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We use ab initio electronic structure calculations within the generalized gradient approximation (GGA+U)
to density functional theory to determine the microscopic exchange interactions in the series of orthorhombic
rare-earth manganites, o-RMnO3. Our motivation is to construct a model Hamiltonian (excluding effects due
to spin-orbit coupling), which can provide an accurate description of the magnetism in these materials. First,
we consider TbMnO3, which exhibits a spiral magnetic order at low temperatures. We map the exchange
couplings in this compound onto a Heisenberg Hamiltonian and observe a clear deviation from the Heisenberg-like
behavior. We consider first the coupling between magnetic and orbital degrees of freedom as a potential source
of non-Heisenberg behavior in TbMnO3, but conclude that it does not explain the observed deviation. We find
that higher order magnetic interactions (biquadratic and four-spin ring couplings) should be taken into account
for a proper treatment of the magnetism in TbMnO3 as well as in the other representatives of the o-RMnO3 series
with small radii of the R cation.
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I. INTRODUCTION

Perovskite manganites, RMnO3 (R3+ = rare-earth cation),
show a great variety of structural, magnetic, and electronic
phases whose coexistence and interplay give rise to the large
diversity of their physical properties. Orthorhombic RMnO3

(o-RMnO3) exhibiting frustrated magnetic orderings are of
particular interest as they belong to the family of so-called
magnetoelectric multiferroics—materials, where magnetic
and ferroelectric orders are simultaneously presented [1–3].
Indeed, it has been shown experimentally, that the establish-
ment of a spiral ordering of Mn3+ spins in TbMnO3 and
DyMnO3 is accompanied by the appearance of a spontaneous
electric polarization which can be manipulated by an applied
magnetic field [4]. Recently a magnetically induced electric
polarization was also observed in o-HoMnO3 [5], which
has an E-type antiferromagnetic order (E-AFM) [6]. Despite
the fact that these effects occur at quite low temperatures,
the understanding of their mechanisms is important for the
fundamental physics of magnetoelectric phenomena and for
potential development of multifunctional devices.

In this work we address the question of the origin of
the frustrated magnetic orderings which cause the multi-
ferroic properties in o-RMnO3. According to experiment,
the magnetic structure in the series of o-RMnO3 evolves
from A-AFM to the spiral and then to the E-AFM state
with decreasing radius of the R cation, which favors the
enhancement of orthorhombic distortion. This in turn changes
the relative strength of nearest-neighbor (NN) and further
neighbor exchange interactions between Mn spins in these
materials [7,8]. This evolution of the magnetic order is usually
described within the framework of a Heisenberg model with
competing NN and next-nearest-neighbor (NNN) exchanges.
Indeed, qualitatively, this model gives the spiral as a ground
state for a certain ratio between NN and NNN couplings
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[3,9,10]. However, as we will show in details in Sec. II B,
application of this model for quantitative description of the
exchanges in o-RMnO3 gives contradictory results. Moreover,
it was shown recently, that the E-AFM state cannot be obtained
from the Heisenberg Hamiltonian [11].

Here we present the results of our studies of the microscopic
magnetic couplings in the series of o-RMnO3 using first-
principles electronic structure calculations with the goal of
finding a model Hamiltonian which can accurately describe
the magnetism in these materials. We restrict ourselves to the
analysis of the exchange interactions which are independent
of spin-orbit coupling, thus single-ion anisotropy (SIA) and
Dzyaloshinskii-Moriya interaction (DMI) are excluded in this
work. First we consider TbMnO3 with spiral spin ordering.
We map the exchanges in this compound onto the Heisenberg
model and find a clear deviation from Heisenberg-like behav-
ior. We investigate the extent to which this deviation originates
from the presence of the orbital ordering in TbMnO3 and
show that the coupling between magnetic and orbital degrees
of freedom cannot provide the observed deviation. Then we
explore the effect of exchange couplings of higher orders
than the bilinear exchange (biquadratic and four-spin ring
couplings), which are usually neglected. We demonstrate that
the higher order contributions are significant in TbMnO3 and
other o-RMnO3 with small radii of the R cation (independently
of the choice of the DFT+U parameters, which are used in
the calculations) and that they have to be included in the
model Hamiltonian for an accurate description of the magnetic
properties of orthorhombic manganites.

