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3H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, City of Bristol BS8-1TL, United Kingdom

(Received 2 February 2015; revised manuscript received 25 March 2015; published 30 April 2015)

We generalize the screened Korringa-Kohn-Rostoker method for solving the corresponding Kohn-Sham-
Bogoliubov–de Gennes equations for surfaces and interfaces. As an application of the theory, we study the
quasiparticle spectrum of Au overlayers on a Nb(100) host. We find that within the superconducting gap region,
the quasiparticle spectrum consists of Andreev bound states with a dispersion which is closely connected to
the underlying electronic structure of the overlayer. We also find that the spectrum has a strongly k-dependent
induced gap. The properties of the gap are discussed in relation to the thickness of the overlayer, and it is shown
that certain states do not participate in the Andreev scattering process.
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I. INTRODUCTION

The theory of Bardeen, Cooper, and Schrieffer (BCS)
successfully describes the universal properties of conventional
(s-wave) superconductors [1], but it cannot be applied easily
to inhomogeneous systems where the wave number �k is not a
good quantum number. The generalization of the well-known
Hartree-Fock method with the introduction of the concept of
mixed particle-hole excited states [2,3] yields the Bogoliubov–
de Gennes (BdG) equations [4]. In this description, the
standard momentum operators are replaced by field operators,
which have the advantage that they are able to describe
inhomogeneous systems. However, this is only a mean-field
theory and cannot be considered as a predictive approach to
allow the computation of material-specific properties. For that
purpose, a density functional theory (DFT) was constructed
by Oliveira, Gross, and Kohn (OGK) [5]. In this theory,
the ground-state energy is proved to be a unique functional
of the ρ(�r) charge density and the χ (�r) = 〈�↑(�r)�↓(�r)〉
anomalous density. Later, the concept is further developed into
a multicomponent density functional theory for the combined
system of electrons and nuclei (phonons) [6–8]. The usefulness
of the OGK approach [5] has been demonstrated by Suvasini
et al., where they introduced a simple semiphenomenological
parametrization of the exchange-correlation functional [9].
Despite the simplicity of this approximation, they were able to
describe many features of the bulk niobium in the supercon-
ducting state, which are accessible to experiments. By using
this semiphenomenological parametrization, one can derive
a set of equations which allows the self-consistent solution
of the following coupled Kohn-Sham-Bogoliubov–de Gennes
(KSBdG) eigenvalue equations in atomic (Rydberg) units [9]:

[He(�r) − EF ]un(�r) + �eff(�r)vn(�r) = εnun(�r), (1a)

[He(�r) − EF ]vn(�r) − �∗
eff(�r)un(�r) = −εnvn(�r), (1b)

where He(�r) = −∇2 + Veff(�r) is the single-particle
Hamiltonian, and the wave function is decomposed into

*csire.gabor@wigner.mta.hu

an electronlike part un(�r) and a holelike part vn(�r). The
effective electrostatic and pairing potentials are

Veff(�r) = Vext(�r) +
∫

ρ(�r ′)
|�r − �r ′|d

3r ′ + δE0
xc[n]

δρ(�r)
, (2a)

�eff(�r) = λχ (�r), (2b)

where Vext(�r) is the external potential (e.g., the Coulomb
attraction from the protons). The ρ(�r) charge and χ (�r)
anomalous densities can be calculated from the wave-function
components:

ρ(�r) = 2
∑

n

{|un(�r)|2f (εn) + |vn(�r)|2[1 − f (εn)]}, (3a)

χ (�r) =
∑

n

un(�r)v∗
n(�r)[1 − 2f (εn)]. (3b)

f (εn) is the Fermi-Dirac distribution function, E0
xc[n] is the

usual exchange-correlation energy for normal electrons, and
λ is a semiphenomenological adjustable parameter (it can be
site dependent). It should be noted that the zero point of the
energy scale is the Fermi level.

The past few years have shown a growing interest in the
study of superconductor-based heterostructures [10–12]. It
is known that such inhomogeneities in the pairing potential
can lead to bound quasiparticle states. These states have
been found theoretically in superconductor–normal-metal–
superconductor heterostructures [13] and also in other sys-
tems [14,15]. The Andreev reflection [16] has been identified
as the key effect which results in such bound states, called
Andreev bound states (ABS): an electron, with energy lying in
the superconducting gap, arriving from the normal metal to the
superconductor–normal-metal (S/N) interface, is retroreflected
as a hole and a Cooper pair is formed in the superconductor.
While a great many theoretical works were dedicated to the
study of the Andreev reflection and the ABS [17–21], it
was done on model systems only, and their material-specific
dispersion, i.e., their “band structure,” was not calculated
(nor observed experimentally). Within the framework of a
tight-binding model, Annett and co-workers also investigated
such heterostructures [22,23]. They have shown the existence
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of ABS within the gap, and pointed out effects associated
with the interplay of the gap and the normal van Hove
peaks [22]. The next logical step in this series of investigations
is first-principles calculations for real materials. In this paper,
we address this problem by developing a multiple scattering
theory (MST) for the solution of the KSBdG equations (1) for
surfaces and interfaces of S/N heterostructures. As presented in
Refs. [9,17], the application of constant pairing potentials gives
a very good estimation of the self-consistent solutions. This
facilitates the modeling of a S/N system with a finite, constant
pairing potential on the superconducting host and zero on the
normal-metal overlayers. In order to treat this semi-infinite ge-
ometry, a Green-function-based method is needed, such as the
screened Korringa-Kohn-Rostoker (SKKR) method [24,25]
within MST.

