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Model for overscreened Kondo effect in ultracold Fermi gas
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The feasibility of realizing the overscreened Kondo effect in ultracold Fermi gas of atoms with spin s � 3
2

in the presence of a localized magnetic impurity atom is proved realistic. Specifying (as a mere example)
a system of ultracold 22Na Fermi gas and a trapped 6Li impurity, the mechanism of exchange interaction
between the Na and Li atoms is elucidated and the exchange constant is found to be positive (antiferromagnetic).
The corresponding exchange Hamiltonian is derived, and the Kondo temperature is estimated at the order of
500 nK. Within a weak-coupling renormalization group scheme, it is shown that the coupling renormalizes to
the non-Fermi-liquid fixed point. An observable displaying multichannel features even in the weak-coupling
regime is the impurity magnetization that is negative for T � TK and becomes positive with decreasing
temperature.
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I. INTRODUCTION

The experimental discovery of Bose-Einstein condensation
back in 1996 opened the way to study a myriad of fundamental
physical phenomena that were otherwise very difficult to
realize (see Ref. [1] for a review). A few years afterward,
fabrication and control of a cold gas of fermionic atoms has
been realized [2–23]. This revelation opens the way to study
the physics of a gas of fermions with (half integer) spin s � 3

2 .
The main axis of the present study relates to the question
whether the occurrence of this new state of matter exposes a
new facet of Kondo physics.

The single-channel Kondo effect in cold atom physics has
been studied in Refs. [24–28]. In Ref. [29], the possibility
of observing multichannel Kondo effect has been explored
for ultracold bosonic atoms coupled to an atomic quantum
dot, as well as for a system composed of superconducting
nanowires coupled to a Cooper-pair box. Recently, non-Fermi-
liquid behavior has been predicted for gold monatomic chains
containing one carbon atom as a magnetic impurity [30].

In this work we propose a realization of the non-Fermi-
liquid Kondo effect in cold atom systems. The idea is to
localize an atom with spin S in a Fermi gas of cold atoms
of spin s � 3

2 trapped in a combination of harmonic and
periodic potentials. If an exchange interaction J s · S with
J > 0 exists, the underlying Kondo physics is equivalent to the
multichannel Kondo effect with large effective number Ns of
spin- 1

2 channels [31] that easily satisfies the Nozières-Blandin
inequality Ns > 2S, leading to over-screening [32]. To be
concrete, we consider the 6Li atom [33] (atomic spin S = 1

2 ) as
an impurity trapped in a Fermi gas of 22Na atoms (atomic spin
s = 5

2 ). An ultracold gas of atoms of 23Na may be achieved
by first laser cooling of 22Na atoms, followed by sympathetic
cooling in a mixture with 23Na atoms [20].

The paper is organized as follows: In Sec. II we describe
the optical potential which localizes ultracold atoms. Atomic
quantum states in the optical potential are described in Sec. III.
Exchange interaction between atoms of Na and Li is derived
in Sec. IV. In Sec. V we derive the Kondo Hamiltonian and get
Kondo temperature. The impurity magnetization is estimated
in Sec. VI. The results are summarized in Sec. VII. Analysis

of the exchange interaction between atoms of Na and Li is
relegated to the Appendix.

II. MODEL

Typically, ultracold Fermi gas is stored in optical dipole
traps that rely on the interaction between an induced dipole
moment in an atom and an external electric field, E(r,t). Such
oscillating electric (laser) field induces an oscillating dipole
moment in the atom. Usually, the trapping potential is formed
by three pairs of laser beams of wavelength ∼1 μm with the
use of an acousto-optic modulator, creating a time-averaged
optical potential [34–39]. This technique gives an anisotropic
three-dimensional (3D) trap with trapping potential

V3D(R) =
∑

i=1,2,3

V i
1D(Xi), (1)

where X1,2,3 are Cartesian coordinates of an atom. Each term
on the right-hand side contains a high-frequency wave which
forms the oscillating potential and a low-frequency wave
which forms the harmonic potential [34–38] (see Fig. 1):

V i
1D(Xi) = α lim

T →∞
1

T

∫ T

0
dt |2Ef (Xi,t) + 2Ei(Xi,t)|2

= Vf sin2(kf Xi) + Vi(kpXi)
2, (2)

where α is the electric polarizability of atoms, Vf = 2α|Ef |2,
and Vi = 2α|Ei |2 are the lattice potential depths which can
be controlled by varying the intensities Ef or Ei of the laser
field or the low-frequency waves. The potential parameters are
tuned such that