This article is organized as follows: In Sec. II we
describe the crystal structure, the orbital ordering and its
relation to the magnetic properties in o-RMnO3, and explain
the motivation of our research. Here we also introduce
the methods which we use in our calculations and specify the
computational details. In Sec. III we calculate the microscopic
exchange couplings in TbMnO3 and show that they cannot
be described by the Heisenberg Hamiltonian. In Sec. IV we
discuss the possible sources of the non-Heisenberg behavior
in TbMnO3; in particular, we investigate the effects of orbital
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FIG. 1. (Color online) Crystal structure of o-RMnO3: (a) side
view; (b) top view (R ions are not shown). (c) and (d) Representation
of the normal modes of Jahn-Teller distortion Q2 and Q3, respectively.

ordering, structural distortions, and higher order exchange
couplings. In Sec. V we analyze how the choice of DFT+U
parameters, specifically the on-site Coulomb repulsion U and
on-site exchange interaction JH , affects the resulting values
of microscopic exchange interactions in TbMnO3. In Sec. VI
we extend our analysis on the other representatives of the
o-RMnO3 series, namely, PrMnO3 and LuMnO3. Finally, in
Sec. VII we summarize our work and give a conclusion.

II. MOTIVATION, THEORETICAL
BACKGROUND, AND METHODS

A. Jahn-Teller and GdFeO3-type distortions in o-RMnO3

The o-RMnO3 have an orthorhombically distorted per-
ovskite structure (see Fig. 1) with space group Pbnm (#62)
and 20 atoms per unit cell [4,12–14]. The deviation from
the perfect cubic perovskite structure includes the Jahn-Teller
distortion of the MnO6 octahedra [15], their cooperative
tiltings [16] (the so-called GdFeO3-type, GFO, distortion) and
small antiferroelectric displacements of R cations from their
ideal positions [17]. While the latter structural distortion has
been shown to influence the ferroelectric properties, its effect
on the magnetism is negligible and we do not consider it in
this work.

In o-RMnO3 each Mn3+ ion resides in the middle of an
oxygen octahedron with four electrons in 3d levels. The crystal
field of the perfect octahedron splits the fivefold degenerate d

levels into triply degenerate t2g lower-energy levels and doubly
degenerate eg levels with higher energy. Electrons occupy the
orbitals according to Hund’s rules and the Pauli principle,
which leads to full occupation of the spin majority t2g states
and single occupation of the spin majority eg states. Lowering
of the symmetry of the crystal field due to the Jahn-Teller effect
[18] lifts the degeneracy of the eg electronic state and favors
the occupation of a certain orbital which can be represented as

a superposition of dz2 and dx2−y2 states [19]:

|ψ〉 = cos

(
θ

2

)
|dz2〉 + sin

(
θ

2

)
|dx2−y2〉. (1)

The state |ψ〉 is uniquely defined by the angle θ which is
called the orbital mixing angle. The corresponding distortion
of the octahedron can be written as a linear combination of
two normal Jahn-Teller modes Q2 and Q3 [15,20] [Figs. 1(c)
and 1(d), respectively]:

Q = Q3 cos ϕ + Q2 sin ϕ. (2)

The value of ϕ can be estimated with the simple formula,

ϕ = arctan

(
Q2

Q3

)
= arctan

( √
3(l − s)

2m − l − s

)
, (3)

where l, m, and s are the lengths of the long, medium and short
Mn-O bonds in the octahedron [21]. The ground-state value of
θ is determined by the balance between the energy gain due to
the orbital-lattice interaction and the elastic energy cost [22].
For a single octahedron this occurs at ϕ = θ .

Since the oxygen octahedra are interconnected, their distor-
tions and, therefore, the occupied orbital states on neighboring
Mn ions are not independent. Below a certain temperature, this
leads to a long-range orbital ordering with the orbital mixing
angles for two neighboring Mn sites i and j in the ab plane
related by θi = −θj (antiferro-orbital orientation). For nearest
neighbors along the c direction they are equal (ferro-orbital
orientation).

