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Effect of the Pauli principle on photoelectron spin transport in p+ GaAs
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In p+ GaAs thin films, the effect of photoelectron degeneracy on spin transport is investigated theoretically
and experimentally by imaging the spin polarization profile as a function of distance from a tightly focused
light excitation spot. Under degeneracy of the electron gas (high concentration, low temperature), a dip at the
center of the polarization profile appears with a polarization maximum at a distance of about 2 μm from the
center. This counterintuitive result reveals that photoelectron diffusion depends on spin, as a direct consequence
of the Pauli principle. This causes a concentration dependence of the spin stiffness while the spin dependence
of the mobility is found to be weak in doped material. The various effects which can modify spin transport in a
degenerate electron gas under local laser excitation are considered. A comparison of the data with a numerical
solution of the coupled diffusion equations reveals that ambipolar coupling with holes increases the steady-state
photoelectron density at the excitation spot and therefore the amplitude of the degeneracy-induced polarization
dip. Thermoelectric currents are predicted to depend on spin under degeneracy (spin Soret currents), but these
currents are negligible except at very high excitation power where they play a relatively small role. Coulomb spin
drag and band-gap renormalization are negligible due to electrostatic screening by the hole gas.
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I. INTRODUCTION

Recently, a number of novel phenomena occurring dur-
ing spin-dependent transport in semiconductors have been
reported, including the spin Hall effect [1], the inverse spin
Hall effect [2], the spin Coulomb drag effect [3], and the
spin helix [4]. These phenomena are of interest in and of
themselves and also because they may affect the operation of
a large number of proposed semiconductor spintronic devices
[1,5–7]. Experimental investigations including the use of novel
techniques such as spin gratings [8] or spin noise [9] reveal
that these phenomena arise from one of two possible coupling
mechanisms, either spin-charge or spin-spin couplings. In the
former, the spin-orbit interaction plays a central role and gives
rise to the extrinsic spin Hall effect and the spin helix, as well
as providing the basis for the electrical manipulation of spin
[10–12]. Spin-spin coupling, on the other hand, results in spin
Coulomb drag [3] and a spin-dependent density of states via
band-gap renormalization [13]. Recently a new spin-charge
coupling phenomenon resulting from Pauli blockade in a
degenerate electron gas was revealed [14], resulting in a spin
dependence of the diffusion constant as large as 50%. Pauli
blockade had been implicitly included in some theoretical
treatments of spin-polarized electron transport [13,15,16],
but had not yet been explicitly detailed or experimentally
demonstrated. It is of importance since it will naturally modify
all other coupling phenomena in the degenerate limit.

Here, we present a theoretical and experimental investiga-
tion of the effect of degeneracy on spin transport in p+ GaAs
using a polarized microluminescence method in which the spin
polarization is measured as a function of distance from a local,
diffraction-limited excitation spot [17–19]. This study reveals
that the dominant effect of degeneracy is the spin dependence
of diffusion. Ambipolar coupling to the photocreated hole
distribution is of central importance for the observation of

the effects since it acts to locally increase the electron
density near the excitation spot and therefore to increase
the degree of degeneracy. A detailed theoretical analysis
allows us to predict two other spin-dependent transport effects
induced by degeneracy. These effects are (i) spin-dependent
thermoelectric currents (spin-Soret effect) [20] caused by the
radial temperature gradients, and (ii) spin dependence of the
mobility, which is strongly decreased by hole screening of the
electron collisions with charged impurities in the p+ material
considered here. These two effects are shown, using an exten-
sive sample characterization, to be negligible here and their
demonstration requires specific experimental configurations
and doping levels. Coulomb spin drag and spin-dependent
band-gap renormalization effects are also negligible because
of electrostatic screening by the majority holes. Finally, it is
shown that the usual spin-grating technique [8] is not adapted
to the observation of Pauli blockade coupling phenomena since
only spin concentration gradients are created whereas both spin
and charge concentration gradients are necessary.

The structure of the paper is as follows. The experimental
section (Sec. II) contains a description of the method, a presen-
tation of the results, and a semiquantitative interpretation. The
theory presented in Sec. III considers spin transport in a semi-
conductor under local light excitation, for which the charge and
spin densities, as well as the temperature, vary as a function
of space. Section IV describes the relative efficiencies of the
various possible mechanisms for spin transport, while the
quantitative interpretation of the results is presented in Sec. V.

II. EXPERIMENTAL

A. Method

For the experimental investigation of charge and spin
diffusion, we have used p+ GaAs films of thickness d = 3 μm,
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FIG. 1. (Color online) Top panel: Principle of the experiment on
p+ GaAs passivated at the bottom surface by a thin GaInP layer, with
a naturally oxidized front surface. The circularly polarized laser is
tightly focused (Gaussian radius 0.45 μm) on the GaAs film and the
spatial distribution of the luminescence sum signal [Eq. (1), image a]
and difference signal [Eq. (2), image b] is imaged using a modified
commercial microscope. The ratio of the two profiles, not shown
here, gives the spin polarization profile [Eq. (3)]. The figure shows
angular-integrated cross sections of the laser beam profile and of
the above images, shifted vertically for clarity, fitted with numerical
solutions of the diffusion equations [Eq. (4) and Eq. (5)], which yield
estimates of the effective diffusion lengths Leff

e and Leff
s .

grown on a GaAs semi-insulating substrate with, as shown in
the top panel of Fig. 1, a thin GaInP back layer to confine
the photoelectrons and to ensure a negligible recombination
velocity S ′ = 0 at the bottom GaAs surface. The top surface
is naturally oxidized.

The principle of the experimental technique is shown in
Fig. 1 and has been presented in more detail elsewhere
[17]. Circularly polarized light excitation at 1.59 eV is
focused to a Gaussian spot of half width ω = 0.6 μm. The
photoluminescence (PL) of the sample only comes from
the layer since emission of the semi-insulating substrate is
negligible. One measures the PL intensity profile for which
the cross section as a function of radial distance r from the
excitation spot is related to the electronic concentration n(r,z)
by

Is(r) = A

∫ d

0
n(r,z) exp[−αlz]dz, (1)

where A is a proportionality constant and αl ≈ (3 μm)−1 is
the absorption coefficient at the luminescence energy [21].

For a circularly polarized excitation, one also measures the
profile of the difference between the σ+- and σ−-polarized
components of the luminescence. Its cross section is related to
the spin density s = n+ − n− where n± are the concentrations
of electrons of spin ±, taking the z axis for quantization of the
electronic spins, and is given by

Id (r) = −A

∫ d

0
s(r,z) exp[−αlz]dz. (2)

Finally, the profile of the electronic spin polarization P(r) =
s/n is given by

Id (r)/Is(r) = P(r)Pi , (3)

where Pi = (g+ − g−)/(g+ + g−) such that g± is the spatially
dependent rate of creation of electrons of spin ±. The quantity
g± depends on the matrix elements of the allowed optical
transitions and is equal to ±0.5 for σ∓ light excitation [22].