V1k
2
1 � V2k

2
2 � V3k

2
3 � Vf k2

f . (3)

To be concrete, we henceforth consider fermionic 22Na
atoms (spin 5

2 ) and 6Li impurities (spin S = 1
2 ). The potential

well is filled with 22Na atoms and with sparsely distributed
6Li atoms. We adopt that the Na and Li atoms are trapped
by electromagnetic waves with different wavelengths and
amplitudes. The short-wavelength well V Li

f should be deep
enough to trap the Li atom, whereas V Na

f is so shallow that it
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(a)

(b)

FIG. 1. (Color online) (a) Filling of the energy levels in the
potential well V i

1D(Xi) (2) by fermionic atoms. The filled area denotes
the occupied energy levels (blue lines), whereas the energy levels
in the unfilled area are unoccupied. (b) Short-wavelength potential
V i

1D(Xi) (purple curve) trapping the lithium atom (the red circle).

cannot trap the Na atoms. As a result, we get an atomic Fermi
gas with a low concentration of localized magnetic impurities.

III. ATOMIC QUANTUM STATES IN THE
POTENTIAL WELL

We consider a neutral atom (nucleus plus core) as a
positively charged rigid ion (with filled shell) and one electron
on the outer orbital (i.e., 3s orbital in the Na atom or 2s

orbital in the Li atom). The positions of the ion and the outer
electron are respectively specified by vectors R and r (Fig. 2).
In the adiabatic approximation (which is natural in atomic
physics), the wave function of the atom is a product of the
corresponding wave functions �(R) and ψ(r) describing the
stationary states of the ion and the outer electron. In order

R1 R2

r1�R1 r2�R2r1�R2 r2�R1

r2�r1

O

FIG. 2. (Color online) Two atoms. Position of electron of the
lithium or sodium atom is r1 or r2; the radius vector between the
nuclei is R.

to find the wave functions and energies of the 22Na and 6Li
ions in the anisotropic 3D potential well, we need to solve the
following Schrödinger equation for �(R) = �Li,Na(R):

− �
2

2M

∂2�(R)

∂R2
+ V3D(R)�(R) = ε�(R). (4)

Consider first �Li(R). When the corresponding energy level
εimp is deep enough, the wave function of the bound state near
the potential minimum at R = 0 can be approximated within
the harmonic potential picture as

�Li(R) = 1(
πa2

f

)3/2 exp

(
− R2

2a2
f

)
, (5)

where

kf af =
√

�ωf

V Li
f

, ωf =
√

2V Li
f k2

f

MLi
, εimp = 3�ωf

2
.

Second, consider the wave function of the 22Na ions, for which
the shallow potential wells are not deep enough to form bound
states. For studying the Kondo effect we need to focus on
quantum states at energies ε within the deep well close to εF ,
that is, ε � V Na

f . In that case we can neglect the “fast” potential
relief V Na

f sin2(kf x), and the solution of Eq. (4) becomes

�Na
n (R) =

∏
i=1,2,3


(i)
ni

(Xi), n = (n1,n2,n3). (6a)

Denoting ξi ≡ Xi/ai , the wave function 
(i)
ni

(Xi) is


(i)
ni

(Xi) = 1(
πa2

i

)1/4

1√
2ni ni!

Hni
(ξi)e

−ξ 2
i /2, (6b)

where Hn(ξ ) is the Hermite polynomial, ni = 0,1,2, . . . is
harmonic quantum number, and

kiai =
√

�ωi

Vi

, ωi =
√

2Vik
2
i

MNa
. (6c)

The corresponding energy levels are

εn1n2n3 =
∑

i=1,2,3

�ωi

(
ni + 1

2

)
. (7)

When ω1,2,3 are incommensurate, the energy levels are not
degenerate. The inequalities (3) imply ω1 � ω2 � ω3 � ωf .
The Fermi energy εF is such that εF � �ωf , hence the Fermi
gas is 3D.

The potential well is filled by 22Na atoms (fermions) and
one impurity atom 6Li. The latter occupies the lowest-energy
level (6) of the potential well and its wave function is well
concentrated around the point R = 0. Hence, regarding it as a
localized impurity is justified.