The GFO distortion is characterized by almost rigid
cooperative rotations of the MnO6 octahedra, which result
in the reduction of Mn-O-Mn bond angles and O(1)-O(2)
distances [see Fig. 1(b)]. In the series of o-RMnO3 this
distortion increases with decreasing radius of the R cation
from La to Lu.

B. Frustrated magnetism in o-RMnO3

The combination of Jahn-Teller and GFO distortions
in o-RMnO3 determines their magnetic properties [23].
According to the Goodenough-Kanamori-Anderson rules
[24–26], the presence of the orbital ordering of the type which
was described in the previous section favors FM exchange
coupling between neighboring Mn spins in the ab planes
and AFM coupling along the crystallographic c direction.
This promotes the establishment of A-AFM ordering for
R = La . . . Gd. However, further decreasing the size of R

cation in the series of o-RMnO3 (and, therefore, increasing
the GFO distortion) causes the transition to the spiral (R = Tb,
Dy) and then E-AFM states (R = Ho . . . Lu). One can consider
the change in the relative strength of FM NN and AFM NNN
couplings in the ab plane as an origin of this transition.
Indeed, increasing GFO distortion decreases NN exchange as
it strongly depends on the Mn-O-Mn bond angles. On the other
hand, it enhances the AFM exchange between NNNs along the
b axis through the path Mn-O(1)-O(2)-Mn due to the reduction
of O(1)-O(2) distances [see Fig. 1(b)]. This strong AFM NNN
exchange causes magnetic frustration [8].

The simplest microscopic model which is often used to
discuss this evolution of the magnetic order is the Heisenberg

165122-2



BIQUADRATIC AND RING EXCHANGE INTERACTIONS IN . . . PHYSICAL REVIEW B 91, 165122 (2015)

model:

HHeis =
∑
〈i,j〉

Jij Si · Sj , (4)

where Jij indicates exchange interactions between spins Si

and Sj . As exchange interactions are short ranged, usually
only the couplings between first- and second-nearest neighbors
are taken into account [3]. This model qualitatively explains
the establishment of spiral magnetic ordering. Indeed, for o-
RMnO3 the ratio,

Jb

|Jab| >
1

2
, (5)

for ab plane FM NN exchange Jab and AFM NNN exchange Jb

along the axis b gives a spiral (with a propagation vector along
the b axis) as a magnetic ground state [27]. However, the source
of E-AFM ordering is still under debate. For example, Kimura
et al. [8] stated that the two-dimensional Heisenberg model
with FM NN and certain competing AFM NNN couplings
in the ab plane can give E-AFM ordering, whereas Kaplan
and Mahanti [11] demonstrated that such a state cannot occur
in this model. Later it was shown for the example of a one-
dimensional spin chain, that addition of a biquadratic nearest-
neighbor exchange interaction of the form,

Hbq =
∑
〈k,l〉

jkl(Sk · Sl)
2, (6)

to the Heisenberg Hamiltonian gives rise to E-AFM order
[10]. Then the importance of biquadratic coupling in the
establishment of an E-AFM state was also confirmed for the
two-dimensional case [28]. In turn, Solovyev [29] claimed that
it is crucial to consider the exchange interaction between the
third nearest neighbors in the ab planes to stabilize the E-AFM
state.

Aside from the disagreement on the source of the E-
AFM order, the application of the Heisenberg model for
a quantitative description of the magnetism in o-RMnO3

gives ambiguous results. Assuming that the magnetism in
o-RMnO3 is fully described by the Heisenberg Hamiltonian
and considering only the couplings between NN spins, the total
energy can be written as