The densities n(r,z) and s(r,z) are, respectively, solutions
of the continuity equations

(g+ + g−) − n/τ + 1

q
�∇ · ( �Jc) = 0, (4)

(g+ − g−) − s/τs + 1

q
�∇ · ( �Js) = 0. (5)

Here q is the absolute value of the electronic charge,
1/τ = Kr (NA + δp), and 1/τs = 1/τ + 1/T1, where NA is
the acceptor density, δp is the density of photocreated holes,
and Kr is the bimolecular recombination coefficient. Since the
spin relaxation time T1 is long with respect to the various times
which characterize spin transport, one considers separately the
currents �J+ and �J− of + and − spins so that, in a simple picture
at low density, �Jc = �J+ + �J− = qD �∇n and �Js = �J+ − �J− =
qDs

�∇s, where D and Ds are the charge and spin diffusion
constants. These equations are solved by imposing (i) electron
currents at the front (z = 0) and back surface (z = d) that
are equal to qSn(0) and −qS ′n(d), respectively. Here S and
S ′ are the corresponding recombination velocities. (ii) Spin
currents equal to qSs(0) and −qS ′s(d), respectively. One can
then define an effective lifetime τeff which takes into account
bulk and surface recombination and an effective spin lifetime
τseff such that 1/τseff = 1/τeff + 1/T1 [19]. Charge and spin
effective diffusion lengths are defined as Leff

e = √
Dτeff and

Leff
s = √

Dsτseff .
Figure 1 also shows the sum and difference images at 15 K at

a very low excitation power of 1.5 μW, as well as their angular-
integrated cross sections. As seen from the cross section of the
laser profile, the sum and difference signals are observed well
beyond the laser spot, and reveal charge and spin diffusion of
photoelectrons after creation, respectively. Analysis of these
profiles, using Eq. (1), Eq. (2), Eq. (4), and Eq. (5), gives
Leff

e = 1.42 μm and Lseff
s = 1.25 μm at T = 15 K and shows

that the spin relaxation time, T1, is larger than the electron
lifetime.

B. Sample characterization

Hall effect measurements on an identical contacted sam-
ple [23] have shown that, at T = 15 K, as in agreement
with independent studies [24], the concentration of ionized

165203-2



EFFECT OF THE PAULI PRINCIPLE ON . . . PHYSICAL REVIEW B 91, 165203 (2015)

acceptors is N−
A ≈ 1018 cm−3, close to its value at 300 K.

The hole mobility is 200 cm2/V s. On the same contacted
sample, the electron mobility was measured as a function
of Te by monitoring the change of the luminescence profile
induced by application of an electric field [25]. One finds
μe = 8800 cm2/V s at Te = 50 K and μe = 5800 cm2/V s at
Te = 75 K. Using Einstein’s relation at low power, this gives
D0 ≈ 37 cm2/s.

Time-resolved polarized luminescence measurements as a
function of Te were also performed in the same GaAs sample
[26]. At Te = 50 K, one finds τeff ≈ 335 ps and T1 ≈ 1125 ps.
While at r = 0, T1 can be smaller than the latter value, its value
would still be much larger than the diffusion time [Eq. (7)], so
that its possible decrease will very weakly affect the electronic
polarization. As a result, T1 ≈ 1125 ps was taken in all cases.
For this relatively large acceptor doping and low temperature,
there is no doubt that the dominant mechanism for electronic
spin relaxation is the Bir-Aronov-Pikus one, originating from
exchange interaction with holes [27].

C. Experimental investigation of spin transport

1. Polarization profiles as a function of power

Panel (a) of Fig. 2 shows the profiles of the electronic
polarization P , at T = 15 K for increasing excitation powers,
as obtained using Eq. (3) (the other panels are calculations
to be explained in Sec. IV below). Curve a, taken at the same
low power as Fig. 1, reveals the expected polarization decrease
caused by spin-lattice relaxation during transport [17]. Note
that the low-power electronic polarization at r = 0, P lp(0) =
45% is almost equal to the initial polarization Pi . Since as
will be shown below the spin relaxation time of thermalized
electrons is much larger than their lifetime at the excitation

spot, the slight difference is attributed to spin-lattice relaxation
during thermalization. As a result, in Eq. (4) and Eq. (5), g+
and g− must be replaced by g∗

+ and g∗
−, respectively, such that

g∗
+(0)/g∗

−(0) = [1 + P lp(0)]/[1 − P lp(0)].
As the power is increased, a polarization dip at r = 0

progressively appears. At 2.5 mW, the polarization at r = 0
is 28%, while at r ≈ 2 μm, it is 42%, slightly larger than
its low-power value at the same distance from the excitation
spot. If the power is further increased, the profiles, not shown
here, exhibit an overall decrease of the polarization because of
heating of the electron gas by the laser.

In agreement with the dependencies of the polarization dip
as a function of excitation power and temperature, it has been
shown [14] that this effect occurs because of Pauli blockade in
the degenerate photoelectron gas, i.e., when either one or both
of n+ and n− become larger than the spin-resolved effective
density of states in the conduction band Ns

c , given by

Ns
c = (1/2)N0

c (Te/300)3/2, (6)

where N0
c = 4.7 × 1017 cm−3 and Te is the temperature of the

electron gas. In this case, the diffusion constant is larger for
majority spin electrons (D+) than for minority spin electrons
(D−). The more efficient removal by diffusion away from
r = 0 induces a depletion of majority electrons at r = 0, with
a relative accumulation at some distance away from r = 0.
This effect is illustrated in the inset of Fig. 2(a) which shows
the spatial dependencies of n+ and n−. In this framework, the
ratio of D+/D− can be estimated by considering a simple two-
dimensional picture, where the concentrations n± are replaced
by their averages 〈n±〉 over z, and by writing that the diffusion
time out of the excitation spot is, within numerical factors of
order unity, given by

τ 0
eff(〈n±〉) ≈ ω2/4D±, (7)

FIG. 2. (Color online) Panel (a) shows the experimental polarization profiles at T = 15 K as a function of excitation power: 28 μW (filled
circles), 1 mW (filled squares), 1.9 mW (filled diamonds), 2.5 mW (filled triangles). The inset of panel (a) interprets the formation of a
polarization dip, as caused by the larger diffusion length of majority electrons, which induces a depletion of these electrons at r = 0. Panel
(b) shows the corresponding calculated profiles including all effects which modify spin transport. Panel (c) shows the image of the calculated
spatial distribution of the polarization for an excitation power of 2.5 mW. With respect to panel (b), the profiles of panel (d) do not consider
ambipolar diffusion, those of panel (e) do not consider thermoelectric currents, and those of panel (f) neglect both ambipolar diffusion and
temperature gradients and thus illustrate the conditions of spin-grating experiments.
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and is of the order of several ps, that is, shorter than
characteristic times for recombination and spin relaxation.
Considering that diffusion is the dominant process for removal
of electrons from the excitation spot, the spin concentrations
at r = 0 are given by

〈n±〉 ≈ g∗
±(0)τ 0

eff(〈n±〉). (8)

One then obtains the following very simple result, in which
the poorly known numerical factors of Eq. (8) are eliminated:

D+/D− = 1 + P lp(0)

1 − P lp(0)
× 1 − P(0)

1 + P(0)
. (9)

At high power, we find D+/D− ≈ 1.49 implying that
degeneracy causes a significant spin dependence of the
diffusion constant. Writing to first order

D± = D∗[1 ± δP], (10)

where the expressions for D∗ and δ will be given below, one
finds δ = 0.65.

