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Multiscale entanglement renormalization ansatz for spin chains
with continuously varying criticality
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We use the multiscale entanglement renormalization ansatz (MERA) to numerically investigate three critical
quantum spin chains with Z2 × Z2 on-site symmetry: a staggered XXZ model, a transverse field cluster model,
and the quantum Ashkin-Teller model. All three models possess a continuous one-parameter family of critical
points. Along this critical line, the thermodynamic limit of these models is expected to be described by classes
of c = 1 conformal field theories (CFTs) of two possible types: the S1 free boson and its Z2 orbifold. Our
numerics using MERA with explicitly enforced Z2 × Z2 symmetry allow us to extract conformal data for each
model, with strong evidence supporting the identification of the staggered XXZ model and critical transverse
field cluster model with the S1 boson CFT, and the Ashkin-Teller model with the Z2-orbifold boson CFT. Our
first two models describe the phase transitions between symmetry-protected topologically ordered phases and
trivial phases, which lie outside the usual Landau-Ginsburg-Wilson paradigm of symmetry breaking. Our results
show that a range of critical theories can arise at the boundary of a single symmetry protected phase.
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I. INTRODUCTION

Quantum spin models are an area of extensive theoretical
and numerical study, due to their relative simplicity and wide
descriptive power. Simple spin models can exhibit a variety
of exotic ground-state properties, such as topological order
[1] and symmetry-protected topological order [2]. Studying
the critical behavior that describes a system at the transition
point between two quantum phases can also be investigated
with quantum spin models but brings new challenges. At
these critical points, the models become gapless and many
of the exact results that have been proven for gapped systems
break down. In particular, for critical systems the correlation
length in the ground state diverges and the area law for
entanglement entropy is violated [3]. In the thermodynamic
limit, the behavior at the critical point is described by a
conformal field theory (CFT) [4,5].

A wide range of numerical methods have been developed
to study the behavior of quantum spin chains, including their
critical behavior, despite the difficulties in working with a
Hilbert space that grows exponentially in the chain length.
Numerical methods based on tensor networks [6,7] have been
highly successful in recent years as an efficient method for
studying a wide range of spin lattice models. In particular,
for one-dimensional (1D) gapped systems, methods based
on matrix product states are known to efficiently describe
ground-state properties [8]. However, this behavior does not
generalize to gapless systems [9] (although c.f. Ref. [10]). For
a tensor network description to naturally describe a critical spin
chain, it should capture the area law violation, and one such
description is the multiscale entanglement renormalization
ansatz [11] (MERA). The MERA has previously been shown to
accurately and efficiently reproduce conformal data of critical
spin chains [12–14].

In this paper, we use the MERA to numerically study three
related spin models along a line of criticality: a staggered XXZ
model, a transverse field cluster model [15], and the quantum
Ashkin-Teller model [16,17]. These models are of interest
because they have critical exponents that vary continuously as

a function of model parameters. All three models possess an
on-site Z2 × Z2 symmetry that will play an important role in
our analysis.

For the first two models of interest, the critical line
corresponds to a phase transition between a phase possessing
nontrivial symmetry-protected topological order (SPTO) for
this symmetry group [18] and a trivial phase. Such systems
are also of particular interest due to their connection to
measurement-based quantum computation [15,19,20]. There
has been extensive investigation into symmetry-protected
topological phases, but only a few studies have investigated
transitions out of them [21,22]. Such phase transitions are not
part of the usual Landau-Ginsburg-Wilson paradigm of phase
transitions because there is no broken symmetry on either side
of the transition. Despite the fact that the models we consider
here involve a transition between a fixed SPTO phase and the
trivial phase, the boundary is described by a range of critical
theories.

In contrast, the Ashkin-Teller model possesses a conven-
tional symmetry-broken phase and for that model the phase
transition of interest is between the symmetry-broken and
trivial phases. Again, a range of critical theories describe the
phase boundary.

The thermodynamic limit of these three models at their
critical points are described by a special class of CFT, namely
those with central charge c = 1. These CFTs do not correspond
to any member of the series of so-called minimal models
that have been the main focus of numerical research that
has used MERA to study CFTs [12,14]. This class of CFT
is characterized by a renormalization group with an exactly
marginal field, leading to a single parameter family of theories
that reproduces the continuously varying critical exponents of
the underlying spin models. By varying the coupling in the spin
models, we can tune the system along this line of criticality.
This continuous variation of scaling dimensions is a distinctive
feature of c = 1 CFTs [23].

Here, we show that the MERA allows us to extract confor-
mal data from all three models described above possessing a
continuous line of criticality, and show that these data agree
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with the expected c = 1 CFTs including the variation of the
conformal data along the line of criticality. Specifically, the
staggered XXZ model and the transverse field cluster model
are both shown to be consistent with the c = 1 S1 free boson
CFT, whereas the quantum Ashkin-Teller model gives data
consistent with the c = 1 orbifold CFT. Our results provide
further evidence of the usefulness of MERA in describing
critical systems in one dimension.

This paper is structured as follows. In Sec. II, we review
CFTs as they pertain to the three spin models studied. In Sec. III
we review the details of the MERA algorithm. In Sec. IV we
present results from the numeric simulations for each model,
and compare with the expected CFT data.

II. c = 1 BOSON CFTS AND ASSOCIATED SPIN MODELS

We will consider three different one-dimensional quantum
spin models at their respective critical points. In each of
these models there is a line of critical points along which
the critical exponents vary continuously. These critical points
are believed to be described by certain conformal field
theories with marginal operators that generate flow along these
lines of criticality. In this section, we briefly review these
conformal field theories and introduce our three spin chain
models.

A. c = 1 CFTs

Conformal field theories (CFTs) are field theories that are
invariant under all conformal (angle preserving) space-time
transformations. They describe the thermodynamic limit of
critical lattice models [4,5]. Due to the abundant symmetry,
a (1+1)D CFT is completely specified by knowledge of
(i) its central charge c; (ii) the primary fields ϕ and their
scaling dimensions (h,h̄), which are eigenoperators of the
scaling transformation with eigenvalues � = h + h̄; and
(iii) the operator product expansion coefficients for these
fields. It is the primary field scaling dimensions � that
predict the critical exponents of the associated critical lattice
model.

We focus our attention on CFTs with c = 1, which mainly
fall into two categories: the free boson theory and its Z2

orbifold [4,5]. These c = 1 boson CFTs are characterized by
the presence of an exactly marginal primary field, with scaling
dimension 2, meaning it is fixed under rescaling. Perturbing a
CFT by an exactly marginal term gives another CFT, leading
to continuously varying families of theories (see Fig. 1). This
phenomenon is not seen in unitary CFTs with c < 1. These
two continuous families of CFTs will correspond to the critical
lines in our various quantum spin chains.