E =
∑
〈i,j〉

Jij Si · Sj + E0, (7)

where E0 includes all other (nonmagnetic) interactions. There-
fore, one can see that the difference in the total energies
of the unit cell of o-RMnO3 with A-AFM and G-AFM
orientations [see Figs. 2(a) and 2(b), respectively] of Mn3+

spins (�EAG) defines the value of exchange coupling Jab.
Moreover, this value should be the same as that given by
the difference in the energies of FM and C-AFM [Figs. 2(d)
and 2(c), respectively] states (�EFC). Similarly, the NN
exchange Jc along the c axis can be extracted from the
following energy differences: �EFA = E(FM)-E(A-AFM)
and �ECG = E(C-AFM)-E(G-AFM) and the obtained values
should be the same for these two cases. The energies of FM,
A-AFM, C-AFM, and G-AFM states have been calculated by
several groups for the series of o-RMnO3 applying different
theoretical approaches [29–31]. Using the published values
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FIG. 2. (Color online) Collinear magnetic orderings (in Wollan-
Koehler notation [6]) of the Mn spins within the perovskite unit cell:
(a) A-AFM, (b) G-AFM, (c) C-AFM, and (d) FM. Jc and Jab indicate
the NN exchange couplings along the c axis and within the ab planes,
respectively.

of these energies, we calculate for each case �EAG and
�EFC, which define Jab and should give the same results.
However, we find that the obtained values �E are significantly
different. The same is found for Jc, where �EFA and �ECG

give in some cases even different signs. As an example,
we present in Table I the values of Jab and Jc in LaMnO3

obtained using the generalized gradient approximation in
the form of Perdew, Burke, and Ernzerhof (GGA-PBE)[30],
Hartree-Fock approximation (HFA) [29], and GGA with the
Perdew-Wang-91 functional (GGA-PW91) [31]. We would
like to point out, that we do not compare the values of Jc

and Jab obtained with different approximations and presented
in different rows of Table I. For each approximation we
compare two values of Jab (Jc), which were obtained using
�EAG and �EFC (�EFA and �ECG) and, in principle, should
give very similar values. Table I also demonstrates that the
inconsistencies in the values of exchanges are not related to
the choice of the exchange-correlation potential. It should be

TABLE I. The exchange parameters Jab and Jc (in meV)
calculated with different theoretical approaches for LaMnO3 using
normalized values of spins | Si |=| Sj |=1.

Jab Jc

Method �EAG �EFC �EFA �ECG

GGA-PBE [30] −27.7 −22.5 0.5 −10.0
HFA [29] −4.75 −1.25 10.0 3.0
GGA-PW91 [31] −18.0 −14.6 5.0 −1.75
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noted that the addition of the biquadratic term [Eq. (6)] in the
Hamiltonian cannot explain these results as it cancels out in
each energy difference.

These inconsistencies have not been addressed in the
literature and require further investigation. On one hand, they
could arise from the presence of strong NNN couplings. On the
other hand, they could point to the presence of other significant
couplings beyond the Heisenberg Hamiltonian, which have to
be taken into account for a proper theoretical analysis of the
magnetism in o-RMnO3.

C. Mapping of DFT onto the Heisenberg model

In order to examine the relevance of the Heisenberg model
for o-RMnO3 and to clarify the inconsistencies in the previous
theoretical results, we perform a thorough analysis of the
microscopic exchange couplings by mapping the results of
density functional theory (DFT) [32,33] calculations onto
the Heisenberg Hamiltonian. For that purpose we use two
approaches, described below in this section and based on
certain modifications of the initial magnetic states. In this
context we point out that in the DFT calculations periodic
boundary conditions are applied and a variation of a state of
a Mn spin on one site leads to the same variation of Mn spin
states on all periodically equivalent sites.

1. Calculations with collinear spin configurations

The first approach, described in detail in Refs. [34,35], is
based on calculations of the total energy of the system with
collinear spin alignment when the spin states on two sites
(let us denote them as 1 and 2) within the given unit cell are
modified. If the magnetism in the system is fully described by
the Heisenberg Hamiltonian, its total energy can be written as
follows:

E = nJ12S1 · S2 + S1 · h1 + S2 · h2 + Eall + E0, (8)

where n is the number of equivalent bonds with exchange
coupling J12, which connect ions 1 and 2, h1 = ∑

i �=1,2 J1iSi ,

h2 = ∑
i �=1,2 J2iSi , and Eall = ∑

i,j �=1,2 Jij Si · Sj ; E0 contains
all nonmagnetic energy contributions. Taking into account
periodic boundary conditions, one should consider the first
term in Eq. (8) as the Heisenberg exchange interactions
between spins of magnetic sublattices 1 and 2 [spin on the site
1 (or 2) and on all translationally equivalent sites], the second
(third) term as the coupling of the spins of the sublattice 1 (2)
with all other sublattices except 2 (1), and Eall as the exchange
couplings between all magnetic sublattices apart from 1 and
2. The number of sublattices is determined by the size of
chosen unit cell. Four different collinear configurations of the
spins 1 and 2 are possible—up-up, up-down, down-up, and
down-down and the corresponding energies can be calculated
using DFT. Then, the exchange interaction between sublattices
1 and 2 can be found using the formula,

