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We discuss how to locate critical points in the Berezinskii-Kosterlitz-Thouless (BKT) universality class by
means of gap-scaling analyses. While accurately determining such points using gap extrapolation procedures is
usually challenging and inaccurate due to the exponentially small value of the gap in the vicinity of the critical
point, we show that a generic gap-scaling analysis, including the effects of logarithmic corrections, provides
very accurate estimates of BKT transition points in a variety of spin and fermionic models. As a first example,
we show how the scaling procedure, combined with density-matrix-renormalization-group simulations, performs
extremely well in a nonintegrable spin-3/2 XXZ model, which is known to exhibit strong finite-size effects.
We then analyze the extended Hubbard model, whose BKT transition has been debated, finding results that are
consistent with previous studies based on the scaling of the Luttinger-liquid parameter. Finally, we investigate an
anisotropic extended Hubbard model, for which we present the first estimates of the BKT transition line based on
large-scale density-matrix-renormalization-group simulations. Our work demonstrates how gap-scaling analyses
can help to locate accurately and efficiently BKT critical points, without relying on model-dependent scaling

assumptions.
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I. INTRODUCTION

Quantum phase transitions in one-dimensional (1D) sys-
tems are one of the most remarkable consequences of
the enhanced role of quantum fluctuations in reduced di-
mensions [1-3]. While systems with discrete symmetries,
such as the Ising model, can still undergo phase transi-
tions associated with the spontaneous breaking of those
symmetries, 1D systems with continuous symmetries, such
as spin-rotation or particle-number conservation, cannot get
spontaneously broken under rather general conditions due
to the Mermin-Wagner-Hohenberg theorem [4,5]. Similarly
to classical two-dimensional systems at finite temperature,
1D quantum systems endowed with continuous symmetries
can still undergo a quantum phase transition according to
the Berezinskii-Kosterlitz-Thouless (BKT) mechanism [6,7].
Such transitions play a key role in the physics of 1D spin,
bosonic, and fermionic models, which find incarnations as
diverse as different magnetic compounds [3,8], and ultracold
atom and molecule gases trapped in optical lattices [3,9-11].

In the BKT scenario, the phase transition point is conformal,
and in its vicinity the gap closes exponentially as a function of
the microscopic parameters [12]. This feature makes numerical
investigations of BKT transitions challenging, as very large
systems sizes are required in order to avoid severe finite-size
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effects. Usually, techniques from field theory can be used to
pin down the transition point. These include methods that use
correlation functions to track the scaling dimension of relevant
operators close to transition point [1,13,14], or entanglement
entropies to monitor the behavior of the central charge of
the system [15,16]. While these approaches have provided
notable insights in the context of several lattice models, it is
highly desirable to develop and benchmark alternative methods
based on the spectral properties, which do not rely on any
a priori knowledge of the underlying field theory, and at
the same time can cope well with logarithmic corrections.
Moreover, gap-based methods are, from the computational
side, potentially less demanding than evaluating correlations
functions, and precise bounds on the error can be given when
employing variational techniques such as the density-matrix-
renormalization-group (DMRG) [17-19].

Here, we show how refined gap-scaling analyses provide
accurate insights on phase diagrams of 1D spin and fermionic
models undergoing a BKT transition. Our technique relies on
a recently proposed scaling ansatz for the gap close to the
critical point, which was successfully applied to the ¢-V-V’
model of spinless fermions in 1D (equivalent to the spin-1,/2
XXZ chain with next-nearest neighbor S*S* interactions) [20]
and the 1D Bose-Hubbard model [21]. All our calculations
are done using DMRG, which allows us to accurately and
efficiently determine the gaps needed for the scaling analyses.