2. Spin-dependent charge diffusion

The effective charge diffusion constant, defined as 〈D〉 =
(1/n)

∑
i niDi , is found using Eq. (10) and given by

〈D〉 = D∗[1 + δP2], (11)

which implies that the sum profile under degeneracy depends
on spin via a second-order effect. In order to show such effect,
the sum profiles Iσ for a circularly polarized (σ ) excitation
were compared with the profiles Iπ for a linearly polarized
excitation (π , so that P = 0), keeping the excitation power
constant to within 0.1%. Figure 3 shows the relative difference
of these profiles at T = 15 K for different power densities. At
low power (curve d), the signal is zero within experimental

FIG. 3. (Color online) Relative difference between the lumines-
cence intensity profiles obtained under circularly polarized excitation
(σ ) and under linearly polarized excitation (π ), for different excitation
powers, (a) 2.3 mW, (b) 0.9 mW, (c) 0.4 mW, and (d) 65 nW. For
each excitation power, the only difference is the polarization of the
photoelectron gas. A difference of the order of 2.5% between both
intensity profiles is observed at high power at r = 0, revealing the
spin-dependent diffusion of photoelectrons.

uncertainty, showing that charge transport in nondegenerate
conditions does not depend on spin. In contrast, when the
excitation power is increased, there progressively appears
a depletion of photoelectrons at r = 0. This depletion, of
the order of 2.5%, is compensated by a converse excess of
photoelectrons at a distance larger than about 1.5 μm. This
shows that the diffusion constant of spin-polarized electrons
is larger than for spin-unpolarized electrons created by π

excitation.
Using Eq. (11), the spin dependence of the charge concen-

tration at r = 0 is given by

〈nσ 〉 − 〈nπ 〉
〈nσ 〉 + 〈nπ 〉 = 〈Dπ 〉 − 〈Dσ 〉

〈Dπ 〉 + 〈Dσ 〉 = − δP2

2 + δP2
, (12)

from which we obtain, in agreement with the preceding
subsection, δ = 0.58.

3. Polarization profiles as a function of excitation
light polarization

In order to investigate the dependence of the effect of
Pauli blockade on electronic polarization, the helicity of the
excitation light is changed in order to change Pi . Panel (a) of
Fig. 4 shows the corresponding polarization profiles at 2.5 mW.
These profiles show that the dip at r = 0 indeed decreases with
decreasing Pi without, as shown in panel (b), any significant
modification of the overall polarization profile. As shown in
panel (c), the electronic polarization at r = 0 is proportional to
Pi . This behavior is in agreement with the predictions made
using Eq. (9) and Eq. (10), according to which, to first order in
P , one has P(0) = P lp(0)/(1 + δ). From the slope of this
behavior, one finds δ = 0.45, in qualitative agreement with the
value of the preceding subsection.

4. Kinetic energy effects

The luminescence and polarization spectra can be mon-
itored as a function of r by using a scanned multimode

FIG. 4. (Color online) Panel (a) shows the polarization profiles
for decreasing values of the initial polarization |Pi | and panel (b)
shows the same curves normalized to the polarization maximum near
2 μm. As shown in panel (c), the electronic polarization at r = 0
is proportional to Pi , thus revealing that the ratio D+/D− depends
linearly on electronic polarization.
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FIG. 5. (Color online) Dependence of spin polarization on ki-
netic energy. Curve a and curve b show the spatially resolved
polarization spectrum at r = 0 and at 15 K for a power of 28 μW
and 2.5 mW, respectively. Curve c shows for comparison the intensity
spectrum at 2.5 mW at the place of excitation. Comparison between
curves a and b shows that the Pauli blockade effect is smaller for hot
electrons.

optical fiber that captures PL over a spot size of 0.9 μm.
The fiber is then coupled to a spectrometer to yield a local
spectrum like those shown in Fig. 5. The fact that the
luminescence lies at an energy smaller than the GaAs band
gap (1.519 eV at this temperature) has been interpreted as
due to band-gap renormalization caused by the free hole
population (Refs. [28,29]). In nondegenerate conditions (curve
a), the polarization does not depend on light energy and is
consistent with the electronic polarization at r = 0 in panel (a)
of Fig. 2. As expected, in degenerate conditions (curve b), the
overall polarization is weaker than for curve a because of the
spin-dependent transport effects discussed above. However,
this polarization decrease is mostly observed on the low-energy
side of the spectrum, while for energies above 1.52 eV, the two
spectra almost coincide. It is concluded that the spin filter effect
decreases with increasing kinetic energy in the conduction
band.

As suggested in Ref. [30] in the case of [110] quantum
wells, it is tempting to conclude that the depolarization of
thermalized electrons at r = 0 rather arises from an increased
efficiency of the local spin relaxation processes, caused by
the larger hole concentration or by the increased temperature.
This hypothesis cannot explain the results for three main
reasons: (i) Such polarization loss can only concern electrons
localized in potential fluctuations, since diffusive electrons
will transmit their depolarization after diffusion. However,
localized electrons only appear at lattice temperatures smaller
than 10 K and are absent at the present higher temperature [26].
(ii) Since the effective lifetime at r = 0 is ω2/4D ≈ 10 ps,
the polarization decrease would require an extremely strong,
unphysical, decrease of T1 from its value of 1125 ps at low
power [26]. (iii) Since an increased spin relaxation at r = 0
does not affect the charge, the present hypothesis cannot
explain the observed dependencies of the charge diffusion on
intensity and polarization reported in Fig. 3.

III. THEORY

A. Charge and spin unipolar diffusion equations

The charge and spin currents �Jc and �Js which appear in
the diffusion equations [Eq. (4) and Eq. (5)] are expressed as
the sum of contributions of diffusive charge and spin currents,
of drift currents due to internal electric fields of ambipolar
origin, and of thermoelectric currents caused by local heating
of the photoelectron gas: �Jc(s) = �J dr

c(s) + �J dif

c(s) + �J T
c(s), where

each of these contributions is the sum and difference of the
corresponding spin currents, respectively. These currents are
calculated below.