The first relevant family of CFTs, the S1 boson CFT,
is the theory of a massless free boson ϕ(x). We will be
interested in periodic boundary conditions and we will choose
a parametrization such that x ∈ [0,2π ). We will focus on a
compactified version of the free boson where ϕ itself takes
values on a circle of radius RC , so that ϕ(x) ≡ ϕ(x) + 2πRC .
As a result when we move around a circle in the x coordinate,
φ does not need to be strictly periodic but may twist around m

times so that ϕ(x + 2π ) = ϕ(x) + 2πmRC . The primary field
scaling dimensions are known for this theory and generally

IrrelevantRelevant Marginal

FIG. 1. (Color online) Illustrative phase space diagrams and
renormalization group (RG) flows for models with a unique RG fixed
point (left) and a line of criticality (right). RG relevant operators have
� < 2 and grow under renormalization, while those with � > 2 are
called irrelevant, since a CFT deformed by such an operator flows
back to the fixed point. Deformations by an exactly marginal operator
lead to a new conformal fixed point. As the size of the deformation
is varied, the conformal dimensions vary continuously.

have a nontrivial dependence on RC . The free boson has
a natural internal SO(2) symmetry given by the translation
ϕ(x) ≡ ϕ(x) + θRC , where θ ∈ [0,2π ), as well as a Z2

symmetry given by ϕ(x) → −ϕ(x).
The orbifold boson CFT once again involves a bosonic

field ϕ(x) compactified on a circle of radius RO , so that
ϕ(x) ≡ ϕ(x) + 2πRO [4,5]. The theory has two sectors. The
first corresponds to the subspace of symmetric states of
the free boson that map to themselves under ϕ(x) → −ϕ(x).
The second sector corresponds to quantizing the free boson
with “twisted” boundary conditions for which ϕ(x + 2π ) =
−ϕ(x) and projecting out the states that are symmetric under
ϕ(x) → −ϕ(x) [4,5]. A characteristic of the twisted sector
of the orbifold boson is that it contains a number of primary
fields whose scaling dimension is independent of RO . Due to
this construction the O(2) symmetry of the free boson model is
broken down to a Z2 symmetry given by ϕ(x) → ϕ(x) + πRO ,
and the model retains its symmetry under ϕ(x) → −ϕ(x) so
that the natural symmetry group is Z2 × Z2.

For a more detailed examination of these CFTs, including
expressions for their spectra of primary fields, we refer to
Ref. [5].

B. Spin models at criticality

In the following, we present three critical spin models
whose thermodynamic limit is described by c = 1 CFTs. All
three models will be defined on a line with periodic boundary
conditions, and will possess an on-site Z2 × Z2 symmetry.

Each of these models have a line of critical points separating
an ordered phase from a disordered phase. For two of the
models, the staggered XXZ model and the transverse field
cluster model, the ordered phase displays symmetry-protected
topological order [19,24]. In contrast, for the quantum
Ashkin-Teller model the ordered phase displays conventional
symmetry breaking of the Z2 × Z2 symmetry.

To clarify the on-site nature of this symmetry, we will assign
two spin-1/2 particles to each site, and color them red and blue
(Fig. 2). At site j , the Pauli spin operators for each spin are
denoted σα

j and τ
β

j for α,β = X,Y,Z.
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FIG. 2. (Color online) Each of the spin models is defined on a
pair of parallel chains. The σ operators act only on the red (top)
chain and the τ act only on the blue (bottom). The green region
indicates a single site. Each of the models is then defined by a 1D
nearest-neighbor Hamiltonian.

1. Staggered XXZ Model

The staggered XXZ model is described by the Hamiltonian,

HXXZ = −
N∑

j=1

(
σX

j τX
j + σY

j τ Y
j − λσZ

j τZ
j

)

−β

N−1∑
j=1

(
τX
j σX

j+1 + τY
j σ Y

j+1 − λτZ
j σZ

j+1

)
. (1)

Note that this model has an O(2) symmetry group, correspond-
ing to rotating each spin about the z axis and a Z2 symmetry
corresponding to flipping each spin.

In this work we will be mainly concerned with a Z2 × Z2

subgroup of these symmetries that will remain on-site in all of
our models, as we will incorporate this symmetry explicitly
into our numerical MERA simulations. This symmetry is
also important for considerations of symmetry protected
topological order [2]. We can choose generators for this
subgroup as follows:

S1 =
N∏

j=1

σX
j τX

j S2 =
N∏

j=1

σY
j τ Y

j . (2)

The generator S1 corresponds to the spin-flip symmetry of
the staggered XXZ, and therefore to the ϕ → −ϕ symmetry
of the free boson model. The generator S2 corresponds to
rotating each spin by π about the Z axis and then flipping the
spins. Thus it corresponds to the transformation ϕ → −ϕ + π

on the free boson.
For β = 0,λ > −1 the ground state corresponds to pairing

the red and blue spins at each site in a maximally entangled
state, and thus has the structure of a product state. For
β → ∞,λ > −1 the ground state of this model pairs each
blue spin with the red spin on the site to the right in a
maximally entangled state. If the spin chain is defined on
open boundary conditions there is a fourfold ground-state
degeneracy associated with unpaired spins at each end of
the chain. This state is in the nontrivial symmetry-protected
topologically ordered state of Z2 × Z2 symmetry [2].
These two wave functions are the canonical representatives
of the trivial and nontrivial (respectively) symmetry-protected
topologically ordered phases with this symmetry [25].

At the phase transition β = 1 separating these two phases,
this model is the well-studied XXZ model and is solvable via
a Bethe ansatz [26]. This information can be used to identify

how different values of λ correspond to the parameter RC that
specifies the free boson model. The critical line defined by

β = 1, λ ∈ [−
√

2/2,1), (3)

is known to be described by the S1 free boson [27] compactified
on a circle of radius,

R2
C = 2

π
cos−1(−λ). (4)

Due to the exact solution, this antiferromagnetic model is used
extensively in the study of quantum critical points and critical
ground states [26–30]. We also note that the XXZ model with
next-nearest neighbor interactions has recently been studied in
the context of SPT phases [31]. Moreover the study of phase
transitions out of the SPTO phase of SO(3) symmetric systems
in one dimension in Ref. [21] corresponds to the Heisenberg
model in one dimension and the value λ = 1 in the free boson
theory.

2. Transverse field cluster model

Cluster states are highly entangled many-body states of
spin-half particles that arose in the theory of quantum
computing. It is possible to simulate any quantum computation
by making only local measurements on cluster states on an ap-
propriate lattice [32]. The cluster state corresponding to a linear
arrangement of spins is the ground state of the following local
Hamiltonian H = −∑

σZ
μ−1σ

X
μ σZ

μ+1. Recently, cluster state
models consisting of this Hamiltonian with various additional
terms have been studied, from the perspective of quantum
computing [15,19,20], their phase structure as models with
symmetry-protected topological (SPT) phases [19,33], natural
models for the gapless edge physics of 2D SPT models [33,34],
and nonequilibrium dynamics arising in these models [35].

We define the transverse field cluster model (TFCM) by the
Hamiltonian,

HTFCM = −
N∑

j=1

(
σX

j + τX
j + λσX

j τX
j

)

−β

N−1∑
j=1

(
σZ

j τX
j σZ

j+1 + τZ
j σX

j+1τ
Z
j+1

+ λσZ
j τY

j σ Y
j+1τ

Z
j+1

)
. (5)

This model possesses an on-site Z2 × Z2 symmetry generated
by

S1 =
N∏

j=1

σX
j , S2 =

N∏
j=1

τX
j , (6)

and possesses two distinct SPT phases for this symmetry. For
β = 0, the ground state is a product state, i.e., in a trivial phase,
whereas if β → ∞ the ground state is the well-studied cluster
state, known to be within a Z2 × Z2 symmetry-protected
topological phase [19].