As a first step in our study, in Sec. II, we apply the scaling
approach to an § = 3/2 XXZ chain, where the exact location
of the BKT point is known, but it is difficult to pinpoint numeri-
cally owing to strong finite-size corrections. Using simulations
with both periodic and open boundary conditions, we show that
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the scaling method is able to locate the transition point with
errors at the ~1% level in the presence of strong logarithmic
corrections (for periodic boundary conditions). In Sec. III, we
discuss the feasibility of our approach for extended Hubbard
models including nearest-neighbor interactions, where the
existence and location of a BKT transition separating a spin-
density-wave and a bond-ordered phase has been extensively
debated [22-31]. In Sec. IV, we investigate an anisotropic
version of the EHM, the anisotropic-extended-Hubbard model,
where spin-rotation symmetry is explicitly broken. For the
latter model, we complement the gap scaling analysis with
a correlation-function method based on the scaling of the
Luttinger parameter, which provides an independent way to
locate the transition point. Finally, we recapitulate the main
results and discuss possible extensions of our work in Sec. V.

II. SPIN-3/2 XXZ CHAIN

Spin chains are prototypical models of one-dimensional
(1D) quantum systems [3]. The first spin chains introduced
were of the Heisenberg (also known as XXX) type [32]:

= JZS 81, (1

where J € R and S are matrlces belonging to some finite-
dimensional representation of SU(2). In the antiferromagnetic
case, J > 0, and for general finite-dimensional representations
of SU(2), Haldane [33-35] conjectured that the ground state
should be gapped for integer values of S and gapless (belong-
ing to the SU(2); Wess-Zumino-Novikov-Witten universality
class) for half-integer values of S. This conjecture has been
extensively verified analytically and numerically (see, e.g.,
Refs. [36-38]).

The XXZ chain, on the other hand, is a generalization of
the Heisenberg one that is obtained by introducing anisotropy
along one, namely, the z axis. The Hamiltonian can be cast in
the form

ﬂ:-JZ SIST L+ SIST - LSiS). (@)

JEj+1

where J, is the anisotropy coefficient (we set J = 1 as our
energy unit in what follows). For half-integer S, J, =1 is
a critical point separating a conformal phase (a Tomonaga-
Luttinger liquid, —1 < J; < 1) from a Néel phase (J, >
1) [38-40]. This phase transition is known to belong to the
BKT universality class, and, in the vicinity of the critical point,
the low-energy spectrum is well-described by a sine-Gordon
model [1,2,41]:

2
A= / { [(8 <V) +K(8x(p)2]+gcos(«/_g0)}

where vy is the sound velocity, ¥ and ¢ are conjugated density
and phase bosonic fields, K is the Luttinger-liquid parameter,
related to the compactiﬁcation radius Ry = 1/R, of the fields
viaK =1/ (471R ) [2], and the last term gives rise to a finite
mass in the spectrum for K < 1/2.

While for the § = 1/2 integrable case numerical meth-
ods work relatively well locating J, = 1 as the transition
point [2,42], strong logarithmic corrections arise for S >
3/2, making the numerical detection of the BKT point
difficult [43]. In certain cases, precise knowledge of the
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underlying logarithmic scaling of K in terms of perturbed
conformal field theories can be provided, making methods
based on correlation-function applicable [38,44]. As the latter
rely on ad hoc assumptions based on the symmetry content
of the theory at the critical point, they cannot, in general, be
extended to other models.

It is our aim in the following to investigate how gap
scaling methods, which do not rely on field theoretical
assumptions, can be employed to locate BKT transitions
points. In this context, the S = 3/2 XXZ model represents
an ideal benchmark, since, on the one hand, the location of
the transition point is known, and, on the other hand, strong
logarithmic corrections need to be incorporated, providing a
strict test for the reliability of the method itself. This scaling
analysis used here was applied to the S = 1/2 integrable
case in Ref. [20], and the critical point was found to be at
J{ =1.01 £ 0.005, in agreement with the exact result.