1. Drift currents

The drift current of electrons of spin i is given by �J dr
i =

�E ∑
j σij , where the nondiagonal elements of the conductivity

matrix σij reflect the coupling between opposite spins (spin
Coulomb drag), mostly originating from electron-electron
collisions [3,13,15]. It is given by

σij = qniμiαij , (13)

where the mobility μi of electrons of spin i is given by

μi = qτmi/m∗. (14)

The momentum relaxation time τmi , calculated in Appendix A
using the Boltzmann equation formalism, is equal to

τmi = −2

3

∫
τm(ε)ε3/2(∂f0i/∂ε)dε∫

ε1/2f0idε
, (15)

where f0i is the Fermi distribution and ε is the kinetic energy.
Here, τm(ε) is assumed to be of the form [16,31]

τm(ε) ∝ εp, (16)

where p depends on the scattering process which determines
the mobility. The concentration dependence of μi is obtained
using Eq. (14) and Eq. (15). One finds

μi = μ0ζ (ni) = μ0

F ∗
p+1/2(ηi)

F ∗
1/2(ηi)

, (17)

where μ0 is the mobility in nondegenerate conditions, ηi =
EFi/kBTe, where EFi is the Fermi energy and kB is the
Boltzmann constant, and where the Fermi integral F ∗

k (ηi) is
given by

F ∗
k (ηi) = 1

�(k + 1)

∫ ∞

0

xkdx

1 + exp(x − ηi)
. (18)

Here ηi is related to the electronic spin concentration by

ni = Ns
c F

∗
1/2(ηi). (19)

The coefficients αij , given by [15]

αij = τeeδij + (nj/n)τm,−i

τee + τm

, (20)

account for the conductivity changes of each spin reservoir
caused by the spin-spin couplings. Here δij is the Kronecker
symbol. The time τee is given by nτee = τee,in−i , where τeei is
the collision time for an electron with spin i with an electron
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of opposite spin. The spin-averaged time τm is given by

τm = (n+/n)τm− + (n−/n)τm+ . (21)

One has finally �J dr
c = σc

�E and �J dr
s = σs

�E, where σc =∑
ij σij and σs = ∑

ij iσij .

2. Diffusive currents

The diffusive current of electrons of spin i depends on the
spatial gradients of the Fermi energies EFj , and is given by
q �J dif

i = ∑
j σij ( �∇rEFj

|Te
), where the spatial gradient of the

Fermi energy at constant temperature of the electron gas Te is
expressed as �∇rEFj

|T = ∑
i Sji

�∇rni , where the spin stiffness
matrix is given by

Sij = ∂EFi

∂nj

. (22)

Note that the total Fermi level gradient is given by �∇rEFj
=

�∇rEFj
|Te

+(∂EFj
/∂kBTe) �∇rkBTe. However, the second term

contributes to the thermoelectric current and will be considered
in the following subsection. The diffusive current can be
rewritten as

�J dif

i = q(Dii
�∇ni + Di,−i

�∇n−i), (23)

where the elements of the diffusion matrix D are given by

qDij = αiiniμiSij + αi,−in−iμ−iS−i,j . (24)

Equation (24) is the generalized Einstein relation. The
charge and spin diffusive currents are finally given by

1

q
J dif

c = Dcc
�∇n + Dcs

�∇s, (25)

1

q
J dif

s = Dsc
�∇n + Dss

�∇s, (26)

where the diffusion constants are linear combinations of the
Dij given by 2Dcc = ∑

ij Dij and 2Dss = ∑
ij ijDij , 2Dcs =∑

ij jDij and 2Dsc = ∑
ij iDij , and can be straightforwardly

calculated if the spin stiffness matrix Sij is known. It is
concluded that two types of spin-related mechanisms can
affect charge and spin diffusion. Spin-spin couplings result
in a nondiagonal Dij matrix, because of which a gradient of
spins j affects the diffusive current of spins i. Charge-spin and
spin-charge couplings originate from nonzero values of Dcs

and Dsc, respectively, and result in a dependence on the spin
(charge) current on the charge (spin) density.

3. Thermoelectric currents: Soret charge and spin currents

The thermoelectric current of electrons of spin i is calcu-
lated in Appendix A by solving the Boltzmann equation. It is of
the form �J T

i = −∑
j σijSj

�∇rTe and Sj is the spin-dependent
Seebeck coefficient for which the value for unpolarized
electrons is equal to its usual value given elsewhere [32]. It is
given by Sj = −(1/qTe)(ETj − γjkBTe), where

ET i =
∫

τm(ε)ε3/2(∂f0i/∂ε)dε∫
τm(ε)ε1/2(∂f0i/∂ε)dε

, (27)

where γi depends on the Fermi integral Fk(η) = �(k +
1)F ∗

k (η) and is given by

γi = F1/2(ηi)

F−1/2(ηi)
. (28)

The above equations are similar to those of the Seebeck
effect in which there is however no current [20]. Here the
spin currents arise through a distinct effect, which has been
described by Soret [33] for mass transport. The current �J T

i

will be hereafter called the Soret current. Here, it is more
convenient to express it in the form

�J T
i = q

∑
j

�Kijnj . (29)

The Soret velocity matrix �Kij is given by

q �Kij = αijμj

(
ETj

kBTe

− γj

)
�∇r (kBTe). (30)

The currents �JcT and �JsT defined in Eq. (4) and Eq. (5) are
finally given by

1

q
�J T
c = �Kccn + �Kcss, (31)

1

q
�J T
s = �Kscn + �Ksss, (32)

where 2 �Kcc = ∑
ij

�Kij , 2 �Kss = ∑
ij ij �Kij , 2 �Ksc = ∑

ij i �Kij ,

and 2 �Kcs = ∑
ij j �Kij .

B. Ambipolar diffusion equations

Taking account of all contributions defined in the preceding
section, the diffusion equations for electrons and spins can
finally be written

(g+ + g−) − n/τ + �∇ · [
( �E/q)σc + Dcc

�∇n + Dcs
�∇s + �J T

c

]
= 0, (33)

(g+ − g−) − s/τs + �∇ · [
( �E/q)σs + Dsc

�∇n + Dss
�∇s + �J T

s

]
= 0. (34)

In order to take account of the electrostatic coupling
between electrons and the slower diffusing holes, it is further
necessary to couple these equations with the diffusion equation
for spin-unpolarized holes, which is

(g+ + g−) − δp/τ + �∇ · [−( �E/q)σh + Dh
�∇δp] = 0, (35)

where δp is the photohole concentration and Dh is the
hole diffusion constant. Here σh = q(N−

A + δp)μh is the
conductivity, where μh is the hole mobility. The thermoelectric
hole current is neglected since the local heating of the hole gas
is weak [34]. The electric field satisfies Poisson’s equation

�∇ · �E = e

εε0
(δp − n), (36)

where ε is the dielectric constant and ε0 is the permittivity
of free space. Equations (33), (34), (35), and (36) are solved
numerically, as shown in Appendix B, by imposing that, in
addition to the boundary conditions for Eqs. (4), (5) defined
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in Sec. II A, the hole currents at the front (z = 0) and back
surface (z = d) are equal to qSδp(0) and −qS ′δp(d).

IV. RELEVANT MECHANISMS FOR SPIN TRANSPORT
UNDER LOCAL EXCITATION OF p+ MATERIAL

A. Effect of degeneracy on diffusion and its spin dependence

As already shown in Ref. [14], degeneracy can induce a
spin dependence of the diffusion constant due to two distinct
effects which are direct consequences of the Pauli principle.
The first one is the concentration dependence of the spin
stiffness [Eq. (22)]. Neglecting electron-electron interactions
which will be shown below to be screened by the hole gas, the
spin stiffness matrix is diagonal and, in Eq. (13), αij = δij .
Using Eq. (19), one finds Sii = kBTe/[F ∗

−1/2(ηi)Ns
c ] and

Eq. (24) reduces to the spin-uncoupled Einstein equation for a
degenerate electron gas [35]

Di = niμi

q
Sii = ξ (ni)μi

kBT

q
, (37)

where ξ = niSii/kBTe is given by

ξ (ni) = F ∗
1/2(ηi)

F ∗
−1/2(ηi)

= 2γi. (38)

This quantity is unity for a nondegenerate gas and increases
with concentration.

