(
h
†
3
2
h
†
− 3

2
− h

†
1
2
h
†
− 1

2

) |0〉 .

In zinc-blende semiconductors, hole-hole coupling splits the
j = 2 and j = 0 states (Fig. 5).

In the presence of the crystal field with Td symmetry,
the states split into three different irreducible representations

[12,22,23] (Fig. 5):

∣∣�xy

5

〉 = 1√
2

(|2,2〉 − |2,−2〉) ,

∣∣�xz
5

〉 = 1√
2

(|2,1〉 + |2,−1〉) ,

∣∣�yz

5

〉 = 1√
2

(|2,1〉 − |2,−1〉) ,

∣∣�a
3

〉 = 1√
2

(|2,2〉 + |2,−2〉) ,∣∣�b
3

〉 = |2,0〉 ,∣∣�1
〉 = |0,0〉 .

In order to derive these basis states, it is necessary to choose a
coordinate system in which to write the symmetry operations
of the crystal. Since we chose to use axes aligned along
[100], [010], and [001], x̂, ŷ, and ẑ correspond to the three
crystallographic directions.

APPENDIX C: DIPOLE MATRIX ELEMENTS OF A0X

We use the dipole operator (A3) to calculate the dipole
matrix element between A0X and A0. To illustrate the method,
we will calculate the matrix element 〈 3

2 |μ|�xy

5 ↑〉 as an
example. First, we expand the matrix element and the dipole
operator

〈
3
2

∣∣μ∣∣�xy

5 ↑〉 = μo 〈0| h 3
2
·
[

x̂ + iŷ√
2

(
h 3

2
e− 1

2
+ 1√

3
h 1

2
e 1

2

)

− x̂ − iŷ√
2

(
h− 3

2
e 1

2
+ 1√

3
h− 1

2
e− 1

2

)

+
√

2

3
ẑ
(
h− 1

2
e 1

2
+ h 1

2
e− 1

2

)] ·

× 1√
2
e
†
1
2

(
h
†
3
2
h
†
1
2
− h

†
− 1

2
h
†
− 3

2

) |0〉 .

All terms with an electron annihilation operator e− 1
2

go to zero

because the electron in |�xy

5 ↑〉 is spin up. Using the fact that

e 1
2
e
†
1
2
|0〉 = |0〉, the expression becomes

〈
3
2

∣∣μ∣∣�xy

5 ↑〉 = 〈0| h 3
2

[
x̂ + iŷ√

6
h 1

2
− x̂ − iŷ√

2
h− 3

2

+
√

2

3
ẑh− 1

2

]
1√
2

(
h
†
3
2
h
†
1
2
− h

†
− 1

2
h
†
− 3

2

) |0〉 .

Using the fact that hm |0〉 = 0, and the commutation relations
in Eq. (A1), the dipole matrix element is

〈
3
2

∣∣μ ∣∣�xy

5 ↑〉 = − x̂ + iŷ

2
√

3
.

Repeating this calculation for each matrix element produces
the dipole matrix elements for the A0X-A0 system, given in
Table I.
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TABLE I. Normalized dipole matrix pij = 〈A0,i|μ|A0X,j〉 for the A0X-A0 system. x̂, ŷ, and ẑ are unit vectors oriented
along the crystallographic axes.

APPENDIX D: GENERALIZED WEISSKOPF-WIGNER
THEORY FOR SPONTANEOUS EMISSION FROM

MULTIPLE EXCITED LEVELS

The Wiesskopf-Wigner theory of spontaneous emission
[24–26] can be generalized to calculate the spontaneous
emission rate from a set of excited states to a set of ground
states. The excited and ground states are not necessarily
degenerate.

The wave function of the system is

|ψ(t)〉 =
∑

i

∑
k

cik(t) |g,i,k〉 +
∑

j

bj (t) |e,j 〉 , (D1)

where |g,i,k〉 is the state with the atom in ground state i and a
photon in mode k, polarization εσ (σ = 1,2), and |e,j 〉 is the
j th excited atomic state and no photon. The sum on k contains
an implicit sum over the two polarizations σ = 1,2.