The transverse field cluster model can be obtained from the
staggered-XXZ model through the transformation,

σX
j → σX

j τZ
j , τX

j → τZ
j ,

σZ
j → −σY

j τZ
j , τZ

j → σZ
j τY

j . (7)
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As this mapping is unitary, the ground-state energy and phase
transitions of the TFCM model are identical to those of the
XXZ model. The mapping (7) preserves locality, meaning that
local operators confined to k sites of the staggered XXZ model
map to local operators of the transverse field cluster model
confined to the same k sites, and that this transformation
can be performed using local unitaries applied to each site.
Finally, this mapping respects the Z2 × Z2 symmetry of the
models. As a result the ground states of the two models
must be in the same phase [36]. This is one way of seeing
that the ordered phase of the transverse field cluster model
possesses symmetry-protected topological order. Moreover we
expect that the thermodynamic limit of TFCM on the line
defined by Eq. (3) likewise corresponds to the S1 boson with
radius RC determined by λ as in Eq. (4). Finally the mapping
(7) maps the symmetry operations S1,S2 of the staggered
XXZ model to the corresponding symmetry operators for the
transverse field cluster model. Thus we can identify these two
symmetry operations in terms of the mappings ϕ → −ϕ and
ϕ → −ϕ + π , respectively, in the free boson model.

3. Quantum Ashkin-Teller model

The quantum Ashkin-Teller (AT) model [16,17] is defined
by the Hamiltonian,

HAT = −
N∑

j=1

(
σZ

j + τZ
j + λσZ

j τZ
j

)

−β

N−1∑
j=1

(
σX

j σX
j+1 + τX

j τX
j+1 + λσX

j τX
j σX

j+1τ
X
j+1

)
.

(8)

This model consists of a pair of transverse-field Ising chains
σ ,τ coupled by two- and four-spin terms. In particular, when
λ = 0, we have a decoupled pair of Ising chains.

This model also possesses an on-site Z2 × Z2 symmetry,
generated by

S1 =
N∏

j=1

σZ
j , S2 =

N∏
j=1

τZ
j . (9)

We note that with open boundary conditions this model is
also unitarily related to the transverse field cluster model, but
now through a nonlocal unitary transformation,

σX
j → σZ

j , τX
j → τZ

j ,

σZ
j →

(
j−1∏
k=1

τZ
k

)
σX

j , τZ
j → τX

j

⎛
⎝ N∏

k=j+1

σZ
k

⎞
⎠ . (10)

Under this mapping the fourfold degenerate ground space
of the transverse field cluster model maps to the fourfold
degenerate ground space of the Ashkin-Teller model. Although
this mapping is nonlocal, in the bulk it maps local Z2 × Z2-
symmetric terms to local Z2 × Z2-symmetric terms, and thus
can be viewed as a generalization [37] of the map by Kennedy
and Tasaki [38,39], mapping the SPTO phase of the transverse
field cluster model to the symmetry-broken phase of the
Ashkin-Teller model. Note, however, that boundary terms are

transformed nontrivially by this map; local boundary terms
can map to nonlocal ones. In particular, periodic boundaries in
the XXZ and TFCM models pick up extensive stringlike terms
in the AT model.

(Note that the Ashkin-Teller model also possesses a Z2

symmetry associated with swapping σ ↔ τ , however, this
does not map to a local symmetry in the other models.)

Because the models are unitarily related, the AT model will
possess the same phase structure and ground-state energy as
the transverse field cluster and staggered XXZ models [and,
in particular, will possess the same line of criticality described
by Eq. (3)]. However, the phases that arise have quite different
properties and the CFT corresponding to the critical line where
β = 1 will have a different spectrum of primary fields. Based
on finite size simulations [40,41] and CFT arguments [42,43],
the critical line of the AT model has been identified as the
orbifold boson with radius,

R2
O = R−2

C , (11)

where RC is defined in Eq. (4).

III. SCALE-INVARIANT MERA WITH SYMMETRIES

Following the work of Refs. [44,45], we have independently
developed code to optimize multiscale entanglement renormal-
ization ansatz (MERA) [11]. This class of tensor networks can
be used to efficiently describe ground states of critical quantum
lattice models. Specifically, we give a brief introduction to the
scale-invariant ternary MERA, closely following Ref. [45],
and describe the adiabatic crawling method which we used
to streamline the calculation of critical exponents at various
locations along the critical line of our c = 1 spin chain models.

A. Elements of the MERA

The ternary MERA shown in Fig. 3 is constructed from two
kinds of tensors: isometries w,

w� : H�+1 → H⊗3
� , w

†
�w� = I�+1, (12)

and unitary disentanglers u,

u� : H⊗2
� → H⊗2

� , u
†
�u� = I⊗2

� , (13)

where H� is the Hilbert space of dimension χ� of one spin (one
index) on layer �.

Together these tensors perform a real space renormalization
group (RG) transformation, with each layer of the structure
corresponding to a description of the model on a different
length scale. The free indices correspond to the degrees of
freedom associated with the microscopic model of interest, and
the isometries map three spins on layer � onto an effective spin
on layer � + 1. The approximation involved in this transforma-
tion is controlled by the bond dimension χ , the dimension of
the effective spin. If χ�+1 < χ3

� , the full microscopic physics
cannot be captured and a variational algorithm is used to
ensure the low energy subspace is retained. The maximum
bond dimension used in the MERA is labeled χ . The unitary
tensors rearrange the local Hilbert space, locally removing
entanglement and allowing χ to be relatively small [11].

Generically, all tensors in the MERA may be different,
however, for translationally invariant states a single pair
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FIG. 3. (Color online) Tensor network diagram for the scale-
invariant ternary MERA. Isometries are indicated by triangles (green),
while disentanglers are rectangles (blue). The layered structure
accurately represents a wide range of length scales and captures the
scale-invariant physics of critical spin chains.

of tensors {u�,w�} characterizes layer �. For scale-invariant
models, such as critical systems, the network becomes simpler
still. The description of the model should be scale invariant,
and therefore all layers become identical [12] and the entire
MERA is described by a single pair of tensors {u,w}, and all
bond dimensions are χ .

The isometries and disentanglers are chosen to minimize
the energy of the spin model Hamiltonian using techniques
that are described in Refs. [44,45]. This results in an iterative
algorithm where each step updates either the isometries or the
disentanglers and each step can be performed at a cost O(χ8),
although this can be reduced by modifying the network to
include further approximations, such as spatial symmetries
[45] or on-site symmetries [46].

B. G-symmetric tensors

The incorporation of symmetries can decrease the resources
required to optimize the MERA. If a model possesses an on-site
symmetry, such as the Z2 × Z2 symmetry occurring in the
models described in Sec. II, these internal symmetries may be
exploited to further reduce the resource requirement by using
G-symmetric tensors [46].

A tensor T β1,β2,...,βm
α1,α2,...,αn

is said to be G symmetric if it is
invariant under the action of the group G on each index. For
example, the requirement for the isometry described above to
be G symmetric is as follows:

Ug Vg Wg

X†
g

=

Ug Vg Wg

X†
g

∀ g ∈ G, (14)

where U,V,W,X are unitary representations of G.

By Schur’s lemma, the tensor decomposes into blocks,
where each block transforms as one of the irreducible repre-
sentations (irreps) ofG. In general, due to the block structure of
the tensors, we can decompose the indices α → (c,d), where
c labels the irrep and we will call it the charge index, and d is
the degeneracy index [46]. The charge structure is completely
specified by the group G. The degrees of freedom for the
particular model of interest are completely described by the
index d.