The second possible effect induced by degeneracy is a
spin-dependent increase of the mobility, as described by
Eq. (17), and is a direct consequence of Pauli exclusion due
to which elementary scattering processes are forbidden if the
final state is already occupied by an electron of the same spin.
The diffusion constants for spins ± are finally given by

Di = D0ν(ni), (39)

where D0 = μ0kBTe/q and

ν(ni) = ξ (ni)ζ (ni) = F ∗
p+1/2(ηi)

F ∗
−1/2(ηi)

. (40)

Using the linearized form defined by Eq. (10), the charge
and spin diffusion constants which appear in Eq. (33) and
Eq. (34) are finally given

Dcc = Dss = D0ν(n/2), (41)

Dcs = Dsc = D0ν(n/2)δP, (42)

where the two quantities δ and D∗ introduced in
Eq. (10) are now given a precise definition. Here δ =
d ln[ν(n/2)]/d ln(n/2) and is equal to 2(p + 1)/3 at large de-
generacy, while D∗ = D0ν(n/2). The Pauli principle induces a
coupling between the charge and spin diffusions, for which the
coupling coefficients δP are identical in the two equations.
They increase with electron polarization and concentration.

For highly p-doped GaAs and Te = 50 K, curve a of Fig. 6
shows the concentration dependence of the Fermi energy
EFi

. Degeneracy is achieved for electronic concentrations
larger than 1016 cm−3, for which EFi > 0. As shown in the
same panel, the reduced diffusion constant increases with
concentration from its values of 1 in nondegenerate conditions.
For p = 3/2, it is found that the spin dependence of the spin

FIG. 6. (Color online) The bottom panel shows, at Te = 50 K,
the Fermi energy as a function of the spin-resolved photoelectron
concentration ni (curve a) revealing the onset of degeneracy near
n = 1016 cm−3. The dependence of the reduced diffusion constant ν

[Eq. (40)] is shown for selected values of p, as defined by Eq. (16):
3/2 (b), 1 (c), 1/2 (d), 0 (e). Curve f shows this same quantity for
p = 3/2, but for hot electrons, of kinetic energy larger than kBTe.
The top panel shows the quantity θ [Eq. (44)] on which depends the
Soret current, for p = 3/2 (g), 1 (h), 1/2 (i), 0 (j).

stiffness and of the mobility have an equal importance in
the spin dependence of the diffusion since the increase of
ξ and ζ , not shown in the figure, are quite similar. When p

is decreased, the concentration dependence of the mobility
becomes reduced, which induces as shown in the figure,
a reduction of the concentration and spin dependence of
the diffusion constant. For a typical electron gas of density
n+ + n− = 1017 cm−3 and p = 3/2, with a spin polarization
of P = (n+ − n−)/n = 40%, one finds D+/D− ≈ 2.2. For
p = 0, this ratio is reduced to D+/D− ≈ 1.3 for the same
values of n±. However, because of the smaller diffusion
constant with respect to p = 3/2, the concentration at r = 0
is increased in order to verify Eq. (8), so that the effect of p

on the actual spin dependence of D is rather weak.
The above calculations can be extended to hot electrons in

order to explain the results of Fig. 5. Using a restriction of the
Fermi integrals appearing in Eq. (28) and Eq. (17) to electrons
of kinetic energy larger than εmin reduces the spin stiffness and
the concentration dependence of ξ . This is the same for the
mobility because the rate of occupation of electronic states at
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the corresponding kinetic energy is smaller, so that scattering
by an ionized impurity is less likely to be forbidden by the
Pauli principle. Curve f of Fig. 6, calculated using εmin =
kBTe and in the particular case of p = 3/2, shows that the
concentration dependence of ν is significantly reduced and
explains the weaker spin dependence of the diffusion constant
of hot electrons.

B. Spin Soret current under degeneracy

Under the sole effect of the thermal gradient, the Soret
velocities are given by Kcc = Kss = [K++ + K−−]/2 and
Kcs = Ksc = [K++ − K−−]/2 while K+− = K−+ = 0. The
ratio of the unipolar diffusive [J dif

c ] and Soret currents is then
given by

J T
c

J
dif
c

= θ
�∇rTe/Te

�∇rn/n
. (43)

The dimensionless quantity θ , given by

θ = ET

ξkBT
− 1/2, (44)

is related to the Seebeck constant defined in Sec. III A3 by
S = −(kB/q)ξθ and is for spins i given by

2θ (ni) = p + 3/2

p + 1/2

Fp+1/2(ηi)

Fp−1/2(ηi)

F−1/2(ηi)

F1/2(ηi)
− 1. (45)

Shown in the top panel of Fig. 6 are the concentration de-
pendencies of θ for selected values of the scattering exponent
p. Since θ is close to unity, the ratio of the Soret current to
the usual diffusive current is mainly determined by the relative
values of the temperature and charge gradients. While θ is unity
for p = 0, θ decreases for p = 0 with increasing concentration
from p + 1 in the nondegenerate limit to unity at very large
ni .

As found from Eq. (30),

K++
K−−

= θ (n+)

θ (n−)

D+
D−

, (46)

so that under degeneracy the Soret current becomes spin-
dependent in the same way as diffusion. For p = 0, θ (n+) <

θ (n−), so that K++/K−− < D+/D−. In this case, the thermal
gradient causes an effective decrease of the polarization dip.

C. Hole screening of electron-electron interactions

It is shown here that spin-spin or spin-charge couplings
induced by electron-electron interactions are strongly reduced
because of screening by the hole gas. The effect of hole
screening can be simply taken into account in the random
phase approximation (RPA) in the present case where the hole
screening is dominant over the electronic one. In this case, the
static Coulomb potential in Fourier space is given by [36,37]

v(k) = 4πe2

ε
(
k2 + k2

DH

) , (47)

where e = q/
√

4πε0. The Debye-Hückel screening wave
vector kDH depends on the hole concentration according

to [38]

k2
DH = 4πe2NA

εkBT

1

ξ (NA + δp)
, (48)

where the function ξ (x) is related to the hole Fermi energy
and defined by Eq. (38). In this framework, it seems clear
that electron-electron interactions will be decreased if kDH is
larger than the typical value of k, of the order of the Fermi
wave vector kFi = (6π2ni)1/3.