J12 = E↑↑ + E↓↓ − E↑↓ − E↓↑
4nS2

. (9)

For a more direct comparison with other materials we prefer
not to normalize our reported values of Ji by S2 (thus we set
S = 1 for Mn). Substituting in this expression the energies
E↑↑, E↓↓, E↑↓, and E↓↑ using Eq. (8), one sees that all terms,

except those describing the exchange interaction between
sublattices 1 and 2, cancel out. As a result, the parameter
J12 does not contain contributions from couplings between the
spins of sublattices 1 and 2 and those of other sublattices and,
therefore, should not depend on the orientation of spins that
do not belong to the sublattices 1 and 2.

2. Noncollinear calculations

This approach is based on the calculation of the total energy
of the system when some spins are rotated away from an initial
collinear state [36] and can be illustrated by the example of
the unit cell with four magnetic ions. We consider A-AFM
ordering for spins in the unit cell as a starting point and rotate
the spins of ions 2 and 4 [see Fig. 2(a)] by an angle α keeping
them antiparallel to each other until we reach G-AFM ordering
[Fig. 2(b)].

The energy of the system as a function of α within the
Heisenberg model can be written as

E(α) = −4JcS
2 + 8JabS

2 cos α + E0, (10)

and can be calculated using DFT. The resulting curve should
fit the form,

f (α) = A1 + B1 cos α, (11)

if the Heisenberg model provides an accurate description (in-
dependently of the number of considered exchange couplings
as periodic boundary conditions are applied) and the fitting
parameter B1 should define the exchange coupling constant
Jab = B1/8S2. Jc can be extracted similarly by rotating spins
on sites 3 and 4 from G-AFM to C-AFM ordering [from
Fig. 2(b) to 2(c), respectively].

D. Computational details

We perform spin-polarized electronic structure calculations
using the Vienna Ab initio Simulation Package (VASP) [37]
within the projector-augmented plane wave (PAW) method of
DFT. We use the GGA+U approximation for the exchange-
correlation potential (in the form of Perdew, Burke, and
Ernzerhof [38]). Unless otherwise stated, we apply an on-site
Coulomb repulsion of U=2 eV to the Mn d states as imple-
mented in Liechtenstein’s scheme [39] and set the parameter of
the effective on-site exchange (Hund’s rule) interaction JH =
0 eV. This is equivalent to using Ueff = U − JH = 2 eV in
Dudarev’s scheme [40]. We do not include spin-orbit coupling
in our calculations, thus neither SIA nor DMI (nor any other
magnetic interactions with relativistic origin) can contribute
to the resulting total energies. To eliminate the effects from
the ordering of the f-electron moments of rare-earth ions, we
use pseudopotentials for R with the f states frozen in the
core. The value of the energy cutoff is set to 600 eV. In all
calculations we fix the crystal structures to the experimental
ones [12,41,42] to isolate any contributions from spin-lattice
coupling. To construct the set of projected Wannier functions
[43] we use the WANNIER90 [44] code and the VASP2WANNIER90

interface [45].
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FIG. 3. (Color online) Heisenberg interactions in TbMnO3,
which are considered in this work. Mn atoms within the 40-atom
supercell are highlighted with dark purple. Light purple circles
indicate Mn ions which belong to the neighboring supercells. NN
exchanges are indicated in red, second NN in blue, and third NN in
green.