In the interaction picture and rotating wave approximation,
the Hamiltonian governing the time evolution of the atom and
field is

V = �

∑
ij

∑
k

[
g

ij

k (ro)∗ |e,j 〉 〈g,i| ake
i(ωij −νk)t + H.c.

]
,

(D2)
where

g
ij

k (ro) = −pij · ε̂
�

√
�νk

2εV
,

pij = 〈g,i| μ |e,j 〉 are dipole matrix elements, ak is the anni-
hilation operator for a photon in mode k, ωij = (Ej − Ei)/�, ε̂
is the polarization of the photon, ω is the transition frequency,
νk = c|k|/n, ε is the material permittivity, n is the material
dielectric constant, c is the speed of light, and V is the
quantization volume [24].

The time evolution is given by the Schrödinger equation

d

dt
|ψ(t)〉 = − i

�
V |ψ(t)〉 .

This yields the coupled differential equations

ḃj (t) = −i
∑

i

∑
k

g
ij

k (ro)cik(t)e−i(ωij −νk)t ,

ċik(t) = −i
∑

j

g
ij

k (ro)∗bj (t)ei(ωij −νk)t .
(D3)

By formally solving the second equation and plugging into
the first, the time evolution of the excited state probability
amplitude satisfies

ḃj ′ (t) = −
∑
ij

∑
k

g
ij ′
k (ro)gij

k (ro)∗
∫ t

o

dt ′

× bj (t ′)e−i(ω−νk)(t−t ′)+iij t
′−iij ′ t , (D4)

where ij = ωij − ω and ω is some choice of natural
frequency for the system. Assuming the modes are closely
spaced in frequency, the sum over k may be converted to an
integral: ∑

k

→ 2
V

(2π )3

∫
d�

∫ ∞

0
dk k2.

By introducing the matrix

Sj ′j = 3

4π

∑
i

∫
d�(pij ′ · ε̂)∗(pij · ε̂) (D5)

and changing variables to integrate on νk = ck/n, the equation
of motion [Eq. (D4)] becomes

ḃj ′ (t) = − 1

6π2

n3

�εc3

∑
j

Sj ′j

∫ ∞

o

dνkν
3
k

∫ t

0
dt ′

× e−i(ω−νk)(t−t ′)ei(ij t
′−ij ′ t)bj (t ′).

Since the integral over t is only appreciable when ω ∼ νk,
ν3

k may be replaced with ω3 in the integrand and the lower
frequency limit may be replaced by −∞ [24,27]. Using the
delta function identity∫ ∞

−∞
dνke

−i(ω−νk)(t−t ′) = 2πδ(t − t ′)
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FIG. 6. (Color online) Time dependence of excited state population depending on detuning between two excited states that can interfere.
τ = 1 ns. For a detuning  much larger than the spontaneous emission rate 1/τ , the population of the two excited states decay independently.
When  = 0, the lifetimes are modified by interference of the two recombination pathways, and the system progresses towards a dark state.
The lifetimes of states in the absence of interference are 1 ns for both transitions. The initial wave function is |ψ〉 = 1

2 |1〉 +
√

3
2 |2〉. (a) At

intermediate  = 5 rad/ns, some interference is seen in the emission, oscillating around the behavior expected for two independent subsystems.
(b) When the transitions are nearly resonant, the emission follows the behavior for degenerate excited states.

and ∫ t

0
dt ′δ(t − t ′)f (t ′) = 1

2
f (t),

we arrive at the differential equations in the desired form:

ḃj ′ (t) = −α

2

∑
j

Sj ′j bj (t)eijj ′ t , α = 1

4πε

4ω3n3

3�c3
. (D6)

The matrix Sj ′j can be computed from pij in a simple way.
Using the parametrization

ε̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ

for the polarization, the integrand (D5) contains a sum of
integrals of the form

Inm =
∫

d�(x̂n · ε̂)(x̂m · ε̂),

where x̂n is a unit vector. Performing the angular integrals, this
becomes

Inm = 4π

3
δnm.