IV. EXCHANGE INTERACTION

When the distance between a 22Na atom and the 6Li
impurity is of the order of R0 (the atomic size), there is an
exchange interaction between their open electronic s shells
[40]. It includes a direct exchange term of strength Jd (due
to antisymmetrization of the electronic wave functions where
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electrons do not hop between atoms), and an indirect exchange
term of strength Jp (due to contribution from polar states,
where electrons can hop between atoms). Unlike the case
of a hydrogen molecule where the direct part dominates,
here both of them should be considered since their orders
of magnitude are found to be comparable. Evaluating the
exchange interaction between Na and Li atoms involves
four wave functions: Two of them, �Li(R) [Eq. (5)] and
�Na

n (R) [Eq. (6a)] pertain to the corresponding atoms as being
structureless particles in the optical potential (2). The other
two, ψNa(r) and ψLi(r), pertain to electronic wave functions of
the 3s orbital in Na and the 2s orbital in Li,

Jn,n′ =− 2

(2s + 1)(2S + 1)

∫
R12>R0

d3R1d
3R2

×V (R12)|�Li(R1)|2[�Na
n (R2)

]∗
�Na

n′ (R2), (8)

where R1 or R2 is the position of the ion of Li or Na, R12 =
|R1 − R2|. We assume here that R12 > R0, since Coulomb
repulsion between the electron clouds of the Na and Li atoms
prevents the atoms from approaching closer than R0 ≈ rNa +
rLi (which is approximated by the sum of the corresponding
atomic radii).

V (R) = Vd(R) + W 2
p (R)

U
,

where Vd(R) is a direct exchange interaction, Wp(R) is the
hybridization term, and U is a Coulomb blockade. Explicitly
they are (see Ref. [41] and the Appendix for details)

Vd(R12) =
∫

d3r1d
3r2ψLi(r1 − R1)ψNa(r2 − R2)

×ψNa(r1 − R2)ψLi(r2 − R1)

×
{

e2

r12
+ V12(R12) +

2∑
i=1

Vi(rii)

}
,

Wp(R12) = 1

2

∫
d3r

2∑
i=1

Vi(|r − Ri |)

×ψLi(r − R1)ψNa(r − R2),

1

U
= 1

UNa + εNa − εLi
+ 1

ULi + εLi − εNa
.

Here r1 or r2 is the position of the electron, rii = |ri − Ri |
and r12 = |r1 − r2|. V1(r) or V2(r) describes the electron-ion
interaction for Li or Na, and V12(R) is the interaction between
ions. εNa = −5.14 eV and εLi = −5.39 eV are single-electron
energies of the sodium and lithium atoms; UNa = 5.69 eV
and ULi = 6.01 eV are the Coulomb interactions preventing
two-electron occupation of the outer orbitals of atoms.

The electronic wave functions decrease rapidly when the
distance between the atoms exceeds the atomic radius, so that
the exchange interaction may be approximated by a pointlike
interaction. Moreover, the wave function �Li(R), Eq. (5), has
its maximum at R = 0 and it vanishes for R � af . The wave
function �Na

n (R), Eq. (6a), varies slowly on the distance scale
of af . Then |�Li(R)|2 can be approximated by the δ function.
Taking into account that 
(i)

ni
(0) = 0 for ni odd [see Eq. (6b)],

we get the following estimate of the exchange constant for

atoms near the Fermi level: Jn,n′ = J for all ni and n′
i even

and Jn,n′ = 0 otherwise, where

J = 2(gd + gp)

(2s + 1)(2S + 1)

(
3MNa

2π�2εF

)3/2 ∏
i=1,2,3

�ωi, (9)

where gd and gp are couplings of the direct and indirect
exchange interactions. Expressions for gd and gp in terms of
the potentials of the direct and indirect exchanges as well as the
explicit form for the exchange potentials are standard and can
be found in textbooks [see, e.g., Refs. [41–43] and Eqs. (A12)
and (A13) in the Appendix]. Numerical estimations yield gd ≈
0.0301 eV nm3 and gp = 0.1256 eV nm3. In Refs. [41,43]
it was shown that Jd > 0. Since Jp > 0 (always), the total
exchange interaction is antiferromagnetic.