The present paper is organized as follows. In Sec. II, we
generalize the SKKR method for the solution of the KSBdG
equations (1). Section III is devoted to the computational
details. In Sec. IV, we illustrate the power of the developed
method by studying the quasiparticle “band” structure of the
niobium (Nb)-gold (Au) system. Finally, Sec. V is devoted
to the summary. Some technical details are provided in the
Appendix.

II. GENERALIZATION OF THE MST FOR
SUPERCONDUCTORS: THE BDG-SKKR METHOD

The central problem of the DFT calculations is the solution
of the KSBdG equations (1) in order to determine the
single-particle wave functions and the corresponding eigen-
values. However, the single-particle Green function contains
all information about the ground state. The local density
of states (DOS), i.e., the anomalous and charge densities,
can be obtained from the single-particle Green function.
Consequently, if the single-particle Green function is obtained,
it is not necessary to calculate the Kohn-Sham orbitals. In this
section, we show how the SKKR method can be generalized to
get the single-particle Green function for multilayered systems
corresponding to the KSBdG equations (1). Here we do not
try to follow every single step of the derivation, as it would
be too extensive for this paper; instead we just show how the
most important quantities, concepts, and formulas need to be
modified due to the presence of holes. Most interim derivations
can be performed in analogy to the normal-state MST, which
is well described, for example, in Ref. [26]. The first step in
this generalization is to decompose the BdG Hamiltonian in
the following way:

HBdG(�r) = H0(�r) + V(�r), (4)

where

H0(�r) =
(−∇2 − EF 0

0 ∇2 + EF

)
, (5)

V(�r) =
(

Veff(�r) �eff(�r)

�∗
eff(�r) −Veff(�r)

)
. (6)

In the KKR method, the potential is usually treated in
the so-called muffin-tin approximation, i.e., the potential is
written as a sum of single-domain potentials centered around

each lattice site, n, namely, Veff(�r) =∑n Vn(�r). It is usually
assumed that Vn(�r) is spherically symmetric. This is not a
necessary assumption for the theory, however, MST for a
general shape of potentials is still not common, even for
the normal state. Therefore, in what follows, we still restrict
ourselves to spherical atomic potentials. In our approach, we
assume the same form for the effective pair interaction as well,
namely, �eff(�r) =∑n �n(r). The potentials Vn(�r) are of the
muffin-tin type, which means that Vn(r) = 0 and �n(r) = 0 if
r = |�rn| � Sn, where Sn is the muffin-tin radius.

A. Operator formalism and the free-particle Green function

The resolvent of the BdG Hamiltonian can be defined as

G(z) = (zI − HBdG)−1 , (7)

which has the usual property

G(z∗) = G(z)†. (8)

At the real axis, the up- and downside limits of G(z) are defined
by

G(z = ε ± i0) = G±(ε). (9)

Similarly to the normal state, we can define the T operator as

T (z) = V + VG(z)V =
∑
n,m

τnm(z), (10)

where τnm(z) is the so-called scattering path operator (SPO)
which comprises all possible scattering events between the
sites n and m, including now the Andreev reflection as well.
Since V is Hermitian,

T (z∗) = T (z)†. (11)

The two different, generalized eigenfunctions of HBdG can be
obtained from the Lippmann-Schwinger equation,

ψ±(ε) = ϕ(ε) + G±
0 (ε)T ±(ε)ϕ(ε), (12)

where ϕ(ε) is a generalized, multicomponent eigenfunction of
H0 and G0(z) is the resolvent corresponding to H0. Here we
emphasize the difference from the normal state now, that is,
the wave functions also have a hole part.

Following the footsteps of normal-state MST, we define the
following orthogonal and complete basis set:

ϕe
L(z,�r) =

(
(z+EF )1/4√

π
je
L(z,�r)

0

)
, (13a)

ϕh
L(z,�r) =

(
0

(−z+EF )1/4√
π

jh
L(z,�r)

)
, (13b)

where L = (l,m) is the usual composite index, and

je
L(z,�r) ≡ jl(p

er)YL(r̂), jh
L(z,�r) ≡ jl(p

hr)YL(r̂), (14)

and jl(x) is the spherical Bessel function of the first type,

pe =
√

EF + z, ph =
√

EF − z. (15)

In a first step, the free-particle Green function is derived
which is related to the structure constant describing the
structural properties of the investigated system. Using the
definition of the basis above, given by Eqs. (13), in terms
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of contour integrations—commonly used in MST—it can
be shown that the Green function of free particles has the
following form:

Gab
0 (z,�r,�r ′) = δab

∑
L

Ha
L(z,�r>)

[
ja
L(z,�r<)

]×
, (16)

where

Ha
L(z,�rn) ≡ −ipaha

L(z,�rn) ≡ −ipaha
l (parn)YL(r̂n). (17)

Here we used the notation r< = min(r,r ′), r> = max(r,r ′)
with the choice of Im{pe} > 0 and Im{ph} > 0; a,b denote
the electron, hole indices; and he

l (x) = h+
l (x) is the Hankel

function of the first type, while hh
l (x) = −h+

l (x). We defined
the × operator for any arbitrary function f as f a

L (z,�rn)× ≡
fl(parn)YL(r̂n)∗. Therefore, it is clear that Gab

0 is diagonal in
indices a and b, and the hole part of the free-particle Green
function can be obtained from its electronic part,

Ghh
0 (z; �r,�r ′) = −Gee

0 (−z; �r,�r ′). (18)