Thus we arrive at a convenient shorthand for computing Sj ′j
given the dipole matrix:

Sj ′j =
∑

i

p∗
ij ′ ·pij ,

where the dot product is evaluated using x̂n · x̂m = δnm. This
shows the angular integral can be replaced with a simple dot
product.

In matrix language, the differential equation governing
excited state probability amplitudes for degenerate excited
states is

db
dt

= −α

2
Sb, S = p†·p.

By choosing a basis for the excited states in which S is
diagonal, the decay of each state is uncoupled from the others.
Thus we see that the eigenstates of αS decay independently at
spontaneous emission rates equal to the eigenvalues of αS.

This method can be used to compare spontaneous emission
rates between different manifolds of excited states. If the
states are split in energy by a large amount compared to the
radiative lifetime, the fast oscillating term in Eq. (D6) will
result in nondegenerate excited states becoming uncoupled.
As an example, we solved Eq. (D6) for two excited states and
one ground state, whose lifetimes can be modified if the excited
levels are degenerate. The differential equations governing the
excited state probability amplitudes are

d

dt

(
b1

b2

)
= − 1

2τ

(
1 eit

e−it 1

) (
b1

b2

)
.

The solution is plotted in Fig. 6 for τ = 1 ns and various
detunings . If the transitions are well resolved, the time
dependence of the system follows that of two independent
subsystems [Fig. 6(a)]. On the other hand, if there is significant
overlap between the Lorentzian line shapes, interference
effects modify the radiative lifetime. In this toy model,
near-degeneracy results in the existence of a dark state and
long lived excited state population [Fig. 6(b)].

Therefore, to find the spontaneous emission rates for
different nondegenerate sets of states, it is only necessary
to calculate the eigenvalues of S within each degenerate
subspace. When comparing eigenrates between nondegenerate
manifolds, the existence of ω3 in the pre-factor α modifies the
lifetimes. For excited state splittings of 10s of GHz (as for
A0X) at optical frequencies, this leads to a correction of a part
in 104, which can often be neglected.

165204-8



RADIATIVE PROPERTIES OF MULTICARRIER BOUND . . . PHYSICAL REVIEW B 91, 165204 (2015)

APPENDIX E: DENSITY MATRIX MODEL

The time evolution of the excited state density matrix ρ is
described by

dρ

dt
= 1

i�
[Ho,ρ] − 1

2
{ρ,αp†·p} + L(ρ), (E1)

where Ho is a diagonal matrix of the excited state energies, p is
the dipole matrix with elements pij = 〈g,i| μ |e,j 〉 and L(ρ)
is the Linbladian operator. The first term describes unitary
evolution, the second term spontaneous emission and the third
excited state relaxation and decoherence. In this section, we
describe the construction of this model.

A population transfer out of the system is mathematically
identical to the spontaneous emission process in the excited
state subspace. Population reduction can be accomplished
mathematically using an anticommutator {A,B} = AB + BA

[24]. The spontaneous emission process is characterized by
the decay of diagonal density matrix terms in the basis of the
spontaneous emission eigenstates:(

dρ

dt

)
radiative

= −1

2

∑
j

{ρ,γj |φj 〉〈φj |}, (E2)

where γj and |φj 〉 are the spontaneous emission eigenvalues
and eigenstates of αS. Using the fact that any operator is
diagonal in the basis of it’s eigenvectors, this becomes(

dρ

dt

)
radiative

= −α

2
{ρ,S} ,

Numerically, it is an advantage to include spontaneous emis-
sion in this way as the ground states do not need to be included
in the density matrix. For A0X, the excited state density matrix
has 56 differential equations (ignoring off diagonal terms be-
tween nondegenerate excited states), whereas a treatment using
the full density matrix including ground states would have 120.