Such reasoning is applied to the calculation of the spin
stiffness Sii in the presence of electron-electron exchange
interactions (band-gap renormalization). This calculation is
detailed in Appendix C to first order and the result is given
by Eq. (C5) in the low-temperature limit. Curve a of the
top panel of Fig. 7 shows the spin stiffness dependence on
the electron concentration ni at 4 K. Curve b and curve
c show the same quantity for unscreened and screened
[NA + δp = 1018 cm−3] exchange interactions, respectively.
In the absence of screening, exchange interactions induce a
significant decrease of the spin stiffness, and therefore of

FIG. 7. (Color online) Effect of electron-electron interactions on
spin transport in p+ GaAs. The top panel shows the dependence as a
function of ni of the spin stiffness Sii [see Eq. (22)] without exchange
interactions (curve a), while the full circles (curve b) and the full
squares (curve c) show the same quantity for unscreened exchange
interactions and screened interactions, respectively [see Eq. (C1)].
The bottom panel shows the effect of screening on the efficiency of
Coulomb spin drag. Curve d shows the quantity τm/τee, calculated
in Appendix C, as a function of the electron concentration without
any screening by holes, and corresponds to results of Ref. [15]. The
screening by holes of concentration N−

A = 1018 cm3 is included in
curve e. The strong screening-induced decrease of τm/τee shows that,
for the present material, spin drag is negligible.
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the diffusion constant, as seen from Eq. (37). This decrease
is however completely canceled if screening is included, as
seen from the perfect correspondence between curve a and
curve c. This screening is found to be extremely efficient,
since a small value of NA + δp = 1015 cm−3 is sufficient to
produce a complete screening [39]. Although this result has
been obtained in the low-temperature limit, the conclusion
remains true at higher temperature since the order of magnitude
of renormalization corrections tends to decrease [40]. It is thus
concluded that, in the presence of screening, electron-electron
interactions are completely negligible.

In the case of Coulomb spin drag, the effect of hole
screening on the quantity τm/τee appearing in Eq. (20) is
calculated in Appendix C using the theory developed in Refs.
[15,41]. The result is shown in the bottom panel of Fig. 7.
Without screening, in agreement with Ref. [15], the maximum
value of τm/τee is small but not completely negligible. Its
value is about 0.3 and is reached near n = 1016 cm−3 which
corresponds to the limit of degeneracy. For N−

A = 1018 cm−3,
it is found that the efficiency of spin drag is decreased by three
orders of magnitude. As a result, the effect of Coulomb spin
drag is completely negligible.

V. INTERPRETATION

A. Calculation of the polarization profiles

In order to determine the relative importance of the various
processes considered in Sec IV, we have solved numerically
the system of Eq. (33), Eq. (34), Eq. (35), and Eq. (36),
using an approximate method described in Appendix B and
taking for the front and back surface recombination velocities
the very weak values in our low-temperature conditions S =
S ′ = 5 × 104 cm/s [26]. The polarization profiles were then
calculated using Eq. (1) and Eq. (2). The parameters used for
the resolution were all determined independently so that no
fitting procedure was used. Their values are given in Sec. II B
apart from those of the electronic temperature Te and scattering
exponent p which are discussed now.

The increase of the local temperature Te of the photo-
electron gas caused by the increase of excitation power was
first characterized. Shown in the inset of Fig. 8 are local
luminescence spectra at high excitation power, as a function
of distance to the excitation spot. The spectra exhibit a change
in the shape of the high-temperature tail, thus revealing a
local heating of the electron gas near the place of excitation.
It is assumed that the heating of holes is negligible [34].
Figure 8 itself shows the spatial dependence of Te at a
lattice temperature of 15 K, for several excitation powers.
At low power, the temperature is constant and equal to 40 K.
Conversely, at the maximum power, Te = 80 K at the place of
excitation and decreases to 50 K over a characteristic distance
slightly larger than the radius of the laser excitation spot [42].

The scattering exponent p defined in Eq. (16) was estimated
using a combined measurement of Hall and drift photoelectron
mobility [23]. One finds p = 0 ± 0.5, which is close to the
expected value p = 1/2 in the case where the mobility is
determined by screened collisions with charged impurities or
with majority holes [31,43]. This result implies that, for the
present sample, the spin dependence of the mobility is weak.

FIG. 8. (Color online) The inset shows, for a large excitation
power of 2.5 mW for T = 15 K, the spatially resolved luminescence
spectra at the place of excitation (a) and at a distance of 0.64 μm
(b), 2.7 μm (c), 4 μm (d), and 9.6 μm (e). The larger electronic
temperature Te at the place of excitation is evidenced from the
high-energy side of the spectra. The main figure shows Te as a function
of distance for different excitation powers: 2.5 mW (a), 1.9 mW (b),
1 mW (c), 0.45 mW (d), and 1.5 μW (e).

B. Discussion

The calculated polarization profiles are shown in panel (b)
of Fig. 2 for the same excitation powers as panel (a). These
profiles correspond quite well with the experimental results of
panel (a), apart from a slight difference in the position of the po-
larization maximum. As shown in panel (c) of Fig. 2, the polar-
ization dip is restricted mainly to a zone labeled D , defined by
z < 1 μm and r < 0.3 μm. Conversely, for r ≈ 1.5 μm and
z < 1 μm, the polarization maximum is as large as 42%. At
the highest excitation power, one calculates that the averages
of the concentrations over D are 〈n+(D)〉 ≈ 9.0 × 1016 cm−3

and 〈n−(D)〉 ≈ 5.4 × 1016 cm−3. These values are higher than
the spin-resolved effective density of states at 80 K which is
Ns

c ≈ 3 × 1016 cm−3. With these concentrations, we calculate
that D+ = 1.96D0, D− = 1.59D0 so that D+/D− = 1.25.
This value is slightly different from the experimental value
of 1.49, which is not surprising because of the approximations
used for the latter value.

The importance of ambipolar diffusion is seen from panel
(d) of Fig. 2, which shows the profiles calculated in the unipolar
case, by considering only Eq. (33) and Eq. (34) and by taking
E = 0. It is striking to see that, in this case, one observes only a
small polarization dip in the profiles at the place of excitation.
With the present values of NA and n, ambipolar diffusion
results in reduced ambipolar diffusion constants Da

cc and Da
cs ,

by the same amount βh defined by Eq. (B1). The latter quantity
can be quite small since at low temperature μe/μh ≈ 85. This
results in an increase of the concentrations and therefore of the
amount of degeneracy at r = 0. In the unipolar case, we find
at the highest excitation power 〈n+(D)〉 ≈ 5.2 × 1016 cm−3

and 〈n−(D)〉 ≈ 2.2 × 1016 cm−3. The total concentration is
smaller than its above ambipolar value by a factor of ≈2, in
agreement with the qualitative correspondence between the
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unipolar calculated profile at 2.5 mW and the experimental
one for a reduced power of 1 mW.

Note finally that the concentration in the unipolar case is
still larger than Ns

c so that some amount of degeneracy is
still present. Indeed we calculate D+/D− = 1.26, i.e., quite
similar to the value at high power. This is because, in Eq. (10),
the decrease of δ caused by the smaller concentration is
compensated by the polarization increase so that the actual
value of D+/D− only weakly depends on concentration. On
the other hand, the actual value of the polarization in D is
the result of a self-consistent equilibrium and can be relatively
sensitive to the concentration [44].