Following Refs. [20,21], we locate the critical point of the
BKT transition in the S = 3/2 case by studying the scaling
of the spin excitation gap A(L) = Eo(L) — E{(L) on finite
systems, where E,(L) is the ground state energy at size L
in the magnetization sector ) j Sj. = p. We have performed
DMRG simulations both with periodic (PBCs) and open
(OBCs) boundary conditions: in the former (latter) case, we
consider system sizes in the range L € [48,72] ([60,280]),
keeping up to m = 1200 (768) Schmidt states in the finite-size
sweeping procedure. We have performed six (four) finite-size
sweeps and achieved a truncation error less, in all cases,
than 107> (107®). The typical errors in the gap are of order
2 x 107#(107®) for PBCs (OBCs). By comparing the results
for different boundary conditions, we gain insights on the
effects of translational invariance, which is broken under
OBC:s. In both cases, we consider anisotropies in the range
J, €[0.95,1.05]. In Figs. 1(a) and 1(b), we plot the energy
gap A(L) as a function of J_, for different system sizes L, and
for PBCs and OBCs, respectively. In the chains with PBCs
[Fig. 1(a)], the gap exhibits a rather smooth behavior with
changing J, and increasing L. For OBCs [Fig. 1(b)], a dip
occurs very close to the critical point. As expected, under both
boundary conditions, the magnitude of the gap decreases as L
increases for J, < 1.

The method described in Refs. [20,21] is based on the
following ansatz for the scaling of the gap in the vicinity of

the phase transition:
1
L )=F(3). o
2InL+C L

where F is a scaling function, C is a nonuniversal constant
to be determined, and £ is the correlation length. This scaling
ansatz is an attempt to include known logarithmic corrections
to the gap in a BKT transition [45] and reduces to the analog
relation for the resistance (which also vanishes exponentially)
in the charge-unbinding transition of the two-dimensional
classical Coulomb gas at the critical point [46]. In the latter
case, the universal nature of the coefficient in front of In(L)
can be traced back to the logarithmic corrections of the
Weber-Minnhagen finite-size scaling relation of the dielectric
function, which is, in turn, related to the superfluid stiffness
(see Refs. [46] and [47]). For isotropic chains, conformal
field theory calculations show that the prefactor in front of

LA(L) x (1 +
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FIG. 1. (Color online) Energy gaps for the spin-3/2 XXZ chain
with PBCs (a) and OBCs (b), as a function of J, and for different
values of L. In both cases, the gap axis has a logarithmic scale for
sake of clarity.
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the logarithm is universal and equals 2 [44,48,49]. Note
that in a BKT transition, the correlation length diverges
as € ~ A~ ~exp(b/\/J, — J£), where b is independent of
J.. Because of the divergence of the correlation length at
the critical point, the function F(£/L) becomes system-size
independent, and thus the data for the rescaled gap A*(L) =
LA(L)[1+ 1/21In L + C)] for different system sizes L will
be independent of L for J, < J¢. Additionally, plots of A*(L)
versus & /L should collapse onto a unique curve representing
F. In order to plot the scaling collapse, one can rewrite the
relation in Eq. (3) by taking the logarithm of the argument of
F and considering an alternative function f with argument
xy, =InL —Iné&.

We determine the critical point by adjusting the parameters
J{, b, and C such that the best collapse of the curves A*(L)
versus x is obtained. To do that, we represent f through an
arbitrary high-degree polynomial and fit it on a dense grid
of values of J{, b, and C, to the calculated values of A*(L)
and x;. The desired parameters J{, b, and C are selected
by minimizing the sum of squared residuals S(JS,b,C) of
the fit. We ensure that the results are robust to the choice of
polynomial and the interval of values of J; used in the fits.