B. Scalar relativistic Bogoliubov–de Gennes equations

Nowadays almost all electronic structure codes are built
around what is called the “scalar relativistic” approximation,
where the mass-velocity and Darwin terms are properly taken
into consideration, but the spin-orbit coupling is neglected.
Consequently, to be able to thoroughly compare our results
with normal-state electronic structure calculations, a scalar
relativistic generalization of the BdG theory is needed.
To arrive at such a theory, one needs to start from the
relativistic Dirac-Bogoliubov–de Gennes (DBdG) equations
already worked out in the literature [27,28]. An analogous
scalar relativistic form of the BdG equations can be obtained
quite straightforwardly by neglecting not only the spin-orbit
coupling term but all relativistic corrections to the pairing
potential as well. By suppressing the explicit dependence on
the complex energy, on a log scale (x = ln r) these coupled
equations for the radial part—since both the potential and the
pairing potential are spherically symmetric—can be written as
follows:

d

dx
Qe

l (x) = −Qe
l (x) + Ue

l (x)P e
l (x) + ex�(x)P h

l (x), (19a)

d

dx
P e

l (x) = P e
l (x) + exBe(x)Qe

l (x), (19b)

d

dx
Qh

l (x) = −Qh
l (x) + Uh

l (x)P h(x) − ex�∗(x)P e
l (x),

(19c)

d

dx
P h

l (x) = P h
l (x) + exBh(x)Qh

l (x), (19d)

where the wave functions are defined as(
P e

l (x)

P h
l (x)

)
= ex

(
ul(x)

vl(x)

)
, (20)

and

Ue
l (x) = l(l + 1)

exBe(x)
+ ex[V (x) − z], (21a)

Uh
l (x) = l(l + 1)

exBh(x)
+ ex[V (x) + z], (21b)

Be(x) = 1 + z − V (x)

c2
, (21c)

Bh(x) = 1 − z + V (x)

c2
. (21d)

In MST, the scattering matrices and the scattering solutions
are obtained by matching the solutions of the above equations
inside the muffin-tin sphere to the solutions outside.

C. Single-site scattering

After performing the necessary integrations in the
Lippmann-Schwinger equation (12) and using the basis de-
fined in Eqs. (13) together with the definition of the free-
particle Green function of Eq. (16), two different scattering
solutions can be obtained and written in the following matrix
form:

R
n,ab
L (z,�rn) = ja

L(z,�rn)δab +
∑
L′

Hb
L′(z,�rn)tn,ba

L′L (z), (22)

where t
n,ab
L′L (z) is the single-site t matrix which is diagonal

in L,L′ indices for potentials with spherical symmetry.
Equation (22) implies that an electronlike (holelike) solution
to the Lippmann-Schwinger equation may have a holelike
(electronlike) component as well. If the incoming wave is
electronlike, the solution outside the muffin-tin sphere can be
written as

Re
L(z,�r) =

(
jl(per) − ipe teel (z)h+

l (per)

iph the
l (z)h+

l (phr)

)
Ylm(θ,φ), (23a)

and if the incoming wave is holelike, it can be expressed as

Rh
L(z,�r) =

(
−ipe tehl (z)h+

l (per)

jl(phr) + iph thh
l (z)h+

l (phr)

)
Ylm(θ,φ). (23b)

It should be noted that these equations are different not only
in the electron-hole components, but also in the appropriate
energy dependence as well through pe and ph. As mentioned
earlier, the t matrix can be obtained by matching the outside
scattering solutions and the regular solutions inside the muffin-
tin sphere at the boundary, which is described in more details
in the Appendix.

Using the particle-hole symmetry [4], it can be easily proved
that

the
l (−z) = t ehl (z), (24a)

t eel (−z) = −thh
l (z). (24b)

These symmetry relations are independent from the actual
form of �(r) and V (r) in the superconducting muffin-tin
sphere.

D. Multisite scattering, generalized Faulkner-Stocks formula

A rather convenient property of the KKR method is that
it allows a transparent decoupling of the potential (described
by its scattering matrix) and the structural properties of the
system of scattering centers (atoms). Similarly to the normal
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case [26], using the well-known expansion of plane waves into
spherical Bessel function and spherical harmonics (Bauer’s
identity [26]) and the definition of the free-particle Green func-
tion given by Eq. (16), the free, real-space structure constants
to describe the structural properties can be constructed as

G
nm,ab
0,LL′ (z) = δab4π

∑
L′′

iL−L′−L′′
Ha

L′′(z, �Rnm)CL′
LL′′, (25)

where �Rnm is the vector pointing from site n to site m and CL′
LL′′

are the usual Gaunt coefficients [26].
The scattering matrices, the matrices of the structure

constant, and the scattering path operator can be introduced in
a quasiparticle-site-angular momentum representation,

t(z) = {tn,ab
LL′ (z)δnm

}
, (26)

G0(z) = {Gnm,ab
0,LL′ (z)(1 − δnm)

}
, (27)

τ (z) = {τnm,ab
LL′ (z)

}
, (28)

where the τ (z) SPO can be determined from the single-site t

matrix and the real-space structure constant, similarly to the
normal state in the supermatrix formalism,

τ (z) = [t(z)−1 − G0(z)]−1. (29)

For periodic systems in KKR theory, it is possible to write
the above equations in reciprocal space, which allows one to
obtain the SPO as a function of the wave number and the
energy. Finding the poles of the SPO as a function of �k and
ε gives the electronic band structure. Butler described a one-
dimensional version of KKR [29], which is often used as a
testbed for new ideas within the theory. This has been done in
Ref. [30], where a one-dimensional model of the Bogoliubov–
de Gennes–KKR theory has been presented. However, since
translational invariance is broken at the interface, to be able
to calculate physical properties on surfaces and interfaces, we
follow the derivation of a full real-space Green function, and
make use of two-dimensional periodicity later.