V. KONDO HAMILTONIAN AND THE
KONDO TEMPERATURE

Equation (9) indicates that, due to symmetry of the atomic
wave function (6b), only atoms with even ni interact with the
impurity. Omitting the odd values of the quantum numbers
ni for brevity, we write the Hamiltonian of the system as
H = H0 + HK , where

H0 =
∑
nμ

εnc
†
nμcnμ, HK = J

(
S · s

)
. (10)

Here cnμ or c
†
nμ is the annihilation or creation operator of a

sodium atom in the state with the harmonic quantum numbers
n = (2n1,2n2,2n3) (where ni � 0 are integers), εn is given by
Eq. (7), μ denotes atomic spin projection, S is the impurity
spin, and

s =
∑

nn′,μμ′
c†nμtμμ′cn′μ′ ,

where t̂ is the vector of the spin-s matrices.
The density of states for the Hamiltonian H0 is

ρ(ε) =
∞∑

ν=0

δ(ε − εn) = ε2

8
ϑ(ε)

∏
i=1,2,3

(�ωi)
−1, (11)

where ϑ(ε) is the Heaviside theta function.
Within poor man scaling formalism for multichannel Kondo

effect, the dimensionless coupling j = Jρ(εF ) satisfies the
following scaling equation [32]:

∂j (D)

∂ ln D
= −j 2(D) + Nsj

3(D), (12)

with Ns = 2
3 s(s + 1)(2s + 1) being an effective number of

channels [31]. Initially, the bandwidth is D0 � D � T and
the initial value of j (D), j (D0) ≡ j0, is

j0 = g0

(2s + 1)(2S + 1)

√
εF

2

(
3MNa

4π�2

)3/2

.

The solution of Eq. (12) is

ln

(
D0

D

)
= 1

j0
− 1

j
+ Ns ln

j (1 − Nsj0)

j0(1 − Nsj )
. (13)

When D → 0, j (D) renormalizes to the weak-coupling fixed
point j ∗ = 1/Ns . When |j (D) − j ∗| � j ∗, the solution for
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FIG. 3. (Color online) TK , Eq. (15), as a function of TF for
D0 � εF .

j (D) reduces asymptotically to

j ∗ − j (D)

j ∗ = j ∗ − j0

j0

(
DT ∗

D0TK

)j∗

(14)

(see Ref. [44]), where

T ∗ = D0 exp

(
− 1

j ∗

)
, TK = D0 exp

(
− 1

j0

)
. (15)

The scaling equation (12) accounts for the evolution of j (D)
only when the atomic spin s � 3

2 . The Kondo temperature
(15) as a function of TF = εF /kB (where kB is the Boltzmann
constant) is shown in Fig. 3 for D0 � εF . It is seen that TK

changes from 60 to 450 nK for TF = 0.5–1.5 μK, so that the
ratio TK

D0
≈ 0.1–0.3 is really small, whereas T ∼ TK may be

experimentally reachable. Indeed, more than a decade ago,
40K atoms were cooled to a temperature of 50 nK [35]; later
the 133Cs atoms were cooled to a temperature of 40 nK [36,38].

VI. IMPURITY MAGNETIZATION

Having elaborated upon the theory, we are now in a
position to carry out perturbation calculations of experimental
observables. It is sometimes argued that the interesting
physics in the overscreened Kondo effect is exposed only
in the strong-coupling regime. Here we show that peculiar
behavior emerges also in the weak coupling regime. The
reason is that the weak-coupling fixed point j ∗ is small,
and in most cases, the initial value is j (D0) > j ∗. As the
temperature T is reduced toward TK , j (D) decreases toward
j ∗ and as a result, some physical observables display an
unusual dependence on temperature. Consider, for example,
the impurity magnetization Mimp(T ) = Mimp(T )B̂ in response
to an external magnetic field B. Experimentally it requires
immersing a small concentration ni of impurity atoms in the
gas of fermionic atoms. Within third order perturbation theory,
we have

Mimp = Bχ0T
∗

T

{
S

S + 1
− SNs

s + 1

[
j + j 2(1 − jNs) ln

(
D0

T

)]}
,

(16)

where

χ0 = g2
eμ

2
Bni

12T ∗ ,

ge ≈ 2 is the electronic spin g factor, and μB is the Bohr
magneton.