Panel (e) shows the profile calculated under the same condi-
tions as panel (b), except that the Soret charge and spin currents
are neglected. Here Te is taken as spatially homogeneous and
equal to its measured value at r = 0. Apart from the highest
power where the profile is slightly shifted upwards, the profiles
are nearly the same as in panel (b), implying that the Soret
current plays a negligible role in these experiments [45]. The
relative temperature gradient �∇rTe/Te strongly varies with
distance. As found from curve a of Fig. 8, its value at high
power is very small near r = 0, reaches 1.3 μm−1 in a very
short interval near 0.6 μm, and then decreases to 0.3 μm−1. In
comparison, the relative charge gradient �∇rne/ne, found using
Fig. 1, is almost independent of distance and is of the order
of 1 μm−1 and is, within experimental uncertainties, larger
than the temperature relative gradient at most distances. Using
Eq. (43), it is thus concluded that the temperature gradient is
not sufficient to obtain significant Soret currents.

Panel (f) of Fig. 2 shows the polarization profile calculated
by considering the unipolar limit without temperature gradi-
ents, Te being fixed to its measured value at r = 0. This sit-
uation is reminiscent of spatially homogeneous configuration
of spin-grating experiments. In this case the polarization dip
near r = 0 has almost disappeared. Observation of the Pauli
blockade driven spin filter effect thus requires spatially inho-
mogeneous electron and hole concentrations. This means that
the usual spin-grating technique, in which the electron and hole
concentrations are uniform in space, may not be well adapted
to the observation of Pauli blockade effects in spin transport.
On the other hand, for spin gratings, Te is also uniform in space,
meaning that the charge and spin Soret effects are absent, a
situation which should slightly increase the magnitude of Pauli
blockade phenomena. Given that heating of the photoelectron
gas is unavoidable during high-intensity photoexcitation, the
ideal conditions for measuring the largest possible Pauli
blockade effects are highly inhomogeneous photoelectron and
hole concentrations and spatially uniform temperatures.

VI. CONCLUSION

Here, we present a theoretical and experimental investi-
gation of the effect of degeneracy on spin transport of a
photoelectron gas. We have used p+ GaAs for which at
15 K tightly focused circularly polarized light excitation
generates strongly spin-polarized photoelectrons (45%) and
where charge and polarization profiles are monitored as a
function of distance. We now recall the main results.

(a) In conditions where the photoelectron gas is degenerate,
i.e., for a sufficiently low temperature and large excitation

power (above 1 mW), we demonstrate a spin-charge coupling
mechanism implying a spin dependence of the diffusive trans-
port, with relative differences in the spin-resolved diffusion
constants as large as 50% between the two types of spins. This
effect is linear in the electronic polarization, increases with the
electron concentration, and decreases with increasing kinetic
energy in the conduction band. The spin-averaged charge
diffusion constant is also shown to be spin-dependent due to a
second-order effect. The dominant effect which explains these
results is the charge and spin dependence of the spin stiffness
under degeneracy.

(b) Ambipolar diffusion plays a key role for the observation
of spin-dependent diffusion, since it increases the confinement
of photoelectrons at the place of excitation, and therefore the
amount of degeneracy, due to the electrostatic electron-hole
coupling. This diffusion induces a strongly nonlinear coupling
between electron diffusion, spin diffusion, and hole diffusion,
which is treated here using an approximate resolution of
the diffusion equations. Such ambipolar-induced increase of
the confinement could also be obtained by increasing the
excitation power, but this will inevitably increase the electron
temperature and decrease the degeneracy.

(c) The mobility is predicted to depend on charge and
on spin. However, for p+ GaAs, this effect is weak. This
conclusion is at variance with the hypothesis of the previous
work [14] and is based on recent measurements of the
dependence of the scattering time on kinetic energy [23], as
defined by the value of p in Eq. (16). The value of p is found
to be strongly reduced from 3/2 due to scattering with charged
impurities, as a consequence of the screening by holes. It is
anticipated that the spin dependence of the mobility should be
observable at a lower p-type doping.

(d) Since the electronic temperature is strongly inhomoge-
neous, thermoelectric currents may appear due to the Soret
effect, which are predicted to depend on spin in degenerate
conditions. However, in the present situation, this dependence
does not strongly affect the polarization profile because of the
relative values of charge and temperature gradients. Distinct
experimental configurations should be used for separate
investigation of this effect.

(e) Other spin-spin or spin-charge coupling mechanisms
such as spin drag or band-gap renormalization are negli-
gible in the present case because of efficient screening of
the electron-electron interactions by the holes of our p+
material.

In summary, the extensive theoretical analysis of the present
work and the careful sample characterization allow us to
conclude that we have achieved experimentally a relatively
simple situation, where the polarization profiles mostly depend
on spin-dependent ambipolar diffusion under degeneracy. It is
predicted that other effects could play a role under degeneracy
such as spin-dependent mobility or Soret currents. These
effects remain unobserved and could be explored by adjusting
the acceptor density and the laser energy and power. Note
that the present technique relying on a tightly focused laser
excitation seems better adapted than the elegant spin-grating
technique for investigating the effect of degeneracy on spin
transport. The main reason is that effects of degeneracy on pure
spin currents created in the latter technique are not amplified
by ambipolar diffusion. They decrease under increase of
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excitation power because of the unavoidable heating of the
electron gas which reduces the degree of degeneracy.

It is finally pointed out that these large spin-dependent
effects have been observed in a regime near the onset of
degeneracy, where the photoelectron concentrations are not
very large with respect to the effective density of states in
the conduction band. This implies that much stronger effects
are expected for larger powers. While this is not possible in
the present case because of heating effects, we anticipate that
the use of appropriate low-dimensional structures of reduced
effective density of states will increase the magnitude of the
effects and may possibly open the way to the realization of
spin components of increased diffusion length and mobility at
a temperature closer to 300 K.
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APPENDIX A: BOLTZMANN EQUATION
FORMALISM FOR THE CHARGE, SPIN, AND

THERMOELECTRIC CURRENTS

The current �Ji of photoelectrons of spin i is given by

�Ji = − q

m∗

∫
�pfid

3p, (A1)

where the function fi , which describes the distribution of
electrons of spin i as a function of space and of momentum �p,
is obtained from a resolution of the Boltzmann equation

∂fi

∂t
+ �p �∇rfi − q �E

m∗ ∇kfi =
[
∂fi

∂t

]
icoll

+
[
∂fi

∂t

]
e−ecoll

,

(A2)

where the second term on the left-hand side accounts for the
effect of diffusion in a Fermi energy gradient. The third term
describes the effect of electric field and the two terms on the
right-hand side are collision integrals accounting for electron-
impurity collisions and electron-electron collisions.