In our case we have the group G ∼= Z2 × Z2
∼= {x,y|x2 =

y2 = e,xy = yx} whose irreps are given by the character table,

e x y xy

D(1,1) 1 1 1 1
D(1,−1) 1 1 −1 −1
D(−1,1) 1 −1 1 −1
D(−1,−1) 1 −1 −1 1

where the Dc are the irreps and the possible charges c =
(q1,q2) are (1,1),(1,−1),(−1,1),(−1,−1). Since the group is
Abelian, tensor products of irreps results in a new irrep that
can be obtained by elementwise multiplication in the character
table. For example, D(−1,1) ⊗ D(1,−1) = D(−1,−1). This product
of taking tensor product results in the multiplicative operation
on charges c1 ⊗ c2 = c3 is often called the fusion rule. Using
this fusion rule, we can construct higher order tensors from
vectors. Condition (14) becomes a charge conservation rule
[47]. In numerics it is possible to identify the nonzero blocks
of a given tensor by checking that the block conserves charge.
The condition for a nonzero block Bi is

c1 c2

· · ·
cn

cn+1

· · ·
cn+m

Bi �= 0 ⇐⇒
∏

�∈In

c� =
∏

�∈Out

c�. (15)

Using these block tensors provides us with three main
advantages in optimizing the network and extracting physical
information.

1. Reduction in variational parameters

A large number of the blocks are fixed to be zero by the
symmetry, so do not have to be stored or manipulated during
optimization. This decrease in variational parameters leads to
a decrease in the storage space needed for the network. It also
leads to a multiplicative decrease in the computational time
(aχ8 → a

4 χ8 in the case of Z2 × Z2) allowing either larger χ

to be accessed or a decrease in the overall runtime.

2. Selection of symmetry sector

By decomposing the tensors into blocks, any operator
applied to the spin chain can be classified according to how it
transforms under the symmetry. A operator Oq1,q2 has charge
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(q1,q2) under the Z2 × Z2 symmetry if

S1OS
†
1 = q1O, S2OS

†
2 = q2O , (16)

where S1, S2 are the symmetry generators described in Sec. II.
Operators carry a unique charge, so operators of the form
O = a1O1,1 + a2O1,−1 are forbidden.

3. Nonlocal operators

As we know the action of the symmetry on the tensors
{u,w}, we can trivially compute expectation values for a class
of highly nonlocal operators, with computational cost which
barely exceeds that of local operators [13]. This is discussed
below with respect to scale-invariant operators and conformal
data.

C. Optimizing a MERA for a spin model

Given a local, critical spin Hamiltonian H = ∑
j hj , a

MERA description of the ground state |ψ〉 can be generated by
optimizing the tensors. Here we briefly review the optimization
algorithm, following Ref. [45].

The MERA for a critical model is built from two sections.
First, a number (usually two to three) of transitional layers are
used, which are translationally invariant but not scale invariant,
with tensors {u�,w�}. These allow the bond dimension of the
remaining (scale-invariant) tensors to be chosen independently
of the physical dimension of the spins. Generically, the
Hamiltonian H will contain RG irrelevant terms, breaking
scale invariance. Since these terms become suppressed at larger
scales, the transitional layers reduce their effect.

Above the transitional layers, the MERA is built from a
unique pair of tensors {u,w}, characterizing the scale-invariant
nature of the critical model. We allow the dimension of the
upper and lower indices of u to differ; it is not unitary, but
Eq. (13) holds. This preserves the essential structure of the
MERA, but allows for increased numerical efficiency [13]. A
pair of bond dimensions, χl and χu on the lower and upper
indices of u characterize the MERA.

To initialize the MERA, a pair of bond dimensions {χl,χu}
is chosen, and random tensors generated. A single transitional
layer is initialized to allow χl to differ from the physical
dimension d. These tensors are then iteratively optimized to
minimize the energy 〈ψ | H |ψ〉 = Tr(H |ψ〉〈ψ |) as discussed
in Refs. [44,45].

Optimizing the MERA requires many contractions of
networks analogous to those shown in Fig. 4, where ρ� is the
reduced density matrix describing the system on layer �. This
contraction can be computed in time O(χ4

l χ4
u ). In numerical

implementation, χu < χl allows for decreased runtime without
apparent degradation of the results. By assuming that most of
the eigenvalues of the reduced density matrix ρ are small,
we can modify the network to improve the scaling as follows
[45]. We assume we can choose a projector P = vv† such that
ρ = Pρ + ε, where ε is a small error. Then χ̄ is the rank of the
projector. In the networks, ρ is replaced with Pρ, giving the
improved efficiency at the expense of optimizing the tensor v.
Numerical evidence shows that χ̄ may be chosen O(χ ) rather
than O(χ2), thus providing a scaling of O(χ6χ̄ ).

FIG. 4. (Color online) The descending superoperator. This com-
putes the reduced density matrix of the model at level � of the RG. This
is just one of the contractions which must be performed to optimize
the MERA tensors. The cost is O(χ 8), however, this can be reduced
as discussed in the text.

As the optimization proceeds, the change in the tensors
between iterations decreases. Once the network is changing
sufficiently slowly, a new transitional layer is added by
promoting the lowest level of the scale invariant portion.
This process is repeated until it does not produce significant
improvement of the ansatz (usually once there are two to three
transitional layers).

D. Adiabatic crawling

We are simulating families of models with properties that
vary continuously along a critical line, and so we can make
use of the solution from a converged MERA at one point as a
starting point to speed up convergence at a neighboring point.
We call this approach the adiabatic crawling technique. First,
the MERA is converged from random tensors at a start point
somewhere along the line. The velocity rate of variation of the
conformal values (scaling dimensions for relevant operators
and central charge) is defined as v = Cj − Cj−1, where Cj is
the conformal data on iteration j . When this falls below some
threshold, the point is declared converged, and the algorithm
is repeated on the next point, using the previously converged
tensors as a start point. If the variation is sufficiently small,
the ground state of the new Hamiltonian is very similar to
the previous ground state, and few convergence iterations
are required. Typically, convergence of the remaining 60–100
points can be completed in a time similar to that required to
converge the initial point.

E. Extracting conformal data from the MERA

The properly converged MERA provides a compact ap-
proximation to the ground state, and we can extract physical
properties of the CFT that describes the spin lattice model
at criticality by optimizing a MERA. Here, we describe how
to obtain the conformal parameters from the tensors in the
MERA, following Refs. [12,13].

One part of the conformal data for a CFT is the spectrum of
scaling dimensions �φ associated with a primary field φ. These
are the eigenvalues of the rescaling operator in the field theory.
In the MERA, the isometric tensor w performs a rescaling
operation on the spin model, so allows us to extract the scaling
dimensions [12]. By finding the operators which are fixed

165129-6



MULTISCALE ENTANGLEMENT RENORMALIZATION . . . PHYSICAL REVIEW B 91, 165129 (2015)

under the one-site scaling superoperator,

S(φ) = φ = λφ φ , (17)

we find the scaling operators and their dimensions. The
eigenvalues λφ of S are then related to the scaling dimensions
via �φ = log3(λφ).

We can also compute the scaling dimensions for a class of
nonlocal scaling operators by making use of the symmetry.
Nonlocal scaling operators take the form,

O =
N−1⊗

j=−∞
(Ug)j ⊗ oN, (18)

where Ug is a unitary representation of G. Since the symmetry
operators commute with the MERA tensors, applying one layer
to an operator of this form and utilizing Eq. (12) and (13) gives
a new operator of the form Eq. (18).

Eigenoperators of the g-twisted scaling superoperator,

Sg(φ) = Ug φ = λφ φ , (19)

allow extraction of the conformal spectrum of the CFT arising
from taking the thermodynamic limit of the spin model with
boundary conditions which are twisted by the group element
g; see Ref. [13]. Setting g = e, S is recovered, giving the
spectrum on periodic boundaries.