In the normal-state MST, it had been shown by Faulkner and
Stocks [31] that the Green function can be obtained from the
scattering path operator and from the scattering solutions. The
derivation can be followed step by step. First, the full Green
function was evaluated for the case of |�rn| > Sn, |�rm| > Sm

and the result for the site-diagonal part of the Green function
can be written in an analogous form as well,

G(z) = {Gnm,ab
LL′ (z)

}
= Z(z,�r)τ (z)Z(z,�r)× − Z(z,�r)J(z,�r)×, (30)

where we used the following matrix notation (F = Z,or J):

F(z; �r) ≡ {Fn,ab(z; �r)}
≡ {[f n,ab

1 (z; �r), f n,ab
2 (z; �r), f n,ab

3 (z; �r), . . .
]}

, (31a)

and the corresponding adjoint vector,

F (z; �r)× ≡ {F̃n,ab (z; �r)×
} ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
f̃

n,ab
1 (z; �r)×

f̃
n,ab
2 (z; �r)×

f̃
n,ab
3 (z; �r)×

...

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (31b)

where

J ab
l (z,r) = ja

l (z,r)δab, (32a)

Zab
l (z,r) =

∑
c

Rac
l (z,r)

[
t−1
l

]cb
(z), (32b)

Z̃ab
l (z,r) =

∑
c

[
t−1
l

]ac
(z)R̃cb

l (z,r), (32c)

Rab
l (z,r) = J ab

l (z,r) + Ha
l (z,r)tab

l (z), (32d)

R̃ab
l (z,r) = J ab

l (z,r) + tab
l (z)Hb

l (z,r). (32e)

To calculate physical quantities, we have to continue the
Green function inside the muffin-tin spheres by using the solu-
tions of the scalar relativistic BdG equations (19), as described
in details in the Appendix. The formulas given above can
be applied to surfaces and interfaces quite straightforwardly
following the idea of the so-called screened KKR (SKKR)
formalism described in Refs. [24,25]. This formalism makes
use of the two-dimensional (2D) periodicity of the layers
by introducing 2D lattice Fourier-transformed versions of
Eqs. (26)–(28); in particular, the SPO, which looks like the
following:

τ (z,�k||) = [t(z)−1 − G0(z,�k||)]−1. (33)

Furthermore, a special reference system is used to obtain
structure constants that are localized in real space. In the super-
matrix formalism we used above, the screening transformation
(described in detail in Ref. [25]) can be written in a way that
is formally exactly the same as it was presented in Sec. III of
Ref. [24]. Thus the whole formalism can be derived for layered
systems with two-dimensional periodicity and applied as the
SKKR method prescribes.

To perform fully self-consistent calculations for S/N sys-
tems, it is necessary to calculate the charge density and the
anomalous density for layer I , which can be obtained from the
2D lattice Fourier-transformed version of the Green function
given by Eq. (30):

ρI (�r) = − 1

π

∫ ∞

−∞
dε

∫
BZ

d2k||ImTrL
[
f (ε)Gee,II+

LL (ε,�r,�k||)

+ [1 − f (ε)]Ghh,II+
LL (ε,�r,�k||)

]
, (34a)

χI (�r) = − 1

2π

∫ ∞

−∞
dε[1 − 2f (ε)]

×
∫

BZ

d2k||ImTrLG
he,II,+
LL (ε,�r,�k||). (34b)

III. COMPUTATIONAL DETAILS

In this section, we describe the technical details of the
calculation of quasiparticle spectrum for a real superconduct-
ing heterostructure using the BdG-SKKR method outlined in
Sec. II.

The geometry of our system builds up from two-
dimensional translational invariant layers. The system com-
prises three regions: (i) semi-infinite bulk (Nb); (ii) the inter-
face region that—in our case—consists of six superconducting
layers (Nb), various number of normal-metal layers (Au), and
three layers of empty spheres; (iii) and semi-infinite vacuum.
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The Nb has the body-centered-cubic (bcc) crystal structure
with a lattice parameter a = 3.3 Å. Here we do not try to
investigate the effect of matching different lattice structures
on the quasiparticle spectrum. Thus, for simplicity, we assume
bcc epitaxial growth for the Au overlayers and the Nb/Au
bcc(100) heterostructure will be investigated.

As we mentioned in Sec. I, we do not calculate self-
consistently the �eff(r) pairing potential; only the normal-state
calculation is performed self-consistently to obtain the Veff(r)
effective potential. We do this to simplify our first calculations,
and because it has been shown in Ref. [9] that a good guess
of the self-consistent pairing potential can be the following
average:

� = 1

VWS

∫
VWS

�eff(r)dr, (35)

where VWS is the volume of Wigner-Seitz cell. Consequently,
we treat the � averaged pairing potential as an adjustable
parameter. Since � is the experimentally observed gap (the
gap is measured from the Fermi level), in principle, it should
be set to equal the experimental value [32]. However, with
this value of the � [orders of magnitude smaller (meV)
than the electronic energies (eV) involved in a normal-state
band structure calculation], many layers are necessary to see
its effect on the bands crossing (not just near the Fermi
level), which significantly increases the computational time.
Therefore, a model � is used here to explore the quasiparticle
spectrum. The conclusions we draw, however, do not depend
on the size of the � parameter.

Similarly to normal-state electronic structure calculations,
single-site t matrices are obtained for each layer, where the
� averaged pair interactions can be different on each layer,
just as the atomic potentials. In our model, a finite, constant �

pairing potential is assumed on the Nb layers and � = 0 Ry
on the Au overlayers.