III. DEVIATION FROM HEISENBERG MODEL

We start with the analysis of the microscopic exchange
couplings in the most studied multiferroic orthorhombic
perovskite compound TbMnO3 [46,47]. We initially assume
that the magnetism in this material is fully described by
the Heisenberg Hamiltonian [Eq. (4)] and limit ourselves to
consideration of the exchange couplings up to third NN within
the ab, bc, and ac planes. In our notation Jc and Jab are the
NN exchanges along the c axis and in the ab plane (see Fig. 3)
respectively; Ja corresponds to the second NN exchange along
the a direction, Jb—along the b axis and Jdiag couples second
NN in adjacent ab planes; J3ab, J3bc, and J3ac are exchanges
between third NN in the ab, bc, and ac planes, respectively.
We extract these parameters applying the method described in
Sec. II C 1. For this purpose we consider an 80 atom supercell
(the orthorhombic unit cell [12] is doubled in the a and b

directions) and a �-centered 3 × 3 × 5 k-point mesh. For each
J we choose the corresponding spin pair in the supercell and
calculate the total energies of the system for the four possible
orientations of spins in this pair (up-up, up-down, down-up,
down-down). We keep the rest of Mn spins fixed first in the FM
state (FM case) and then in the A-AFM state (A-AFM case).
Note that for Jdiag and J3ab there are two types of spin pairs
which are not related by symmetry operations of the Pbnm

space group and we calculate these coupling constants for both
of them. The obtained values of J are presented in Table II. We

TABLE II. Values of NN and NNN exchange interactions (in
meV) in TbMnO3 calculated for FM and A-AFM cases using U =
2 eV and JH = 0 eV. d(Mn-Mn) indicates the Mn-Mn distance (in
Å) corresponding to each Ji .

Jc Jab Ja Jdiag Jb J3ab J3bc J3ac

d(Mn-Mn) 3.701 3.940 5.293 5.406 5.838 7.881 6.913 6.459

FM 3.68 −4.62 −0.06 0.97 1.10 1.11 0.11 −0.02
A-AFM −0.85 −5.16 −0.32 −0.10 0.68 1.26 0.007 0.03

(a) 1

2

(b)

b

c

(c) (d)

FIG. 4. (Color online) Forty atom supercell of TbMnO3 (side
view) with magnetic orders which were used to calculate the exchange
parameter Jc. Tb and O ions are not shown.

find that for our chosen values of U and JH , Jb is rather weak
relative to Jab for both (FM and A-AFM) cases and according
to Eq. (5) cannot produce the spiral state in TbMnO3. The other
possible source of frustration could be the AFM coupling J3ab

which is stronger even than the second NN in-plane couplings
Ja and Jb. The importance of J3ab was already pointed out in
Ref. [29], where strong or weak J3ab couplings were proposed
depending on the relative orientation of the occupied d orbitals
on the interacting sites (two inequivalent-by-symmetry spin
pairs). However, we obtain the same value of J3ab for both
orbital orientations. Similarly, we obtain identical values of
Jdiag for the two symmetry inequivalent spin pairs. Therefore
we introduce only one coupling constant for both Jdiag and
J3ab. The third NN couplings, J3bc and J3ac, were found to be
weak in comparison with the other couplings and they will not
be considered further in this work.

The key result of these calculations is that the values
of the exchanges, especially Jc, have different magnitudes
and in some cases even different signs for FM and A-AFM
cases while within the Heisenberg description they should be
equal (or at least very similar). We point out that such an
inconsistency cannot arise from further neighbor exchange
couplings. Indeed, as we discussed in Sec. II C 1, all further
neighbor contributions cancel each other in Eq. (9).

To double check this result and to determine its origin, we
extract Jc, which shows the largest inconsistency, with the
same method using a 40-atom supercell (20-atom unit cell
doubled along the b axis, 7 × 4 × 5 �-centered k-point mesh).
We calculate the total energies switching the direction of spins
1 and 2, but now the rest of the spins are kept in the states
shown in Fig. 4. The new calculated Jc values are presented
in Table III. One can see that the Jc value obtained using
state (a) (which is A-AFM order) is in agreement with the
Jc value which was found using the 80 atom supercell and
starting from the same magnetic state. Interestingly, the values
of Jc are similar for the states (a) and (b), where the closest
surroundings of spins 1 and 2 are identical. In turn, if the states
differ by the direction of one spin in the nearest neighborhood
of the considered spin pair [such as between states (a) and
(c) or (c) and (d)], Jc changes by approximately the same
amount (in average by 1.85 meV). This suggests the presence
of strong couplings beyond the Heisenberg Hamiltonian which
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TABLE III. The values of the exchange coupling constant Jc

(in meV) in TbMnO3 calculated using the magnetic states shown
in Fig. 4. E4sp indicates the contributions to the values of Jc from
four-spin ring exchange K between Mn spins confined in adjacent ab

planes.