Phenomenological relaxation between the excited states is
included as a population transfer and decoherence. The excited
state relaxation rate Rij from state i to j arises from coupling
between the spins and their environment. This model includes
an intralevel relaxation rate between states in a degenerate
manifold, and an interlevel rate between different manifolds.
For i and j in different manifolds, the rates are modulated by
the energy difference between the initial and final states:

Rij ∝ Roe
− (Ei−Ej )

2kB T ,

where Ro is the interlevel relaxation rate. This correctly
reproduces the fact that in equilibrium the ratio of populations
in different states is given by a Boltzmann factor. Many of the
rates Rij from states in the same irreducible representation
�n can be shown to be the same by symmetry. For the
purposes of this model, we assumed that all states within
a given irreducible representation �n have the same
phenomenological relaxation rate.

Phenomenological relaxation affects both the on- and
off-diagonal elements of the density matrix. The total rate
of population leaving (Li) or entering (Ei) state i is

Li = ρii

∑
j

Rij , Ei =
∑

j

ρjjRji .

This population relaxation also causes a decay of the off-
diagonal terms in the density matrix. This can be accomplished
with the anticommutator

L(ρ) = −1

2

∑
j

(Liδijρjk + ρijLj δjk) + Eiδik, (E3)

where the second term enforces conservation of excited state
population.

APPENDIX F: FIT OF TIME RESOLVED DATA TO MODEL

We numerically integrated the equation of motion Eq. (E1)
to find the excited state density matrix as a function of time
ρ(t). In the case that �n is excited with polarization ε̂i, the
initial density matrix in the �n subspace is

ρ(�n)
e (t = 0) = M (�n)†

εi
M (�n)

εi
, (F1)

where M (�n)
εi

= p(�n) · ε̂i and all other terms of the density
matrix are zero. From the solution of the density matrix as a
function of time ρe(t), the PL emitted from �n at polarization
ε̂f as a function of time is

PL(�n)(t) = tr
(
M (�n)

εf
ρ(�n)

e (t)M (�n)†
nεf

)
. (F2)

These PL curves predict the time dependence of A0X emission
under different excitation conditions.

The model was fit to the data using a weighted least-squares
residual due to the Poisson distributed nature of photon
counting data [28]. Temperature was included as a fit parameter
because in individual fits with T = 1.9 K, the best fit �3 → �5

relaxation rate depended on the excitation state. This implies
that the effective exciton temperature was higher than 1.9 K,
consistent with experiments on free excitons in GaAs where
the effective temperature of free excitons was found to be
somewhat higher than that of the bath [18].

We tested modifying the relaxation rate matrix Rij so that
electron spin flips can occur. In this case, the model also fits the
data with different rates of interstate relaxation: interlevel re-
laxation (0.45 ns−1), intralevel �3 relaxation (1.2 ns−1), and in-
tralevel �5 relaxation (0.71 ns−1). Because we obtain good fits
with either electron spin flips allowed or disallowed, the exper-
iment is not sensitive to the rate of electron spin flips. However,
the best fit spontaneous emission rate constant was the same
1.48 ns−1 regardless of whether electron spin flips are allowed.

In order to estimate the uncertainty in the measured
spontaneous emission rate, we characterized the uncertainty
due to random Poisson noise in the measurement data as well
as systematic error due to the uncertainty in model parameters
(e.g., pulse arrival time, background level). The largest
uncertainty in measured spontaneous emission rate arises from
the uncertainty of background level (Table II). The raw data

TABLE II. Summary of uncertainties in measurement of the
spontaneous emission rate.

Effect Uncert. (±) in Spon. Emission

Background level 0.26 ns−1

Data cutoff 0.15 ns−1

Poisson noise 0.0082 ns−1

5% laser power fluctuations 0.0047 ns−1
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FIG. 7. (Color online) (a) Raw data before binning used for time-resolved experiment. Before the pulse arrives, the mean background level
is 2.5 ± 0.6 counts. At the end of the trace at 2 ns, the mean level is 29 ± 6, which is somewhat higher than the theory would predict. (b) and
(c) Best fit spontaneous emission rate as a function of background level in the model. The best fit background value lies in between the limits
chosen by inspection in (a). These limits are used to find the uncertainty in the spontaneous emission rate due to the background level.