The results of this procedure applied to the data in Fig. 1 are
summarized in Fig. 2. In Fig. 2(a), we present a density plot
corresponding to S(J7,b,C) for the XXZ model with PBCs,
which exhibits a clear minimum at JS = 0.989 £0.01, b =
0.58 £0.04, and C = —4.5 £ 0.2. In Fig. 2(b), we display
A*(L) versus x, for the given set of parameters that minimize
S(J¢,b,C). The data clearly collapse onto a unique curve
representing the function f. The sensitivity of the results to
the selection of the interval of values of J, used in the fit is also
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FIG. 2. (Color online) (a) Contour plot of the sum of squared residuals S(J¢,b,C) for the XXZ model with PBCs. The arrow signals the
location of the minimum value of S. The black lines are equally spaced contour lines where S is constant. (b) Best collapse of the data for A*(L)
vs x; corresponding to J¢ = 0.989, b = 0.58, and C = —4.5. The inset shows the rescaled gap vs J.. A similar analysis for the system with
OBCs is presented in panels (c) and (d). J. and A*(L) are presented in units of J, while b and S are shown in units of J!/? and J2, respectively.
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included in the error bars such that our results are independent
of its choice. In the inset, the curves for the rescaled gap versus
J, and different system sizes merge around the critical value
J{ found through the minimization procedure. This indicates
that the ansatz in Eq. (3) describes well the numerical data
around the critical point.

In Fig. 2(c), we present S(J;,b,C) for the XXZ model
with OBCs, which exhibits a minimum at J = 0.995 £ 0.004,
b = 0.50 = 0.02. In this case, the values of C that minimize
S are arbitrarily large; in practice this means that logarithmic
corrections to the gap are suppressed when OBCs are used.
In Fig. 2(d), we show A*(L) versus x; for the given set
of parameters that minimize S(J¢,b,C). As in the case with
PBCs, the data are seen to collapse to a unique curve. In this
case, it is also verified that the curves of the rescaled gap
versus J, merge around the critical point retrieved from the
minimization procedure.

Our results for the critical anisotropy coefficient J;, both
for OBCs and PBCs, are very close to the analytical result,
indicating that the data and critical behavior of the gap are well
described by Eq. (3). The use of OBCs has clear advantages.
First, from the DMRG perspective, the use of OBCs generally
allows simulating larger system sizes while keeping lower
errors in the energy gaps: for the same accuracy obtained
keeping m states and OBCs, one requires of the order of m?
states in the case of PBCs. Second, for the present model, the
logarithmic corrections are suppressed when OBCs are used,
thus effectively reducing the number of parameters that need
to be determined in the minimization of S. While the precise
reason for this suppression is not known, we note that the same
behavior occurs in the Bose-Hubbard model [21]. We speculate
that, for those models, certain marginal operator contribution
vanishes at the transition point, akin to what happens at the
BKT point of the Majumdar-Ghosh chain [50].

III. ONE-DIMENSIONAL EXTENDED HUBBARD MODEL

We now extend our analysis of the gap-scaling method to
multicomponent models, where the interplay between different
energy scales can make the pinning down of BKT transitions
even more complex than in single-species models. The first
example we consider is the 1D extended Hubbard model
(EHM), defined by the Hamiltonian:

H=—1 @&, +He)+ U Ajhj,

J:o J

+V2ﬁjﬁj+1y 4)
J

where ¢; . (with o= 1, |) is a spin-1/2 fermionic anni-
o
Za fjq,withilj, = é},[,@j’d, is the site occupation operator;
t is the hopping amplitude (+ =1 sets our energy scale
in what follows), U is the on-site interaction coefficient,
and V parametrizes nearest-neighbor interactions. The phase
diagram of this model has recently attracted quite some
interest [22-30] due to the presence of a spontaneously
dimerized phase supporting bond [or, more precisely, bond-
charge-density-wave (BCDW)] order in the vicinity of the
U =2V line, with U, V > 0. The BCDW phase intervenes

hilation operator, ¢;  is its creation counterpart, and A; =
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FIG. 3. (Color online) Spin gaps for the EHM as functions of V
for different values of L, with U = 4 and OBCs.

between a charge-density-wave (CDW) and a spin-density-
wave (SDW) phase, present, respectively, when V > U and
U > V. While, across this line, the low-energy charge sector
of the theory remains gapped, the spin sector undergoes a
BKT transition between SDW and BCDW at a critical value
of V. This critical point has been debated, in particular, to
discern whether a BCDW phase exists and, if it does, in which
parameter regime.