In practice, we obtain the t matrix and the wave functions
in the following way: first, the radial scalar relativistic BdG
equations (19) are integrated outwards up to the radius of the
muffin-tin sphere with different starting values to obtain the
Rab

l (ε,r). The matching to the scattering solutions (details in
the Appendix) yields the t matrix. Then the Hab

l (ε,r) irregular
wave function is calculated similarly by an integration inwards,
starting at the muffin-tin radius. The integrations are performed

with a predictor-corrector algorithm [26] on a logarithmic
scale with 721 radial mesh points in the muffin-tin sphere. To
obtain the normal self-consistent potential Veff(r), the energy
integrals are performed by sampling 16 points on a semicircle
contour in the upper complex energy plane. The calculations
are carried out within the atomic sphere approximation with an
angular momentum cutoff of lmax = 2. We use 2450 k points
for integration over the Brillouin zone to calculate the DOS of
bulk Nb.

In what follows, we calculate the DOS and the Bloch
spectral function (BSF) which is equivalent to the quasiparticle
spectrum. In all of the following plots, the energy is measured
in units of Rydbergs and k in units of π/a. The contour plots
of the spectral functions are calculated in 400 energy points ×
265 k points.

IV. RESULTS

The BSF is defined as AB(ε,�k) =∑n δ[ε − εn(�k)] and can
be calculated directly from the Green function. In a layered
system for layer I , this can be expressed as

AI
B(ε,�k||) = − 1

π
ImTr

∫
d3rG+

II (ε,�r,�k||). (36)

Since the BSF is equivalent to the quasiparticle spectrum,
drawing a contour plot of the BSF as a function of energy
along specified directions of �k is a powerful tool to visualize
the quasiparticle states. In a layered system, this can be done
for each layer, based on Eq. (36). The spectral functions were
calculated by adding a small imaginary part of 0.0005 Ry to
the energy.

A. DOS of bulk Nb

To test our procedures and to show the effect of the �

pairing potential on a bulk system (Nb), we first performed
calculations for the case of bulk niobium using the values
�Nb = 0 Ry and �Nb = 0.01 Ry. The DOS can be calculated
from the BSF D(ε) = ∫ AB(ε,�k||)d2k||. The particle-hole
symmetry implies that the density of the holelike states is
just the reflection of the density of electronlike states to the
Fermi energy. This is indeed the case in our calculations, as
can be seen in Fig. 1 for the case of �Nb = 0 Ry (left panel).

FIG. 1. (Color online) DOS (arbitrary units) of bulk Nb (EF = 0.713 Ry) in the case of �Nb = 0 Ry (left panel) and �Nb = 0.01 Ry (right
panel). The blue line corresponds to the density of electronlike states and the red line corresponds to the density of holelike states.
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Contour plot of A(k,ε)  for layer 8 (Au)
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Contour plot of A(k,ε)  for layer 9 (Au)
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Contour plot of A(k,ε)  for layer 18 (Au)
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Contour plot of A(k,ε)  for layer 53 (Au)
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FIG. 2. (Color online) Contour plot of the BSF (normal-state band structure) from the “middle” of the Au layers for different thicknesses
of the Au: 3 Au layers (top left panel), 9 Au layers (top right panel), 24 Au layers (bottom left panel), and 93 Au layers (bottom right panel).

If �Nb is nonzero, a gap appears around the Fermi level and
the size of the gap equals the value of �Nb.

B. Normal-state band structure of Nb/Au heterostructures

To demonstrate the power of our theory for an inhomoge-
neous system, we apply it to study the system of Au overlayers
on Nb(100). Foremost, we made calculations for the normal
state, for two reasons: first, to obtain self-consistent potentials
and work functions for the BdG calculations, and second, it is
important to explore the features in the normal-state electronic
structure to later understand the quasiparticle spectrum we are
planning to calculate. Therefore, self-consistent calculations
were performed for systems containing a semi-infinite Nb,
an additional 6 Nb layers, and subsequently 3, 9, 24, and 93
Au layers. In Fig. 2, we show the contour plot of the BSF
for a layer that we considered to be in the “middle” of the
appropriate sample and for a layer in the bulk Nb (seen in
Fig. 3, top left panel). It should be mentioned that the latter is
just the projection of the bulk spectral function on the (100)
plane and it represents the corresponding projection of the bulk
band structure. The plots are restricted in energy to the range
of [−0.05 Ry, 0.05 Ry] (later we will choose �Nb to equal this
value, and solve the BdG equations within this energy range).
When Fig. 2 is viewed as a sequence, one can immediately
recognize the signatures of confinement. Where the DOS in
the bulk Nb is low, the states in the Au are confined, as they
cannot scatter into the Nb, and on the other side the system
is limited by vacuum. In regions where the DOS is high in
the Nb, the states in the Au are smeared out, as here the
appropriate electrons can scatter more easily into the other side
of the interface. The confined states in the Au, therefore, can
be regarded as quantum-well (QW) states. The confinement

causes a roughly 2π/L sampling (where L is the thickness of
the Au sample) of the Au band structure. It can be seen from the
figure that as L increases, the QW bands become denser and
denser. As L approaches infinity, the bulk electronic structure
of Au is recovered in the middle of the sample.

For a fixed number of Au layers, one can investigate the
layer dependence of the electronic structure. This is illustrated
for the system with 9 Au layers in Fig. 3. First, we have to
notice that the QW bands do extend into the self-consistent
Nb layers, as these layers show signatures of both the bulk
Nb and the confined states of Au. Surprisingly, around the
actual interface, there is a very sharp horizontal band, which
can be seen only at the interface layers and quickly disappears
further away. It is present neither in the bulk Nb nor in the Au
electronic structure, and, therefore, it may be regarded as an
interface state.