shown in Fig. 7 shows that there is a long lived emission above
the background. This long lived emission may indicate some
long lived state, e.g., exciton hopping into a metastable state
and subsequent slow repopulation. Due to the uncertainty of
the true background value, the A0X best fit parameters acquire
some uncertainty. Choosing a higher background level results
in a faster best fit spontaneous emission rate, as the effective
curvature of the decay becomes greater (Fig. 7). We take the
confidence interval of the background level to be 0 to 30,
this produces an uncertainty in spontaneous emission rate of
±0.26 ns−1 (Fig. 7). Another way to estimate this uncertainty
would be to incorporate a metastable excitonic level in the
model. Because this introduces the danger of overfitting the
model with too many adjustable parameters, we used the
background level as a proxy for the uncertainty introduced
by possible metastable states.

Next, we investigated whether changing the maximum
number of data points collected (1–2 ns) modified the best
fit spontaneous emission rate. In fitting the data, there is a
somewhat arbitrary choice of when additional data points at
longer times no longer improve the fit. Within reasonable
choices of the data time cutoff of 1–2 ns, we found that the best
fit spontaneous emission rate changed from 1.36 to 1.66 ns−1.
This level of uncertainty is lower than that present from the
unknown background level.

Next, we used a Monte Carlo simulation to determine
the uncertainty in spontaneous emission rate due to Poisson
noise. The raw data were used as the mean for new Poisson-
distributed data sets. The model was fit to the new random
data sets using the same weighted least-squares algorithm.
The standard deviation of the resultant spontaneous emission
rates is 0.0082 ns−1.

Monte Carlo simulations were also employed to calculate
the uncertainty due to laser power fluctuations between
experimental runs. The photon counting data were modulated
by random 5% power fluctuations and passed through the least
squares algorithm. We found the standard deviation of best fit

spontaneous emission rates to be 0.0047 ns−1 due to power
fluctuations of the laser. These simulations demonstrate that
the measurement is robust against Poisson noise and laser
power fluctuations.

In summary, we have found that the spontaneous emission
rate for A0X lies within the range 1.36 to 2.03 ns−1. This cor-
responds to a lifetime constant in the range of 0.49 to 0.74 ns.

APPENDIX G: POLARIZATION OF PL TO DETERMINE
DOMINANT COUPLING IN A0X

While the splitting of the A0X states into three sets of states
is now understood, it was at one point a subject of debate. Two
theories, the j − j coupling scheme (JJCS) and the crystal-
field scheme (CFS) can be used to explain some of the optical
properties of A0X [12,13]. In both schemes, hole-hole coupling
first rearranges the two j = 3

2 hole states into j = 0 and j = 2
manifolds. In the JJCS, electron-hole coupling further splits
the A0X states, resulting in j = 1

2 (arising from j = 0) and 3
2 ,

5
2 (from j = 2). On the other hand, in the CFS, GaAs crystal
fields split the A0X states into �1 (j = 0) and �3,�5 (j = 2).

In previous studies, the stress dependence of A0X →
A0 emission was used to determine that only the CFS
adequately describes the A0X [12,13]. Low temperature stress
dependencies are challenging experiments, requiring the use of
special equipment. In this section, we demonstrate that simple
polarization measurements can also distinguish between the
JJCS and CFS.

In order to predict the polarization dependence of A0X in
the JJCS, we first calculate the dipole matrix elements using
the JJCS basis states by the procedure in Sec. C. The dipole
matrix elements are given in Table III.