Here, we apply the gap-scaling analysis to the spin gap
at U =4 in order to detect the SDW to BCDW phase
transition. The subsequent BCDW-CDW transition point is
located around V = 2.16 [24]. The best estimates for the BKT
between SDW and BCDW phases based on the finite-size
scaling of the Luttinger parameter (under the assumption that
logarithmic corrections are negligible) and on entanglement
witnesses predict VEXT ~ 1.88-2.02 [13,24,30,51]. We have
performed DMRG simulations with chains up to L = 180
sites (with OBCs), keeping up to 1024 states and up to eight
finite-size sweeps in order to get truncation errors of order 10~7
(and a corresponding error in the spin gap of order 10~°). In
Fig. 3, we plot our results for the spin gap A, as a function
of V, where A, (L) = Ef o(L) — Er 1(L), with E, ,(L)is the
ground state energy at size L for a system with p particles and
magnetization g. For the smallest values of V reported in the
plot, A, decreases with increasing system size, while it does
not seem to change with system size for the largest values of
V reported. This suggests that the spin gap closes at some V,
in the thermodynamic limit, but does not quite help locating
that point.

In Fig. 4, we summarize the results obtained through
the gap-scaling procedure based on the data in Fig. 3. The
minimum of the function S(V,,b,C), displayed in Fig. 4(a),
is located at V., =2.08 £0.02, b =1.054+0.04, and C =
—31 % 1. The data produce the collapse presented in Fig. 4(b)
and the inset shows that the data merge around V ~ 2.08,
in agreement with the critical value obtained from the
minimization procedure.! We note that our critical strength

"We have also checked that using the scaling ansatz proposed in
Ref. [27] gives results compatible with the present one at the 1%
level.
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FIG. 4. (Color online) (a) Contour plot of the sum of squared
residuals S(V,,b,C) for the EHM model with OBCs. (b) Best collapse
of the data for A’ (L) vs x; corresponding to V. = 2.08, b = 1.05,
and C = —31. The inset shows the rescaled gap vs V.

V. is above the estimates in Refs. [13,24], which means that
a reduction of the size of the BCDW region is observed,
in agreement with Ref. [30]. Nevertheless, our estimate is
still consistent with the presence of an intervening BCDW
state in the phase diagram. We conclude that the gap scaling
analysis, combined with numerical results on smaller chain
sizes with respect to the ones employed in correlation-function
and entanglement-witness studies, provides a rather accurate
figure of merit for the phase transition point (at a one-percent
level).

IV. ONE-DIMENSIONAL ANISOTROPIC
EXTENDED HUBBARD MODEL

A simple variant of the EHM is its anisotropic version, the
so-called anisotropic extended Hubbard model (AEHM) [52]

ﬁ =—t Z(C;,UCJ_H’U + HC) +U Zﬁj»TﬁjnL

J:o J

FVA =) ijohjie

Jo

FVA+8)Y (jaijg +hj a5
J

whose main difference with respect to Eq. (4) is in the last
two terms, which reduce the original SU(2) spin symmetry
to U(1), for any § = 0. We again set the hopping amplitude
t =1 as our energy scale, and focus on the § = 0.2 case.
The phase diagram of this model has been explored by com-
bining exact-diagonalization (L < 14) and level-spectroscopy
techniques [53], and supports a finite bond-spin-density-wave
(BSDW) for U < 3, intervening between a SDW and a CDW
for U > V and V > U, respectively, as in the EHM [52,54].