The spectrum of Sg can be extracted from the converged
MERA for negligible additional cost simply by diagonalizing
Sg [12,13].

The central charge of the theory can be extracted from the
fixed-point density matrix using the scaling of the entangle-
ment entropy [12],

Scritical = c

3
log2(L/a) + k, (20)

where c is the central charge of the CFT, L is the block length,
a is the lattice scaling (here, a = 1 by definition) and k is some
constant. The one-site reduced density matrix ρ

fp

1 is obtained
by symmetrizing over the two ways of tracing out one site of
the fixed-point density matrix ρ

fp

2 (Fig. 4). The central charge
is then obtained by

c = 3
(
S
(
ρ

fp

2

) − S
(
ρ

fp

1

))
, (21)

where S is the von Neumann entropy of the density matrix.

IV. NUMERICAL RESULTS

In this section, we present results obtained from a Z2 × Z2

symmetric MERA with {χl,χu} = {20,12} and χ̄ = 60 (see
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FIG. 5. (Color online) Ground-state energies (GSE) extracted
from the MERA and their relative errors �E. For the bond dimension
used here, these remain O(10−4) as the Hamiltonian parameter λ is
varied. The numerical GSE remains an upper bound on the true GSE.
Note that the CFT radius RC is related to the spin model coupling
parameter via Eq. (4).

Sec. III C) applied to the three models described in Sec. II.
Three transitional layers are used to ensure scale invariance
of the Hamiltonian. We use the adiabatic crawling technique,
starting at R2 = 1.25 and using a velocity threshold of vt =
9 × 10−5. Both ground-state energies and conformal data are
presented along the critical lines of the three models given
by Eq. (3). The conformal spectrum is shown to be consistent
with the identifications made in Sec. II. We also compare these
MERA simulations with the result of exact diagonalization
studies for the models of interest.

A. Ground-state energy

As a result of the Bethe ansatz solution for the XXZ model,
the ground-state energy is known exactly for all three models
considered here, and this provides a useful benchmark; see
Fig. 5. The relative in the ground-state energy is given by
�E = (Eexact − EMERA)/Eexact. The exact solution is obtained
by numerically integrating the Bethe ansatz solution [26]. The
MERA is an explicit wave function, and as such, its energy
cannot be less than the true ground-state energy; thus �E � 0.
The ground-state energy obtained using the MERA for all three
models is consistent with the exact solution, with relative error
positive and of order 10−4 for the full range of λ considered;
see Fig. 5.
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FIG. 6. (Color online) Central charges extracted from MERA
simulations. The CFTs associated with these models are expected
to be c = 1 (shown as solid line) for the full range of R2

C considered
here.

B. Conformal data

We now present the conformal data obtained from the
MERA for our three models. We show that these data are
consistent with the CFTs identified as the thermodynamic
description, namely the Z2-orbifold boson CFT for the Ashkin-
Teller model, and the S1 boson CFT associated with both the
XXZ and transverse field cluster models.

1. Central charge

One of the pieces of data required to specify a CFT is the
central charge. It labels classes of CFT and is identically c = 1
for all values of R in both the S1 boson and orbifold boson
CFTs. The values obtained from the MERA simulations are
shown in Fig. 6. These are usually within 2% of the expected
value c = 1 for the full range of R2

C . We note an increased
deviation from c = 1 at the left (R2

C ∼ 0.5) end of the critical
line. Here, fields in the Z2 × Z2 symmetric sector are crossing
�φ = 2, the RG relevant/irrelevant threshold. Some of these
fields are not symmetric under the O(2) symmetry discussed
in Sec. II [29]. Near R2

C = 1.6, we also see a large deviation
from c = 1 for the TFCM data. This region occurs close to
a crossing of two fields in the Z2 × Z2 symmetric sector of
the S1 theory. Again, this crossing does not occur in the O(2)
symmetric theory [29].

Our simulations approach, but do not include, the end
point λ = 1, (R2

C = 2). At this point, the XXZ model becomes
the spin-1/2 Heisenberg model and the line of criticality
terminates. As we approach this point, the CFTs have an
irrelevant primary operator with a scaling dimension that is
decreasing as RC increases and becomes marginal precisely
at R2

C = 2. This operator leads to corrections to the scale-
invariant behavior that, as has previously been noted [45],
complicates studies of this model using MERA simulations.

This limiting case could be further investigated in two
ways. One approach would be adding more transitional layers
to the MERA, which is expected to move the Hamiltonian
towards the RG fixed point. However, many layers may
be required because this term only decays logarithmically.
Alternatively, modifying the model by adding finely tuned
terms (for example, a next-nearest-neighbor coupling) could
remove the marginally irrelevant operator without changing

0.5 1 1.5 2
0

1/8

1/2

S1 CFT Radius R2
C

Δ
φ

AT

TFCM

XXZ

Orb.

S1

FIG. 7. (Color online) The lowest scaling dimensions (�φ) of the
(1,−1) charge sector of the three models. The XXZ and transverse
field cluster models agree well with the S1 boson, while the AT model
is consistent with the fixed scaling operator from the orbifold theory.
Note that the S1 and orbifold CFT radii are related via Eq. (11).

the continuum limit [48,49]. Both of these approaches are
beyond the scope of the current investigation.

2. Scaling dimensions

We now turn to the scaling dimensions �φ extracted
from the MERA. These scaling dimensions can be classified
according to their Z2 × Z2 symmetry sector. As the parameters
of the models are varied along the lines of criticality, the scaling
dimensions of the two CFTs can vary continuously. As noted
in Sec. II, the orbifold CFT contains a fixed sector of primary
fields whose scaling dimensions do not change with RO ,
whereas for the free boson CFT all scaling dimensions (other
than the identity and related operators) will vary. The behavior
of these scaling dimensions provides a good pointer as to the
type of c = 1 CFT that corresponds to each of the spin models.
In Fig. 7, we focus on fields with small scaling dimension in the
(1,−1) symmetry sector. Previous evidence [13,45] indicates
that the accuracy of the MERA decreases with increasing
scaling dimension, so it is expected that the agreement will
be better in this region. The distinction between the CFTs is
already evident, and the scaling dimensions obtained from the
XXZ and TFCM models are consistent with the S1 theory, and
the AT model has the expected fixed scaling dimension present
in the orbifold theory.

We next examine the full relevant spectrum of the scaling
operators for all three models, up to a maximum value of
�φ = 2. All sectors of the XXZ and TFCM models are
expected to have the same conformal dimensions, those of the
S1 theory. Close agreement is seen in the MERA simulations
of the two models [Figs. 8(a) and 8(b)], although the accuracy
deteriorates for larger scaling dimensions. The conformal field
theory has an infinite number of scaling operators, however,
the one-site scaling superoperator used to obtain �φ has a
finite number of eigenvalues. This results in only a finite
subset of the dimensions being recoverable, with the smallest
being most accurately reproduced. In particular, �φ = 0 in the
(1,1) sector (Fig. 9) corresponds to the identity operator. This
scaling dimension is recovered perfectly due to the isometric
constraint on the tensor w.
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FIG. 8. (Color online) The behavior expected from the S1 CFT is recovered by the XXZ and TFCM (a) and (b), while AT simulations
recover the orbifold behavior (c) and (d). The accuracy of the recovered scaling dimensions �φ degrades for larger �φ . Note that the S1 and
orbifold CFT radii are related via Eq. (11).