Due to the logarithmic terms, which, strictly speaking, are
not small either, the terms proportional to j 2 and j 3 are not
small as compared with j . Hence, expansion up to the third
order in j is inadequate. Instead, we derive an expression for
the impurity related magnetization in the leading logarithmic
approximation using the renormalization group equations (12).
The condition imposing invariance of the magnetization under
“poorman’s scaling” transformation has the form [44]

∂

∂D

[
j + j 2(1 − jNs) ln

(
D

T

)]
= 0. (17)

Equation (17) yields the scaling equation (12). The renormal-
ization procedure should proceed until the bandwidth D is
reduced to the temperature T . The expression for the impurity
related magnetization then becomes

Mimp = Bχ0T
∗

T
X(T ),

(18)

X(T ) = S

S + 1
− S

s + 1

j (T )

j ∗ .

The function X(T ) consists of two terms. The first one
describes the Zeeman interaction of the impurity with the
external magnetic field and results in Curie’s law. The second
one corresponds to the exchange interaction of the impurity
with atoms (the atomic magnetization is parallel to the external
magnetic field). When the exchange interaction of the impurity
is stronger than the Zeeman interaction, the function X(T ) is
negative and the impurity magnetization is antiparallel to the
external magnetic field. This occurs when j (T ) exceeds some
critical value jc,

jc = j ∗ s + 1

S + 1
.

Figure 4 illustrates X(T ) for different values of TF . It
is seen that at high temperatures when j (T ) > jc, X is
negative, and the impurity magnetization is antiparallel to
the external magnetic field. With reducing the temperature,
the effective coupling j (T ) reduces as well. At temperature
Tc satisfying j (Tc) = jc, X(T ) changes sign from negative for
T > Tc to positive for T < Tc. For the given parameter values,
Tc � TK and, strictly speaking, cannot be estimated within the
framework of the poor man’s scaling technique.

�c�

�b�

�a�

0.2 0.4 0.6 0.8 1.0
T�D0

�4

�3

�2

�1

0

X

FIG. 4. (Color online) The function X(T ), Eq. (18), for TF =
0.5, 1, and 1.5 μK [curves (a)–(c)]. The dots correspond to T = TK .
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VII. CONCLUSIONS

The non-Fermi-liquid Kondo effect can be accessed within
the realm of cold atom physics. Exchange Hamiltonian is
derived and scaling equations are solved for an ultracold gas of
22Na with 6Li impurity. The dimensionless coupling j is not
extremely small even though the coupling J , Eq. (9), is small.
Such over-screened Kondo effect by fermions of large spin
may be exposed even in the weak-coupling regime through
the temperature dependence of the impurity magnetization.
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APPENDIX: EXCHANGE INTERACTION

Here we expand upon the derivation of exchange constants
between 22Na and 6Li that are required to arrive at the Kondo
Hamiltonian (10). First we elucidate the direct exchange and
then the indirect one. As it turns out, both of them are positive
for realistic interatomic distance R12 and they are of the same
order of magnitude.

1. Direct exchange contribution

Let atoms of lithium and sodium be at positions R1 and R2,
with the distance between them R12 = |R1 − R2|. Then the
direct exchange interaction Vd(R12) between the atoms is (see
Ref. [29])

Vd(R12) =
∫

d3r1d
3r2ψLi(r1 − R1)ψNa(r2 − R2)

×ψNa(r1 − R2)ψLi(r2 − R1)

×
{

e2

r12
+ V12(R12) + V1(r11) + V2(r22)

}
. (A1)

Here r1 or r2 is the position of the electron (see Fig. 2),
rii = |ri − Ri | (i = 1,2) and r12 = |r1 − r2|. We assume here
that R12 > R0, since Coulomb repulsion between the electron
clouds of the Na and Li atoms prevents the atoms from ap-
proaching closer than R0 ≈ rNa + rLi (which is approximated
by the sum of the corresponding atomic radii). In Eq. (A1),
V1(r) or V2(r) describes the electron-ion interaction for Li
or Na, and V12(R) is the interaction between ions. When the
interatomic distance exceeds R0, we can write

V1(r) ≈ V2(r) ≈ −e2

r
, V12(R) ≈ e2

R
.

The function Vd(R) calculated numerically for the elec-
tronic wave functions ψNa(r) and ψLi(r) given by Eq. (A16)
is shown in Fig. 5 (dashed green curve). It is negative for
any R > R0 (where R0 ≈ 4.1 Å for the atoms of sodium and
lithium), so that the exchange interaction is antiferromagnetic.