C. The quasiparticle spectrum of Nb/Au heterostructures

We now consider the solution of the BdG equations
described in the theory section. We model the pair potential
in the inhomogeneous Nb(100)/Au(100) system by assigning
a constant value �Nb = 0.05 Ry to the Nb layers and a
constant �Au = 0 Ry for the Au layers (and the same to
the empty sphere and vacuum layers). The results of the
calculation are shown in Fig. 4. Similarly to the normal state,
first we show results for layers in the middle of the systems
considered. However, we do not show any result for the bulk
spectral function because it is exactly zero in the energy
range of the bulk superconducting gap. What can be seen
immediately is that there is a superconducting gap even in the
Au layers. This gap must have been induced by the vicinity
of the Nb because �Au = 0 Ry. Examining the details of the
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Contour plot of A(k,ε)  for bulk Nb
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Contour plot of A(k,ε)  for layer 6 (Nb)
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Contour plot of A(k,ε)  for layer 12 (Au)
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Contour plot of A(k,ε)  for layer 16 (Vac)
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FIG. 3. (Color online) Contour plot of the BSF (normal-state band structure) for different layers. In the interface region, there are 6 Nb
layers, 9 Au layers, and 3 vacuum layers.

quasiparticle spectrum, especially the one corresponding to
the sample with 9 and 24 Au layers, reveals that not only one,
but in fact several, gaps are opened. This is in strong contrast
to bulk superconductors, where the quasiparticle states can be
obtained from the electronic ones by mirroring them to the
Fermi energy and opening up a gap. Our result modifies this
picture so that the proximity of a superconductor in the studied

heterostructures induces the mirroring of the electronic bands,
and opens up a gap—which is significantly smaller than the
one in the bulk—at each band crossing. This is valid for those
band crossings as well that are not directly at the Fermi level
but within the �Nb energy range. In the case of the Nb/Au
system—due to the QW states in the normal state—the result
is a sort of oscillating quasiband in Fig. 4. This is a speciality

Contour plot of A(k,ε)  for layer 8 (Au) w. BdG
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Contour plot of A(k,ε)  for layer 9 (Au) w. BdG
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Contour plot of A(k,ε)  for layer 18 (Au) w. BdG
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Contour plot of A(k,ε)  for layer 53 (Au) w. BdG
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FIG. 4. (Color online) Contour plot of the BSF (quasiparticle spectrum calculated from BdG equations) from the “middle” of the Au layers
for different thicknesses of the Au: 3 Au layers (top left panel), 9 Au layers (top right panel), 24 Au layers (bottom left panel), and 93 Au layers
(bottom right panel).
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Contour plot of A(k,ε)  for layer 3 (Nb) w. BdG
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Contour plot of A(k,ε)  for layer 6 (Nb) w. BdG

0  0.1  0.2  0.3  0.4  0.5

k

−0.04

−0.02

0

 0.02

 0.04

ε

Contour plot of A(k,ε)  for layer 12 (Au) w. BdG
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Contour plot of A(k,ε)  for layer 16 (Vac) w. BdG
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FIG. 5. (Color online) Contour plot of the BSF (quasiparticle spectrum calculated from BdG equations) for different layers in the system

consisting of 6 Nb layers, 9 Au layers, and 3 empty sphere layers.

of the Nb/Au system; other systems may not look so clean.
The induced gap is opened between the mirrored branches of
the interface state as well. However, in contrast to the QW
states, the interface states do shift quite significantly upwards
in energy, and these states still disappear rather quickly away
from the interface. It should be noted as well that those regions
of the spectrum which were more or less smeared out in the
normal state now sharpened up. This is the consequence of the
opening of the superconducting gap in the Nb: the states, where
scattering into was allowed before, have now disappeared.

In a quasiclassical picture, one expects dispersionless ABS.
However, this is not what the quasiparticle bands are showing.
What we find is that the dispersion of the k-dependent ABS
can be understood from the features of QW states in the
normal state, as it was described above. In conventional
superconductivity, the gap is assumed to be k independent,
while in our calculations the obtained energy gap strongly
depends on the two-dimensional k. This is quite surprising,
considering the fact that our calculations involved only a totally
conventional superconductivity scenario. This is in even larger
contrast to the result of Suvasini et al. [9], who obtained only
a very weak k dependence of the gap in bulk Nb. In this
sense, our results show similarities between the physics of
conventional superconductor–normal-metal heterostructures
and unconventional superconductivity.

Further interesting features of the quasiparticle spectrum
are revealed if we analyze the spectrum layer by layer for a
fixed system size (6 Nb and 9 Au layers; see Fig. 5). Just as
the QW states overlapped with the Nb layers in the normal
state, they still do in the superconducting state. However, as
the quasiparticle states in the Au show a much smaller gap
than the one in the Nb, these overlapping states lessen the
gap in the Nb layers next to the Au interface. By performing
further calculations, where the interfacial Nb layers were

more numerous, we found that this effect decays quickly,
but can be observed up to 15 layers. In the other side of the
interface, in the Au layers, the induced gap remains constant
for each layer. Therefore, an induced superconductivity may
be observed in the Au overlayers. This is in accord with the
experimental observations, where it was found that the whole
Nb/Au system is superconducting (a common Tc has been
obtained experimentally in Refs. [10,11]). Cooper pairs can
be found in the whole system, and the induced gap—which
appeared in the quasiparticle spectrum in each of the Au
layers—can be interpreted as a consequence of an effective
electron-phonon coupling in the Au overlayers caused by the
semi-infinite Nb. Quite surprisingly, in our calculations we
did not find any layer dependence of the induced gap. This
can be attributed to the fact that we did not consider the
layer dependence of the pairing potential, or, in other words,
the layer dependence of the electron-phonon interaction was
neglected. Nevertheless, the size of the gap does change with
the thickness of the system, as can be seen in Fig. 5 and also is
summarized in Fig. 6. It shows a fast decay; however, it cannot
be fitted well by an exponential function.