The AT model is expected to reproduce the orbifolded
theory, with the signature fixed sector being equally split over
the (1,−1) and (−1,1) charge sectors. We see this indeed
occurs in Fig. 8(c), with good agreement for the lower scaling
dimensions.

In the (1,1) sectors (Fig. 9), we see the deviation increase
as we move towards R2

C = 1/R2
O = 2. This also occurs in

the XXZ and TFCM models. Recall that, at this endpoint,
all three models are unitarily equivalent to the Heisenberg
model.

C. Exact diagonalization of the quantum Ashkin-Teller model

It is well known that the low energy spectrum of finite
size spin chains should correspond to the spectrum of primary
and descendant fields of the associated CFT [5]. As such the
results of exact diagonalization (ED) with periodic boundary
conditions can be directly compared with those of both CFT
and the MERA simulations. For a review of the ED technique,
see, for example, Ref. [50]. As a further test of the MERA
simulations, we performed ED calculations for the Ashkin-
Teller model with periodic boundary conditions for chains up
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FIG. 9. (Color online) Results of an exact diagonalization study of the Ashkin-Teller model in the symmetric (1,1) sector. (a) The energy
gap for a range of values of RO and system sizes L. The gap closes as we approach the thermodynamic limit. The gap is plotted for various
1/R2

O values; in blue (×) is the point 1/R2
O = 1 and in magenta (+) the point 1/R2

O = 2. Lines represent a linear fit to the ED data. (b) A
comparison of the finite-size scaling results for L = 12 with the MERA and the CFT, for the Z2 × Z2 symmetric sector.
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to L = 12 in length. At this length, finite-size effects are still
present but we are nevertheless close to full convergence. As
can be seen in Fig. 9(a), the gap is closing like 1/L, as is
expected of a critical model [5].

The spectrum of the quantum spin chain can be related
to that of the CFT once the ground-state energy (E0) and
the overall normalization of the Hamiltonian are chosen
appropriately [51]. In our problem we need to choose a
normalization of H for each and we achieve this simply by
rescaling the gap (E1 − E0) of the spin model. Then the rest
of the conformal spectrum can be inferred from the spectrum
of the spin chain as follows:

�k = L × α(λ)(Ek − E0), (22)

where, anticipating the orbifold CFT, the α(λ) is chosen to
fix the gap �1 = 1/8. This value corresponds to the scaling
dimension of the operators with fixed scaling dimension in
the (±,∓) sectors [Fig. 8(d)]. Thus the first two scaling
dimensions of the CFT are correct as a result of our choice of
normalization and the zero of energy. Obtaining the remaining
levels represents a confirmation of the CFT identification. The
same approach was taken in previous studies of the quantum
Ashkin-Teller model [40,41], although there an analytic form
for α was proposed.

We see good qualitative agreement between the two
methods. A selected Z2 × Z2 symmetry sector is presented in
Fig. 9(b); we see comparable agreement for all other sectors.
The agreement between the two methods is extremely good for
lower scaling dimensions but becomes less so for higher ones
above �φ ≈ 1.5. The ED and CFT data match very precisely
at the point 1/R2

O = 1 for all scaling dimensions up to �φ � 2,
where the model is equivalent to two uncoupled critical Ising
models. Hence, away from the decoupling point we interpret
the decrease in precision with increasing scaling dimension as
a finite-size effect rather than a result of the Lanczos-based
ED algorithm.

It is interesting to note that close to the point 1/R2
O = 2 the

MERA and the ED results agree with each other rather better
than either one agrees with the CFT values. This is the limit in
which the finite-size corrections to the eigenvalues for the spin
chain, which are well understood for ED [52], increase in size
due to an irrelevant primary field whose scaling dimension is
approaching 2. It would be an interesting avenue for further
study to understand whether the errors in scaling dimensions
obtained from MERA simulations can be understood in a
similar way to those of ED.

We note that finite-size scaling has previously been per-
formed for the Ashkin-Teller chain, in order to identify
the primary fields for periodic and antiperiodic boundary
conditions [40,41,53]. To the best of our knowledge, our
ED calculations use a system size equal to the largest used
in all previous studies [30]. Here we have extended those
calculations over a larger range of 1/R2

O as well as extracted
scaling dimensions for all RG relevant fields.

D. Nonlocal operators and twisted boundaries

Another class of scaling operators present in the symmetric
MERA are the nonlocal operators involving a half infinite
string of symmetry operators terminating in a local operator.
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(b)Twisted by S1S2

FIG. 10. (Color online) Scaling dimensions of nonlocal opera-
tors extracted from MERA simulations. These correspond to the
spectrum of spin chains with boundary conditions twisted by the
group elements defined in Eq. (9).

The scaling dimensions of these operators in the CFT arise
in ED studies of the corresponding spin model with boundary
conditions twisted by a group element. Recall that the scaling
dimension of these nonlocal operators can be obtained from
MERA simulations at negligible additional computational
cost.

In Fig. 10, we show these nonlocal scaling operators in the
(1,1) symmetry sector for two kind of twist (corresponding to
the two of the group elements of Z2 × Z2) obtained from the
MERA simulation of the Z2 × Z2 symmetric AT model. Note
that Figs. 10 and 8 show different data. The orbifold CFT is
such that the local (untwisted) spectrum in the four symmetry
sectors is equivalent to the twisted spectrum in the (1,1) sector.
This equivalence is apparent by comparing Fig. 8(c), 8(d) with
Fig. 10(b), 10(a). The deviation of the scaling dimensions of
these nonlocal fields from the CFT expectation appears to be
comparable to that of the local fields.

E. Observations and comments

All the models considered here have a larger on-site
symmetry than the enforced Z2 × Z2. In particular, the AT
model is invariant under swapping σ ↔ τ , leading to a
non-Abelian D4 invariance. The symmetry group of the
staggered XXZ model contains an SO(2) symmetry, for SO(2)
rotations of all spins about the z axis, and a Z2 symmetry
corresponding to π flips around the x axis, just as the free
boson CFT as described in Sec. II. This maps to an on-site
symmetry in TFCM, but becomes a nonlocal symmetry in the
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FIG. 11. (Color online) Only the Z2 × Z2 subgroup of the D4

symmetry of the Ashkin-Teller model is enforced in the MERA. This
can lead to coupling between scaling operators which one would
expect to be forbidden, in turn leading to avoided crossings in the
conformal dimensions. This data have χl = 20 = χ̄/4 ,χu = 16, and
four transitional layers.

Ashkin-Teller model unless the SO(2) angle is π (in which
case this symmetry reduces to the Z2 × Z2 symmetry we have
enforced).

Enforcing only a proper subgroup of the full symmetry
means that the results of the MERA simulations do not respect
the full symmetry of the model. We note that this leads to
avoided crossings in the conformal dimensions extracted from
the simulations, as seen in Fig. 11. The two operators in this
plot transform like different representations of D4, and so are
forbidden to mix. Under the Z2 × Z2 subgroup used in our
simulations, such a mixing is allowed, and is indeed observed.
We expect this gap to close as the approximation is improved,
leading to an approximately enforced D4.

We also note that under the full conformal symmetry,
all primary fields transform like different irreps, meaning
they are all uncoupled. As the MERA does not incorpo-
rate the full (continuous) conformal symmetry in its struc-
ture, any MERA-based numerical method cannot keep all
such fields from mixing, and as such we expect avoided
crossings to be observed even if the full on-site group is
enforced.