We will now calculate the polarization dependence of the
PL intensity in the case of no excited state relaxation for �3

(CFS). When A0X absorbs a photon resonant with the �3
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TABLE III. Normalized dipole matrix (pij )JJCS = 〈A0,i|μ|A0X,j〉 for the A0X-A0 system in the (incorrect) JJCS. x̂,
ŷ, and ẑ are unit vectors oriented along the crystallographic axes.

transition, the excited state density matrix is proportional to

ρ(�3)
e = M (�3)†

εi
ρ0M

(�3)
εi

, (G1)

where ρ0 = 1
4I is the ground-state density matrix before

excitation and M�3,εi = p(�3) · ε̂i are the dipole matrix elements
given in Table I evaluated with the polarization εi = cos φix̂ +
sin φiŷ in the x-y plane. After absorption, the part of the excited
state density matrix corresponding to �3 is

ρ(�3)
e =

⎛
⎜⎜⎜⎜⎜⎝

1
12 0 − i sin(2φi)

8
√

3
0

0 1
12 0 − i sin(2φi)

8
√

3
i sin(2φi)

8
√

3
0 1

12 0

0 − i sin(2φi)
8
√

3
0 1

12

⎞
⎟⎟⎟⎟⎟⎠

with all other excited state density matrix elements equal to
zero. (Here we are working in the crystal field scheme basis.)
To find the amount of PL emitted with linear polarization

FIG. 8. (Color online) Comparison of polarization dependence
of photoluminescence for the JJCS and CFS. Qualitatively different
behavior is observed when exciting �3 y or 3

2 y. This difference can
be used to determine the validity of the CFS for describing A0X.

εf = cos φfx̂ + sin φfŷ, we evaluate

PL(�3) = tr
(
M (�3)

εf
ρe M (�3)†

εf

)
.

Simplifying, and repeating this procedure for �1 and �5, the
angular dependence of polarization in the case of no excited
relaxation is

PL(�5) = Io

18
[5 + 4 cos(2φi) cos(2φf) + sin(2φi) sin(2φf)],

PL(�3) = Io

36
[4 + 3 sin(2φi) sin(2φf)] ,

PL(�1) = Io

18
.
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FIG. 9. (Color online) Photoluminescence excitation spectr-
oscopy of A0X. The method of mounting the sample introduces
strain, which splits the heavy-hole and light-hole ground states. A
linear offset due to donor acceptor pair emission was subtracted for
clarity. The curve was fit to a sum of five Voigt functions.
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On the other hand, if the JJCS dipole operator (Table III) is
used, the PL from the three manifolds is

PL(5/2) = Io

[
1

36
+ 1

75
cos(2φf − 2φi)

]
,

PL(3/2) = Io

[
533

5760
+ 4

75
cos(2φf − 2φi)

]
,

PL(1/2) = Io

169

4608
.

The two coupling schemes show qualitatively different angular
polarization dependences, shown in Fig. 8. By comparing with
the experimental data shown in Fig. 3(a), we conclude that only
the CFS adequately describes the angular dependence of A0X
photoemission.

APPENDIX H: PHOTOLUMINESCENCE EXCITATION
SPECTROSCOPY OF A0X

The A0X system is a remarkably homogeneous excitonic
system. To investigate the inhomogeneous broadening of

the A0X system, we perform photoluminescence excitation
(PLE) spectroscopy on a p-type GaAs sample mounted in
a cold-finger cryostat at 4.2 K. The method of mounting the
sample introduced some strain into the sample, which splits
the heavy-hole (HH) and light-hole (LH) states. A narrow band
(<10 neV) continuous-wave laser is scanned over the A0-1s

to A0X transition while monitoring PL from A0X to A0-2s

(Fig. 9).
We fit the PLE lines to a sum of five Voigt functions, the

convolution of a Lorentzian and a Gaussian. The Lorentzian
width is due to homogeneous effects while the Gaussian
width arises from inhomogeneous broadening. In the fit, the
inhomogeneous broadening is the same for all peaks. The best
fit Lorentzian full width at half maximum is (39 ± 2) μeV
for �3-HH, (43 ± 2) μeV for �3-LH, (29 ± 2) μeV for �5-
HH, (33 ± 1) μeV for �5-LH, and (170 ± 7) μeV for �1.
The inhomogeneous broadening full width at half maximum
was (19 ± 1) μeV. Thus we find that A0X is a remarkably
homogeneous excitonic system.
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