It is also useful to mention that for k = 0, the spectrum of
the ABS is comparable with the results of one-dimensional
model calculations, and the Andreev energy levels show the
similar 1/L dependence which were also obtained in Ref. [19].
However, we emphasize that this property is the consequence
of the roughly 2π/L sampling connected to the QW states
and cannot be regarded as an universal feature for every S/N
heterostructure.

D. Surface states

Metallic surfaces often exhibit a Shockley-type surface
state. The energy of such states is located in a relative band
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FIG. 6. Induced gap on the Au layers as a function of the thickness
of the Au, extracted from results similar to that shown in Fig. 4.

gap of the bulk, normal-state band structure and usually has a
parabolic dispersion, and therefore such electrons behave like
a nearly free two-dimensional electron gas. Surface states are
easily accessible to spectroscopy with photoemission, since
they are often located near the Fermi energy. Therefore, it
is interesting to study such surface states once the material
becomes superconducting.

We calculated such Shockley-type surface state from
the BdG equations in the case of the investigated Nb/Au
heterostructure along the direction ky = 0. It should be
emphasized that this surface state is entirely fictitious, as this
surface is of an Au(100) in the bcc lattice structure. First,
setting the �Nb = 0 Ry (see the left panel of Fig. 7), the
surface state can be observed in the normal-state electronic
structure. While applying a finite �Nb pairing potential does
open up a gap in the Au, just as we discussed earlier for the
case of the kx = ky direction, no gap opens at the crossing of
the surface state bands, indicating that it does not couple to the
superconductor. This effect can be attributed to the fact that
obviously the surface state is quite localized to the top layers
of the metal surface and is mainly isolated from the bulk states.
Consequently, they do not take part in the Andreev scattering
process and thus they do not have a gap in the spectrum, as
can be seen in Fig. 7.

As we indicated earlier, an opposite behavior could be
observed for the interface state, which is localized to the
Nb/Au interface. The energy of these states shifts upwards.
This can be explained by the stronger interaction between the

superconductor and the normal metal that resulted in a larger
gap than in the QW states.

V. SUMMARY

In this paper, we have presented material-specific calcula-
tions for an s-wave superconductor–normal-metal heterostruc-
ture. Based on first-principles BdG equations, a computer
code was developed which allows us to study the nature of
the Andreev bound states related to the proximity effect in
normal-metal–superconductor heterostructures.

Here we have extended the SKKR method for the solution of
the KSBdG equations (1), which allows one to investigate the
quasiparticle spectrum of superconducting heterostructures.
In order to compare our results with normal-state electronic
structure calculations, a scalar relativistic generalization of
the BdG equations within multiple scattering theory was also
provided. Formally, the generalized Faulkner-Stocks formula,
given by Eq. (30), is the main result of this paper.

To illustrate the power of this method, it was applied
to Nb/Au heterostructures. For simplicity, Au overlayers of
bcc(100) lattice structure on a Nb bcc(100) host have been
investigated. While such material is not likely to exist for
larger Au thicknesses, by assuming a layer-by-layer growth,
it resulted in an easily understandable system with quantum-
well states. The effect of the superconducting host on the
quasiparticle spectrum of Au overlayers can be more easily
identified by these states than on a more complex band
structure of a real material. Calculations for a more realistic
geometry will be published elsewhere.

We showed that the QW states (that we found to exist in
the normal-state band structure calculations) become bound
Andreev states due to Andreev scattering. The major result
of our investigations is that the ABS have dispersion, which
can be obtained only by developing the BdG-SKKR method.
We also found that the proximity of a superconductor in the
studied heterostructures induces the mirroring of the electronic
bands, and opens up a gap at each band crossing, and the
gaps are strongly k dependent. We have seen that this induced
gap remains constant for each layer for a given Au thickness;
however, the size of the gap decays as function of the Au
thickness. For k = 0, the one-dimensional model calculations
of the Andreev energy levels [19] are recovered for those
heterostructures where the nearly free electron approach is

Contour plot of A(k,ε)  for layer 15 (Au) w. BdG
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Contour plot of A(k,ε)  for layer 15 (Au) w. BdG
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FIG. 7. (Color online) Contour plot of the BSF in the ky = 0 direction corresponding to the last layer of Au. The Au sample consisted of 9
layers. The quasiparticle spectrum was calculated from the BdG equations. �Nb = 0 Ry is used on the left panel and �Nb = 0.05 Ry is used
on the right panel.
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applicable. We also investigated the properties of the surface
state at the Au surface and found that the gap does not appear
in the energy spectrum of these states, probably because they
are localized to the surface and consequently do not take part
in the Andreev scattering process.
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APPENDIX: MATCHING THE WAVE FUNCTIONS

The boundary conditions, at the muffin-tin sphere boundary,
can be expressed as follows (a = e,h) for the radial part of the

wave function:

rmtR
a
l (r = rmt ) = Aa

l P
a,(1)
l (x = xmt ) + Ba

l P
a,(2)
l (x = xmt ),

(A1)

rmt

d

dr

[
rRa

l (r)
]∣∣

r=rmt

= Aa
l

d

dx
P

a,(1)
l (x)

∣∣
x=xmt

+ Ba
l

d

dx
P

a,(2)
l (x)

∣∣
x=xmt

, (A2)

where P
a,(1)
l (x) and P

a,(2)
l (x) are the regular solutions of the

scalar relativistic BdG equations (19) inside the muffin-tin
sphere, and rmt is the radius of the muffin-tin sphere (xmt =
ln rmt ). We emphasize that there are two independent regular
and two independent irregular solutions of Eqs. (19).