We also note that the choice of starting point for our
adiabatic crawling method appears to have an effect on the
accuracy of the resulting converged MERA. Specifically, at
values of RC or RO where previously irrelevant operators cross
over to become relevant, increased errors arise that slowly die
away as the simulation proceeds. A similar situation occurs
when the scaling dimensions of two relevant operators cross
as RC and RO are varied. Crawling from multiple points, and
stopping at crossings and when new operators become relevant
may reduce this behavior.

1. Choice of χ

In this work, we have made a choice of the bond dimensions
{χl,χu} = {20,12} and χ̄ = 60 but we have investigated a
range of χ values both higher and lower than this. These
values were set by our available computational resources but
we do not expect the essential conclusions to be altered by

larger values of χ . The scaling of the error in the MERA
energy was investigated in Ref. [45] and elsewhere and is one
of the few quantitative methods of studying convergence of
MERA simulations reported in the literature. As discussed
above, we can compare the energy of our MERA simulation
with the exact result available from the Bethe ansatz solution
and we also observe that for increased χ the error in the energy
is reduced, as one would expect. Indeed the error in Fig. 5
is essentially the same size as reported in Ref. [45] for the
staggered Heisenberg and XX models and the same value of χ

so we believe that our simulations have comparable accuracy
to other implementations of MERA with comparable values
of χ .

We have also qualitatively studied the convergence of the
smaller scaling dimensions and central charge to the values
predicted by CFT. The error in both decreases slowly with
increasing χ , with the smallest scaling dimensions being
recovered more accurately than those higher.

The qualitative features we see in the spectra of scaling
dimensions are also robust and observed over a range of
choices of χ . For example, the avoided crossings remain
present even when increasing to {χl,χu,χ̄} = {20,20,80}.
Finally, we note that the deviation between the results obtained
from the MERA and the CFT result as we approach the
endpoint of the critical line corresponding to R2

C = 1/R2
O = 2

continues to persist even as χ is increased.

V. SUMMARY AND DISCUSSION

In this work, we have used independently developed
scale-invariant Z2 × Z2 symmetric MERA code to investigate
critical quantum spin lattice models with this symmetry.
Specifically, we have used this to simulate the staggered XXZ
and transverse field cluster models, extracting conformal data
consistent with the S1 boson conformal field theory being the
thermodynamic description of both spin chains. This c = 1
theory has a parameter RC which can be varied, leading to
continuously varying critical exponents, a behavior which has
been replicated in the MERA. In addition, we have extracted
conformal data for the Ashkin-Teller spin chain, identifying
the Z2-orbifold boson as the appropriate CFT. Once again, the
behavior of the scaling fields with the parameter RO has been
recovered, including the fixed sectors which are signatures of
this theory.

We have introduced a crawling method that allows for
efficient optimization of MERA along the critical lines. By
examining the symmetries of the three models, we have
identified some of the limitations of this technique, and
how enforcing only a subgroup of the full symmetry is
revealed in the conformal dimensions. We have also identified
similarities between the numerical results of MERA and exact
diagonalization, in the behavior of errors at different regions
along the critical line.

We note that the staggered XXZ and transverse field cluster
models possess phases with nontrivial Z2 × Z2 symmetry-
protected topological order. Such phases support gapless edge
modes that are protected by the symmetry, a property not
shared by SPT trivial phases [2]. Understanding the critical
theory occurring at the transition between the trivial and SPTO
phases may provide insight into the fate of these edge states
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at the phase transition and their properties within the phase
[21]. We have seen how tuning parameters in the spin models
leads to continuous variation in the critical theory, despite the
fact that we are investigating the transition from a single SPT
phase to a single trivial phase.

Recent developments of MERA allow for the incorporation
of conformal defects, including interfaces and boundaries
[54,55]. These numerical tools offer the possibility of studying
the gapless edge modes via the “domain wall boundary

conditions” described in Ref. [21] as well as interfaces between
different SPT phases [56].
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[7] R. Orús, Ann. Phys. 349, 117 (2014).
[8] Z. Landau, U. Vazirani, and T. Vidick, in Proceedings of the 5th

Conference on Innovations in Theoretical Computer Science,
ITCS’14 (ACM, New York, 2014), pp. 301–302.

[9] F. Verstraete and J. I. Cirac, Phys. Rev. B 73, 094423 (2006).
[10] V. Stojevic, J. Haegeman, I. P. McCulloch, L. Tagliacozzo, and

F. Verstraete, Phys. Rev. B 91, 035120 (2015).
[11] G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).
[12] R. N. C. Pfeifer, G. Evenbly, and G. Vidal, Phys. Rev. A 79,

040301(R) (2009).
[13] G. Evenbly, P. Corboz, and G. Vidal, Phys. Rev. B 82, 132411

(2010).
[14] V. Giovannetti, S. Montangero, and R. Fazio, Phys. Rev. Lett.

101, 180503 (2008).
[15] A. C. Doherty and S. D. Bartlett, Phys. Rev. Lett. 103, 020506

(2009).
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[47] B. Bauer, P. Corboz, R. Orús, and M. Troyer, Phys. Rev. B 83,
125106 (2011).

[48] I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, J. Phys. A:
Math. Gen. 22, 511 (1989).

[49] S. Eggert, Phys. Rev. B 54, R9612 (1996).
[50] A. Weiße and H. Fehske, in Computational Many-Particle

Physics, edited by H. Fehske, R. Schneider, and A. Weiße,
Lecture Notes in Physics Vol. 739 (Springer, Berlin/New York,
2008), pp. 529–544.

[51] G. von Gehlen, V. Rittenberg, and H. Ruegg, J. Phys. A: Math.
Gen. 19, 107 (1986).