Here, we are interested in the BKT transition separating the
BSDW and the CDW for both U = 1.5 and 2.5. We determine
the transition points by means of DMRG simulations of
much larger system sizes than those accessible to exact
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FIG. 5. (Color online) Spin gaps for the AEHM as functions of
V for different values of L, § = 0.2, U = 1.5, and OBCs.

diagonalization calculations [52]. For the gap analysis, we
have performed DMRG simulations in lattices with up to
L = 200 sites, keeping up to 512 states and up to 8 finite-size
sweeps in order to get truncation errors of order 5 x 1077
(and a corresponding error in the gap of order 107°). The
results are illustrated in Fig. 5. In addition, we have evaluated
the transition point by a complementary technique based on
correlation functions that we describe below.

In Fig. 6, we report the results of our scaling analysis
based on the data in Fig. 5. The minimum of the function
S(V.,b,C), displayed in Fig. 6(a), is located at V, = 0.82 £
0.03,b =3.2+0.1,and C = —18.8 &= 0.2. The data produce
the collapse presented in Fig. 6(b) and its inset shows a region
around V ~ 0.82 where the data merge, as expected from
Eq. (3). The same procedure applied to § = 0.2 and U = 2.5
yields V., = 1.14£0.02, b = 7.0+ 0.5, and C = —49 £ 0.5.
These critical parameters are in agreement with the phase
diagram from level spectroscopy measurements presented in
Refs. [52,54]. However, our estimates are extracted from much
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FIG. 6. (Color online) (a) Contour plot of the sum of squared
residuals S(V,,b,C) for the AEHM model with OBCs, U = 1.5 and
8 = 0.2. (b) Best collapse of the data for A} (L) vs x;, corresponding
to V., =0.82,b =3.2,and C = —18.8. The inset shows the rescaled
gap vs V.
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larger system size data, and, hence, we expect our results to be
more accurate.

A. Transition point from the spin Luttinger parameter

In order to have a quantitative benchmark for the gap-
scaling analysis for this model, we have investigated the
location of the BKT transition between BSDW and CDW
using correlation-functions methods based on the underlying
field-theoretical structure [52]. At the transition point, the
spin Luttinger parameter flows to the BKT separatrix, that is,
K$ = 1. In finite size samples, it is possible to extract Ks(L)
by monitoring the behavior of the spin structure factor:

1 o ) s
S = 2 M (sisi = (SisE). ©
j.t
with S; = (ij,4 — 7 )/2, and applying the relation [1]:
Ks(L) = Lw, (7
which stems from the low-momentum behavior of the structure
factor in a gapless phase, S;(¢) ~ gKs/m [55]. For each
system size, taking the smallest numerically available g =
2 /L, this leads to Eq. (7). In order to avoid edge effects,
we have performed DMRG simulations on samples with
anti-periodic-boundary conditions? for various system sizes up
to L = 48, using up to 10 finite-size sweeps and 1800 states per
block. The truncation and energy error were kept smaller than
1072 (5 x 107) for L < 40 (L > 40). Single-site expectation
values (such as (A;,)) were found to be translationally
invariant up to 10~/ corrections at most. Results for Kg(V)
versus V for different system sizes are reported in Fig. 7(a).
For each system size, we fit the function K¢(V) with a
fourth-order polynomial, and determine the value of Vy(L)
such that Ks(L; Vy) = 1 [point at which the curves for Ks(V)
versus V cross the dashed line in Fig. 7(a)]. A finite-size-
scaling analysis is then carried out on V(L) in order to extract
the critical value of V in the thermodynamic limit by assuming
the scaling form

Vo(L) = Ve +apL™™, ®)

and performing a fourth-order polynomial fit using both
least-square and Nelder-Mead methods. In addition, we have
performed a linear fit using sizes L > 20 for comparison. The
results are illustrated in Fig. 7(b). For U = 1.5, we find that
V. = 0.81 &+ 0.04, where the error is estimated by comparing
the fitting procedure using different sets of system sizes and
different fitting techniques.