The models of Refs. [15,46,47] propose estimates of
the collision integrals, but do not take into account spatial
inhomogeneities of f . These inhomogeneities are considered
in an independent approach, which however neglects the spin
polarization, so that electron-electron collisions have no effect
[48]. Here, neglecting band nonparabolicity, we propose the
following ansatz to first order which reduces to the result of
Ref. [15] for a homogeneous electron gas and to that of Ref.
[48] for spin-unpolarized electrons:

fi = f0i − αiiτm(ε)

m∗ [−q �E · �∇εf0i + �p · �∇rf0i]

− αi,−iτm(ε)

m∗ [−q �E · �∇εf0,−i + �p · �∇rf0,−i], (A3)

where for noncoupled spins (αi,−i = 0) one recognizes the
usual drift term in the electric field �E and the diffusion term
proportional to the spatial gradient �∇rf0i [48]. In order to take
account of the spin-spin interactions for the evolution of fi , it is
natural to add a coupling term with the evolution of f−i , using
the same coupling factor αi,−i as the one given by Eq. (20),
which describes the modification of conductivity σi,−i caused
by e-e collisions. In the same way, the evolution of fi is also
modified by losses to the −i spin system, which are taken into
account by the multiplicative factor αii . It is considered here
that τm(ε) does not depend on spin, since the spin dependence
of τmi used in Sec. II originates from the sole spin dependence
of the Fermi distribution. Equation (A1) allows us to calculate
the currents using Eq. (A3) and

�∇rf0i = − ∂f0i

∂ε
·
⎡
⎣∑

j

∂EFi

∂nj

�∇rnj

+
(

∂EFi

∂kBTe

+ E − EFi

kBTe

)
�∇r (kBTe)

⎤
⎦ . (A4)

Since the contribution of the equilibrium term f0 is
zero, the current is written as the sum of a drift current,
of a diffusion current, and of a thermoelectric current,
respectively proportional to �E, �∇rn, and �∇r (kBT ). This gives
the expressions of the drift and diffusion currents given in
Sec. III A 1. Transforming the integration over momentum
to an integration over kinetic energy, the expression of the
average time τmi given by Eq. (15) is readily obtained. The
thermoelectric charge and spin currents originate from the
second term of Eq. (A4). The thermal-induced change of
EFi

at constant concentration, ∂EFi
/∂kBTe, is calculated by

expressing that the derivative of ni with respect to temperature,
as found from Eq. (6), is zero. Using ∂F ∗

k (η)/∂η =
F ∗

k−1(η), one finds the expression given in Eq. (30)
for �Kij .

APPENDIX B: SOLUTION OF THE EQUATIONS FOR
AMBIPOLAR SPIN DIFFUSION

In contrast with the usual treatments of ambipolar diffusion
[31,49], the system of Eq. (33), Eq. (34), Eq. (35), and
Eq. (36) must be solved numerically since the conductivities
and diffusion constants depend on space. However, an exact
numerical solution of these equations is difficult, since small
errors in n and δp result in large errors in �E. This renders
the equations highly nonlinear and a convergent solution
is difficult to obtain using finite-element methods without
approximations. To address this, the hole continuity equation
is replaced by a combination of Eqs. (33) (multiplied by σh)
and (35) (multiplied by σc) in the usual way [31]. Defining
the reduced hole conductivity βh = σh/(σh + σc), of the
form

βh = N−
A + n

(N−
A + n) + (μ0/μh)[n+ζ (n+) + n−ζ (n−)]

, (B1)
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the following equation to describe the hole distribution is
obtained:

(g+ + g−) − δp/τ +
�E
q

�∇σa
c

+ �∇
[
Da

cc
�∇δp + Da

cs
�∇s + 1

q
βh

�∇ �J T
c

]
= 0, (B2)

where

Da
cc = βhDcc + (1 − βh)Dh, (B3)

Da
cs = βhDcs, (B4)

and �∇σa
c = βh

�∇σc − (1 − βh) �∇σh. Equation (B2) is approx-
imate since, as justified in Ref. [18], it assumes charge
neutrality [n = δp]. Further, it neglects for simplicity the
spatial dependencies of electron and hole conductivities.
However, this approximation appears to yield reasonable
results. For example, at the highest excitation power where the
equations are most strongly coupled, the sum of all the terms
on the left-hand side of Eq. (33) is two orders of magnitude
smaller than the maximum value of �∇ · [Dcc

�∇n] so that these
terms efficiently compensate each other.

APPENDIX C: EFFECT OF SCREENING BY HOLES ON
ELECTRON-ELECTRON INTERACTIONS

(a) We first estimate the contribution of electron-electron
interactions to the electron spin stiffness in the presence of
a degenerate hole gas. The electron mutual interactions in
the electron gas lead to a self-energy correction to the bare
electron energy, usually split into exchange and correlation
terms and given by �i,k = �x

i,k + �cor
i,k . The effective Fermi

energy is then given by E∗
Fi = EFi + 〈�x

i,k〉 where 〈 〉 denotes
the average over all electrons of spin i and the contribution of
many-body effects to the spin stiffness is thus given by

Sxc
i,j = ∂

〈
�x

i,k

〉
∂nj

δi,j + ∂
〈
�cor

i,k

〉
∂nj

, (C1)

since the exchange correction is computed within a population
of electrons of the same spin i. In degenerate conditions,
we will neglect the contribution of the correlation energy,
which is small with respect to the exchange one [40] and the
spin stiffness matrix is diagonal. At low temperature, one has
�x

i,k = −(1/V )
∑

q v(q)fi,k+q where V is the sample volume
and v(q) is the screened potential given by Eq. (47). The
exchange energy for electrons of momentum k and spin i can

be analytically computed as

�x
i,k = −e2kFi

επ
B

(
k

kFi

,
kDH

kFi

)
, (C2)

where the negative function B is given by

−B(y1,y2) = 1 + y2 arctan
y1 − 1

y2
+ y2 arctan

y1 + 1

y2

+ 1 + y2
2 − y2

1

4y1
ln

(1 + y1)2 + y2
2

(1 − y1)2 + y2
2

(C3)

and reduces to the usual expression [36,50] in the absence of
holes. After integration over all electrons of spin i, the average
exchange energy is written

〈
�x

i,k

〉 = 3e2kFi

2επ

∫ 1

0
y2

1B

(
y1,

kDH

kFi

)
dy1 (C4)

and the additional spin stiffness is given by

Sx
i,i =

[
3

4π

]
e2

ε

∫ 1

0
y2

1R

(
y1,

kDH

kFi

)
n

−2/3
i dy1, (C5)

where

−R(y1,y2) = 1 + 1 + y2
2 − y2

1

4y1
ln

(1 + y1)2 + y2
2

(1 − y1)2 + y2
2

. (C6)

(b) We now estimate the effect of screening on spin
drag. The relative efficiency of spin drag under screening is
measured from the ratio τm/τee = ρ+−σc where the spin tran-
sresistivity ρ+− is expressed as an integration over frequency
followed by an integration over momentum [15,41]:

ρ+− = �
2

q2n+n−

1

3π3

∫ ∞

0
k4v(k)2dk

×
∫ ∞

0
dω

χ
′′
0+(k,ω)χ

′′
0−(k, − ω)

|ε(k,ω)|2 sinh2(�ω/2kBT )
, (C7)

where the dynamic dielectric constant is given by

ε(k,ω) = 1 − v(k)[χ0+(k,ω) + χ0−(k,ω)]. (C8)

Here, χ0i(k,ω) is the noninteracting spin-resolved density-
density response function of spins i and χ

′′
0i(k,ω) is its

imaginary part. The expressions of the latter quantities can
be found in Ref. [41]. Since χ

′′
0i(k,ω) does not directly depend

on the potential, it is natural to include the effect of screening
by holes by using for the potential v(k), the expression given
by Eq. (47).
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