165129-12

http://dx.doi.org/10.1155/2013/198710
http://dx.doi.org/10.1155/2013/198710
http://dx.doi.org/10.1155/2013/198710
http://dx.doi.org/10.1155/2013/198710
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1103/PhysRevB.91.035120
http://dx.doi.org/10.1103/PhysRevB.91.035120
http://dx.doi.org/10.1103/PhysRevB.91.035120
http://dx.doi.org/10.1103/PhysRevB.91.035120
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://dx.doi.org/10.1103/PhysRevA.79.040301
http://dx.doi.org/10.1103/PhysRevA.79.040301
http://dx.doi.org/10.1103/PhysRevA.79.040301
http://dx.doi.org/10.1103/PhysRevA.79.040301
http://dx.doi.org/10.1103/PhysRevB.82.132411
http://dx.doi.org/10.1103/PhysRevB.82.132411
http://dx.doi.org/10.1103/PhysRevB.82.132411
http://dx.doi.org/10.1103/PhysRevB.82.132411
http://dx.doi.org/10.1103/PhysRevLett.101.180503
http://dx.doi.org/10.1103/PhysRevLett.101.180503
http://dx.doi.org/10.1103/PhysRevLett.101.180503
http://dx.doi.org/10.1103/PhysRevLett.101.180503
http://dx.doi.org/10.1103/PhysRevLett.103.020506
http://dx.doi.org/10.1103/PhysRevLett.103.020506
http://dx.doi.org/10.1103/PhysRevLett.103.020506
http://dx.doi.org/10.1103/PhysRevLett.103.020506
http://dx.doi.org/10.1103/PhysRevB.24.230
http://dx.doi.org/10.1103/PhysRevB.24.230
http://dx.doi.org/10.1103/PhysRevB.24.230
http://dx.doi.org/10.1103/PhysRevB.24.230
http://dx.doi.org/10.1103/PhysRev.64.178
http://dx.doi.org/10.1103/PhysRev.64.178
http://dx.doi.org/10.1103/PhysRev.64.178
http://dx.doi.org/10.1103/PhysRev.64.178
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevLett.108.240505
http://dx.doi.org/10.1103/PhysRevLett.108.240505
http://dx.doi.org/10.1103/PhysRevLett.108.240505
http://dx.doi.org/10.1103/PhysRevLett.108.240505
http://dx.doi.org/10.1088/1367-2630/14/11/113016
http://dx.doi.org/10.1088/1367-2630/14/11/113016
http://dx.doi.org/10.1088/1367-2630/14/11/113016
http://dx.doi.org/10.1088/1367-2630/14/11/113016
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.015
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.015
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.015
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.015
http://dx.doi.org/10.1103/PhysRevB.89.195143
http://dx.doi.org/10.1103/PhysRevB.89.195143
http://dx.doi.org/10.1103/PhysRevB.89.195143
http://dx.doi.org/10.1103/PhysRevB.89.195143
http://dx.doi.org/10.1088/0305-4470/20/13/014
http://dx.doi.org/10.1088/0305-4470/20/13/014
http://dx.doi.org/10.1088/0305-4470/20/13/014
http://dx.doi.org/10.1088/0305-4470/20/13/014
http://dx.doi.org/10.1103/PhysRevB.86.094417
http://dx.doi.org/10.1103/PhysRevB.86.094417
http://dx.doi.org/10.1103/PhysRevB.86.094417
http://dx.doi.org/10.1103/PhysRevB.86.094417
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1016/0003-4916(88)90015-2
http://dx.doi.org/10.1016/0003-4916(88)90015-2
http://dx.doi.org/10.1016/0003-4916(88)90015-2
http://dx.doi.org/10.1016/0003-4916(88)90015-2
http://dx.doi.org/10.1103/PhysRevLett.58.771
http://dx.doi.org/10.1103/PhysRevLett.58.771
http://dx.doi.org/10.1103/PhysRevLett.58.771
http://dx.doi.org/10.1103/PhysRevLett.58.771
http://dx.doi.org/10.1103/PhysRevB.24.5229
http://dx.doi.org/10.1103/PhysRevB.24.5229
http://dx.doi.org/10.1103/PhysRevB.24.5229
http://dx.doi.org/10.1103/PhysRevB.24.5229
http://dx.doi.org/10.1088/0305-4470/21/3/001
http://dx.doi.org/10.1088/0305-4470/21/3/001
http://dx.doi.org/10.1088/0305-4470/21/3/001
http://dx.doi.org/10.1088/0305-4470/21/3/001
http://dx.doi.org/10.1103/PhysRevB.52.1138
http://dx.doi.org/10.1103/PhysRevB.52.1138
http://dx.doi.org/10.1103/PhysRevB.52.1138
http://dx.doi.org/10.1103/PhysRevB.52.1138
http://dx.doi.org/10.1103/PhysRevB.90.214425
http://dx.doi.org/10.1103/PhysRevB.90.214425
http://dx.doi.org/10.1103/PhysRevB.90.214425
http://dx.doi.org/10.1103/PhysRevB.90.214425
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1103/PhysRevB.89.195122
http://dx.doi.org/10.1103/PhysRevB.89.195122
http://dx.doi.org/10.1103/PhysRevB.89.195122
http://dx.doi.org/10.1103/PhysRevB.89.195122
http://dx.doi.org/10.1103/PhysRevE.86.021101
http://dx.doi.org/10.1103/PhysRevE.86.021101
http://dx.doi.org/10.1103/PhysRevE.86.021101
http://dx.doi.org/10.1103/PhysRevE.86.021101
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.88.085114
http://dx.doi.org/10.1103/PhysRevB.88.085114
http://dx.doi.org/10.1103/PhysRevB.88.085114
http://dx.doi.org/10.1103/PhysRevB.88.085114
http://dx.doi.org/10.1103/PhysRevB.45.304
http://dx.doi.org/10.1103/PhysRevB.45.304
http://dx.doi.org/10.1103/PhysRevB.45.304
http://dx.doi.org/10.1103/PhysRevB.45.304
http://dx.doi.org/10.1007/BF02097239
http://dx.doi.org/10.1007/BF02097239
http://dx.doi.org/10.1007/BF02097239
http://dx.doi.org/10.1007/BF02097239
http://dx.doi.org/10.1088/0305-4470/20/8/001
http://dx.doi.org/10.1088/0305-4470/20/8/001
http://dx.doi.org/10.1088/0305-4470/20/8/001
http://dx.doi.org/10.1088/0305-4470/20/8/001
http://dx.doi.org/10.1088/0305-4470/20/8/002
http://dx.doi.org/10.1088/0305-4470/20/8/002
http://dx.doi.org/10.1088/0305-4470/20/8/002
http://dx.doi.org/10.1088/0305-4470/20/8/002
http://dx.doi.org/10.1016/0550-3213(87)90334-8
http://dx.doi.org/10.1016/0550-3213(87)90334-8
http://dx.doi.org/10.1016/0550-3213(87)90334-8
http://dx.doi.org/10.1016/0550-3213(87)90334-8
http://dx.doi.org/10.1016/0550-3213(87)90347-6
http://dx.doi.org/10.1016/0550-3213(87)90347-6
http://dx.doi.org/10.1016/0550-3213(87)90347-6
http://dx.doi.org/10.1016/0550-3213(87)90347-6
http://dx.doi.org/10.1103/PhysRevB.79.144108
http://dx.doi.org/10.1103/PhysRevB.79.144108
http://dx.doi.org/10.1103/PhysRevB.79.144108
http://dx.doi.org/10.1103/PhysRevB.79.144108
http://dx.doi.org/10.1103/PhysRevA.82.050301
http://dx.doi.org/10.1103/PhysRevA.82.050301
http://dx.doi.org/10.1103/PhysRevA.82.050301
http://dx.doi.org/10.1103/PhysRevA.82.050301
http://dx.doi.org/10.1103/PhysRevB.83.125106
http://dx.doi.org/10.1103/PhysRevB.83.125106
http://dx.doi.org/10.1103/PhysRevB.83.125106
http://dx.doi.org/10.1103/PhysRevB.83.125106
http://dx.doi.org/10.1088/0305-4470/22/5/015
http://dx.doi.org/10.1088/0305-4470/22/5/015
http://dx.doi.org/10.1088/0305-4470/22/5/015
http://dx.doi.org/10.1088/0305-4470/22/5/015
http://dx.doi.org/10.1103/PhysRevB.54.R9612
http://dx.doi.org/10.1103/PhysRevB.54.R9612
http://dx.doi.org/10.1103/PhysRevB.54.R9612
http://dx.doi.org/10.1103/PhysRevB.54.R9612
http://dx.doi.org/10.1088/0305-4470/19/1/014
http://dx.doi.org/10.1088/0305-4470/19/1/014
http://dx.doi.org/10.1088/0305-4470/19/1/014
http://dx.doi.org/10.1088/0305-4470/19/1/014


MULTISCALE ENTANGLEMENT RENORMALIZATION . . . PHYSICAL REVIEW B 91, 165129 (2015)

[52] P. Christe and M. Henkel, Introduction to Conformal Invariance
and its Applications to Critical Phenomena (Springer-Verlag,
Berlin, 1993).

[53] G. von Gehlen and V. Rittenberg, J. Phys. A: Math. Gen. 20,
227 (1987).

[54] G. Evenbly, R. N. C. Pfeifer, V. Picó, S. Iblisdir, L. Tagliacozzo,
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