V

Vp

Vd

4.5 5.0 5.5 6.0 6.5 7.0 7.5
R �Å�

�0.8

�0.6

�0.4

�0.2

0.0

V �eV�

FIG. 5. (Color online) Direct exchange interaction Vd(R)
[Eq. (A1), dashed green curve], indirect exchange interaction Vp(R)
[Eq. (A2), dashed and dotted blue curve], and the total exchange
interaction V (R) [Eq. (A5), solid red curve] as functions of the
distances R between the nuclei.

2. Indirect exchange contribution

Indirect exchange interaction between the atoms Na and Li
separated by distance R12 is

Vp(R12) =−W 2
p (R12)

U
, (A2)

where
1

U
= 1

UNa + εNa − εLi
+ 1

ULi + εLi − εNa
,

εNa = −5.14 eV and εLi = −5.39 eV are single-electron
energies of the sodium and lithium atoms, and UNa = 5.69 eV
and UAu = 6.01 eV are the Coulomb interactions preventing
two-electron occupation of the outer orbitals of atoms.

The hybridization term Wp(R) in Eq. (A2) is given explicitly
as

Wp(R) = 1

2

∫
d3r

{
V1(|r|) + V2(|r − R|)

}
×ψLi(r)ψNa(r − R). (A3)

The function Vp(R) calculated numerically for the elec-
tronic wave functions ψNa(r) and ψLi(r) given by Eq. (A16)
is shown in Fig. 5 (dashed and dotted blue curve). It is
always negative, so that the indirect exchange interaction is
antiferromagnetic.

3. Projecting the exchange interaction onto the states
with a given total spin

The exchange interaction Hamiltonian can be written as

Hex(R12) = −2V (R12)(s1 · s2), (A4)

where

V (R) = Vd(R) + Vp(R). (A5)

s1 or s2 is the spin operator for the outer s electron of the
lithium or sodium atom,

sj = 1

2

∑
σσ ′

d
†
jστ σσ ′djσ ′ ,

where τ̂ is a vector of the Pauli matrices, and djσ or d
†
jσ

is the annihilation or creation operator of electron with spin
σ =↑ , ↓.
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An atom of 6Li has the nuclear spin sLi = 1, so the quantum
state of an atom, |σ,μ〉, is described by projection of the nuclear
spin μ on the axis z and electronic spin σ . Antiferromagnetic
hyperfine interaction couples nuclear and electron spins in total
atomic spin S = sLi − 1

2 = 1
2 . The wave function |S,m〉 of the

state with the total spin S and the projection of the spin m on
the axis z is

|S,m〉 =
√

S + 1 − m

2(S + 1)

∣∣∣∣ ↑ ,m − 1

2

〉

−
√

S + 1 + m

2(S + 1)

∣∣∣∣ ↓ ,m + 1

2

〉
. (A6)

Projecting out the electronic spin operator s1 onto the
quantum states (A6), we get

s1 →
∑
mm′

|S,m〉〈S,m|s1|S,m′〉〈S,m′| = S
2S + 1

,

(A7)
S =

∑
mm′

Tmm′Xmm′
Li ,

where T̂ is a vector of the spin-S matrices,

Xmm′
Li = |S,m〉〈S,m′|.

Similarly, the nuclear spin of 22Na is sNa = 3, and the total
atomic spin is s = 3 − 1

2 = 5
2 . The wave function |s,m〉 of the

quantum state with the total spin s and projection m of the
spin on the z axis is given by Eq. (A6) with S → s. Then
projecting out the electronic spin operator s2 onto the quantum
states (A6), we get

s2 →
∑
mm′

|s,m〉〈s,m|s1|s,m′〉〈s,m′| = s
2s + 1

,

(A8)
s =

∑
mm′

tmm′Xmm′
Na ,

where t̂ is a vector of the spin-s matrices,

Xmm′
Na = |s,m〉〈s,m′|.