The matching conditions can be written in matrix form:

Mae = be, Mah = bh, (A3)

where

ae =

⎛⎜⎜⎜⎝
Ae

l

Be
l

t eel

the
l

⎞⎟⎟⎟⎠, ah =

⎛⎜⎜⎜⎝
Ah

l

Bh
l

tehl

thh
l

⎞⎟⎟⎟⎠, (A4)

be =

⎛⎜⎜⎜⎝
rmtjl(permt )

0

rmtjl(permt ) + r2
mtp

ej ′
l (p

ermt )

0

⎞⎟⎟⎟⎠, bh =

⎛⎜⎜⎜⎝
0

rmtjl(phrmt )

0

rmtjl(phrmt ) + r2
mtp

hj ′
l (p

hrmt )

⎞⎟⎟⎟⎠, (A5)

M =

⎛⎜⎜⎜⎜⎝
P

e,(1)
l (xmt ) P

e,(2)
l (xmt ) ipermth

+
l (permt ) 0

P
h,(1)
l (xmt ) P

h,(2)
l (xmt ) 0 −iphrmth

+
l (phrmt )

∂xP
e,(1)
l (xmt ) ∂xP

e,(2)
l (xmt ) irmtp

e(1 + permt∂r )h+
l (permt ) 0

∂xP
h,(1)
l (xmt ) ∂xP

h,(2)
l (xmt ) 0 −irmtp

h(1 + phrmt∂r )h+
l (phrmt )

⎞⎟⎟⎟⎟⎠. (A6)

The regular wave functions can be continued inside the muffin-tin sphere as follows:
(i) for electronlike incoming wave,

r

(
Ree

l (r)

Rhe
l (r)

)
= r

(
jl(per) − ipeteel h+

l (per)

iphthe
l h+

l (phr)

)
→ Ae

l

(
P

e,(1)
l (r)

P
h,(1)
l (r)

)
+ Be

l

(
P

e,(2)
l (r)

P
h,(2)
l (r)

)
, (A7)

(ii) for holelike incoming wave,

r

(
Reh

l (r)

Rhh
l (r)

)
= r

(
−ipetehl h+

l (per)

jl(phr) + iphthh
l h+

l (phr)

)
→ Ah

l

(
P

e,(1)
l (r)

P
h,(1)
l (r)

)
+ Bh

l

(
P

e,(2)
l (r)

P
h,(2)
l (r)

)
, (A8)

and the irregular solutions as

r

(
J ee

l (r) 0

0 J hh
l (r)

)
→
(

I ee
l (r) I eh

l (r)

Ihe
l (r) Ihh

l (r)

)
. (A9)

Also, to calculate the Green function, given by Eq. (30), the determination of the normalized irregular solution, inside the
muffin-tin sphere, is indispensable. To satisfy the matching conditions, one needs to use the linear combination of the regular
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solutions, P
a,(1)
l (x), P

a,(2)
l (x), and the irregular solutions, P̃

a,(1)
l (x), P̃

a,(2)
l (x):(

I ee
l (x)

Ihe
l (x)

)
= Ãe

l

(
P

e,(1)
l (x)

P
h,(1)
l (x)

)
+ B̃e

l

(
P

e,(2)
l (x)

P
h,(2)
l (x)

)
+ C̃e

l

(
P̃

e,(1)
l (x)

P̃
h,(1)
l (x)

)
+ D̃e

l

(
P̃

e,(2)
l (x)

P̃
h,(2)
l (x)

)
, (A10)

(
I eh
l (x)

Ihh
l (x)

)
= Ãh

l

(
P

e,(1)
l (x)

P
h,(1)
l (x)

)
+ B̃h

l

(
P

e,(2)
l (x)

P
h,(2)
l (x)

)
+ C̃h

l

(
P̃

e,(1)
l (x)

P̃
h,(1)
l (x)

)
+ D̃h

l

(
P̃

e,(2)
l (x)

P̃
h,(2)
l (x)

)
, (A11)

where ⎛⎜⎜⎜⎝
Ãe

l

B̃e
l

C̃e
l

D̃e
l

⎞⎟⎟⎟⎠ = N−1

⎛⎜⎜⎜⎝
rmtjl(permt )

0

rmt (1 + permt∂r ) jl(permt )

0

⎞⎟⎟⎟⎠, (A12)

⎛⎜⎜⎜⎝
Ãh

l

B̃h
l

C̃h
l

D̃h
l

⎞⎟⎟⎟⎠ = N−1

⎛⎜⎜⎜⎝
0

rmtjl(phrmt )

0

rmt

(
1 + phrmt∂r

)
jl(phrmt )

⎞⎟⎟⎟⎠, (A13)

N =

⎛⎜⎜⎜⎜⎝
P

e,(1)
l (xmt ) P

e,(2)
l (xmt ) P̃

e,(1)
l (xmt ) P̃

e,(2)
l (xmt )

P
h,(1)
l (xmt ) P

h,(2)
l (xmt ) P̃

h,(1)
l (xmt ) P̃

h,(2)
l (xmt )

∂xP
e,(1)
l (xmt ) ∂xP

e,(2)
l (xmt ) ∂xP̃

e,(1)
l (xmt ) ∂xP̃

e,(2)
l (xmt )

∂xP
h,(1)
l (xmt ) ∂xP

h,(2)
l (xmt ) ∂xP̃

h,(1)
l (xmt ) ∂xP̃

h,(2)
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⎞⎟⎟⎟⎟⎠. (A14)
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