The critical point for U = 1.5 obtained using the Luttinger-
liquid parameter is consistent with the one from the gap-scaling
analysis. However, the accuracy achieved in the latter is
superior to that of the former approach. This because the
Luttinger-liquid-based approach involves: (i) a fit and an
extrapolation, and (ii) smaller system sizes, due to the need

2For L =4n,n € N, we observe stronger finite-size effects for
comparable system sizes, possibly due to the fact that the SDW phase
becomes frustrated.
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FIG. 7. (Color online) (a) Spin Luttinger parameter as a function
of V for different system sizes for the AEHM. The dashed line,
K =1, depicts the value of Ky at the critical point. (b) Scaling of
the value of V at which Kg = 1 for each system size vs 1/L. All
results reported are for U = 1.5 and § = 0.2.

to compute correlations avoiding boundary effects, than those
available in the gap scaling analysis. Furthermore, the gap
scaling analysis accounts for logarithmic corrections [see
Eq. (3)], which are difficult to incorporate in the scaling of
the Luttinger parameter.

V. CONCLUSIONS AND OUTLOOK

We have studied various BKT transitions by means of a
recently introduced gap-scaling analysis. Starting with the
spin-3/2 XXZ model, where the critical anisotropy is known
to be J, = 1, we ascertained the validity of the gap scaling
procedure. Using both PBCs and OBCs, we found excellent
agreement between the numerical results and the analytical
one. We have shown that the scaling ansatz in Eq. (3) describes
well the critical behavior of the gap data on finite systems, as
observed from the quality of the data collapse presented in
Figs. 2, 4, and 6. For the first time, we have successfully
applied the gap scaling methodology to extended Hubbard
models, where the interplay between different energy scales
in the system makes the determination of critical parameters
much more difficult than in spin models. In both the EHM
and AEHM, our results are consistent with, but in principle
more accurate (as they systematically include logarithmic
corrections) than, previous estimates obtained using other
techniques. We should stress that the critical parameters
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reported here for the transitions in the AEHM are the first
to be obtained since early exact diagonalization results in
small system sizes [52,54], which are usually affected by large
finite-size effects. We have also compared our results from
the gap scaling analysis with those from a method based on
the determination of the Luttinger liquid parameter across the
transition. They were found to be in good agreement, but the
gap scaling analysis is more accurate.

We stress that the gap scaling analysis discussed here offers
significant advantages over other methods to detect BKT
transitions used in the literature. First, the scaling ansatz in
Eq. (3) includes logarithmic corrections to the gap, which
are generally significant in BKT transitions [45,46]. Second,
this methodology can be indistinctly applied to transitions
involving the closing of either a charge or a spin gap, i.e., one
can equally well study problems involving spins, fermions,
bosons, multicomponent systems, etc. This constitutes an
advantage over well established techniques such as level
spectroscopy, which, e.g., are hardly applicable to bosonic
models [21] where the Hilbert space grows extremely fast as
a number of components, preventing an accurate finite-size
scaling analysis. Third, the gap is a quantity that, for large
system sizes, can be obtained in different unbiased computa-
tional techniques, such as DMRG and quantum Monte Carlo
approaches. Fourth, in DMRG (and usually in quantum Monte
Carlo) simulations, the energies used in the determination of
the gaps are variational, i.e., they are bounded and their quality
can be easily assessed.

The demonstration of the aforementioned generality paves
the way toward additional studies of models whose location
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of a BKT transition is still debated. With comparable com-
putational resources as the ones employed here, one could
investigate the so-called asymmetric Hubbard model [56,57],
where a BKT transition has been predicted separating a
two-channel LL phase and a SDW in the repulsive regime, but
where numerical and analytical approaches predicted different
transition point locations [56,58]. Moreover, a computation-
ally more demanding application could be the identification
of different pairing regimes in three- and four-component
Hubbard models. There, in the absence of SU(/N) symmetries,
a rich pairing pattern has been numerically and analytically
put forward [59]. However, a precise estimate of the transition
lines is challenging due to strong spin-charge mixing, and
as such, the gap scaling method could potentially serve as
an unbiased estimate for the transition between the different
pairing regimes in case an exact BKT nature can be proven.
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