Finally, the exchange Hamiltonian (A4) takes the form

Hex(R12) =− 2V (R12)

(2s + 1)(2S + 1)
(s · S). (A9)

4. Derivation of the coupling J

Atoms of sodium and lithium are placed in the external
potential given by Eq. (1). The wave function �Li(R) of the
atom of lithium is given by Eq. (5), whereas the wave functions
�Na

νm0(R) of the atoms of sodium are given by Eq. (6a). Then
the coupling is

Jn,n′ =− 2

(2s + 1)(2S + 1)

∫
R12�R0

d3R1d
3R2V (R12)

× |�Li(R1)|2[�Na
n (R2)

]∗
�Na

n′ (R2), (A10)

where V (R) is given by Eq. (A5). The sign of Jn,n′ is chosen
in such a way that positive coupling strength corresponds to
antiferromagnetic interaction. The integration on the right-
hand side of Eq. (A10) is restricted by the condition R12 > R0,

since Coulomb repulsion between the electron clouds of the
Na and Li atoms prevents the atoms from approaching closer
than R0.

The function V (R) is negative for any R > R0, so that
the exchange interaction is antiferromagnetic. |V (R)| has its
maximum at some value R ∼ R0 and vanishes when R � R0.
The atomic wave functions �Li(R) and �Na

n (R) change slowly
at a range of R0. Therefore, the following approximations are
justified: (1) changing the limits of integration on the right-
hand side of Eq. (A10) from R0 � R12 < ∞ to 0 � R12 < ∞
and (2) approximating V (R) by a δ function,

V (R12) ≈−g0δ(R12),
(A11)

g0 =−4π

∫ ∞

R0

V (R)R2dR = gd + gp,

where gd and gp are couplings for the direct and indirect
exchange interactions,

gd =−4π

∫ ∞

R0

Vd(R)R2dR, (A12)

gp =−4π

∫ ∞

R0

Vp(R)R2dR. (A13)

Numerical estimates with electronic wave functions ψNa(r)
and ψLi(r) of the form of Eq (A16), V1(r) ≈ V2(r) ≈ − e2

r

and V12(R) ≈ e2

R
, yields gd ≈ 0.0301 eV nm3 and gp =

0.1257 eV nm3.
The Li wave function �Li(R) [Eq. (5)] has its maximum at

R = 0 and it vanishes for R � af . The wave function �Na
n (R)

[Eq. (6a)] changes slowly on the distance scale of af . Then
the function |�Li(R)|2 in Eq. (A10) can be approximated by
the δ function,

|�Li(R)|2 ≈ δ(R). (A14)

Substituting Eqs. (A11) and (A14) into Eq. (A10), we get the
following estimate of the exchange constant:

Jn,n′ = 2(gd + gp)

(2s + 1)(2S + 1)
�Na

n (0)�Na
n′ (0).

For the energy levels close to the Fermi level εF , �Na
n (0)�Na

n′ (0)
can be approximated as

�Na
n (0)�Na

n′ (0) ≈
(

3MNa

2π�2εF

)3/2 ∏
i=1,2,3

�ωi.

Then we can write

Jn,n′ ≈ J,

where J is given by Eq. (9).

5. Electronic wave functions ψNa(r) and ψLi(r)

The wave function of the outer electron in the atom of Na
or Li satisfies the Schrödinger equation,

− �
2

2me

�ψi(r) + Vi(r)ψi(r) = −εiψi(r), (A15)
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where i = 1,2 (i = 1 corresponds to the atom of lithium and
i = 2 denotes the atom of sodium), |εi | is the ionization energy
(ε1 = 5.1391 eV and ε2 = 5.3917 eV), me is the mass of
electron, and Vi(r) is the effective potentials of interaction
between the electron and the atomic core.

When the distance r from the nucleus exceeds the radius
of the inner orbitals (which is smaller than the atomic radius),
Vi(r) is of the Coulomb type,

Vi(r) ≈ −e2

r
.

The asymptotic behavior of ψi(r) is

ψi(r) ∼ (κir)(1/αi )−1e−κi r ,

where

κi =
√

2meεi

�
, αi = κirB, rB = �

2

mee2
.

κ1 = 1.1602 Å
−1

, α1 = 0.614 40, κ2 = 1.1884 Å
−1

, and α2 =
0.629 32.

The electronic cloud of the outer orbital is located mainly
out of the electronic cloud of the inner orbitals (which is about
1 Å for Li and Na). Therefore we will assume the following
expression for the wave functions:

ψi(r) = Ni(2κir)(1/αi )−1e−κi r , (A16)

where the normalization factor is

Ni =
√√√√ 2κ3

i

π�
( 2+αi

αi

) .
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