(a) (b) (c) (d)

Jc −0.88 −0.68 0.92 2.84
E4sp −4K −4K 0 4K

involve in some way the magnetic interactions between the
nearest-neighboring Mn spins.

Another check can be done by the method described in
Sec. II C 2. To apply this method we consider a 20-atom unit
cell and a 5 × 5 × 3 k-point mesh. We rotate the spins on sites
2 and 4 from A-AFM to G-AFM ordering (see Fig. 2) and
calculate the energies E of the system (relative to the energy
of A-AFM order) for several values of spin rotation angle α

between 0◦ and 180◦. E(α) and its fitting to f (α) [Eq. (11)] are
presented in Fig. 5 (black dots and blue line, respectively). One
can see that E(α) shows clear deviation from the cosinusoidal
behavior predicted by the Heisenberg model.

These results lead us to the conclusion that the Heisenberg
Hamiltonian in its usual form is not able to accurately describe
the magnetism in TbMnO3 and more couplings have to be
taken into consideration.

IV. ORIGIN OF NON-HEISENBERG BEHAVIOR

A. Orbital ordering

First, we investigate whether the observed non-Heisenberg
behavior can originate from the presence of the orbital ordering
in TbMnO3. Indeed, as was already described in Sec. II B,
the magnetic and orbital orderings are related as far as the
coupling of spins on neighboring Mn3+ ions is determined
by the occupation of their particular orbitals through the
superexchange mechanism. To take this behavior into account,
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FIG. 5. (Color online) Dependence of the energy E (relative to
the energy of A-AFM order) of TbMnO3 on the rotation angle α of
spins from the A-AFM to G-AFM state calculated using U = 2 eV
and JH = 0 eV. The results of DFT calculations are shown by dots
and the fitting to the Heisenberg model [Eq. (11)] by the blue line.
The red line indicates the fitting to a Hamiltonian which includes
bilinear and higher order exchange couplings [Eq. (15)], B2 and C2

are the fitting parameters, which define the sizes of the bilinear and
higher order terms, respectively.
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b 

FIG. 6. (Color online) (a) Ideal cubic perovskite structure;
(b) purely JT distorted structure (tetragonal); (c) fully JT+GFO
distorted structure (orthorhombic) of TbMnO3.

the ordinary superexchange was generalized for the case of
systems with orbital degeneracy by Kugel and Khomskii [19].
They introduced a model Hamiltonian, in which, besides the
Heisenberg exchange, they included terms describing orbital-
orbital and orbital-spin couplings. The latter gives the change
in the orbital ordering with variation of the spin alignment (or
vice versa) and, if it is large enough, can explain the different
values of exchange obtained for A-AFM and FM cases as
well as the deviation from Heisenberg behavior observed in
noncollinear calculations.

The occupied eg orbital |ψ〉 for each Mn3+ ion is uniquely
defined in terms of the orbital mixing angle θ by Eq. (1).
To extract θ for TbMnO3, so as to trace its evolution with
structural distortions and to estimate the strength of coupling
between orbitals and spins we perform the following analysis:
We construct a perfect cubic perovskite structure for TbMnO3

using a 20-atom unit cell and keeping the volume of each MnO6

octahedron equal to the experimental one [see Fig. 6(a)]. Then
we start to apply the JT modes Q2 and Q3 (without GFO
distortion) in such a way that Qi,applied = aQi,exp [thus the
angles ϕ, which are defined by Eq. (3), are equal for all values
of a]. a is varied from 0 to 1 and Qi,exp corresponds to the
structure with the full JT distortion [Fig. 6(b)]. To reach a
more transparent description of the orbital ordering, we use
a representation in terms of Wannier functions [48] (WF),
which, unlike Bloch functions, are localized in space and have
minimal overlap with the surrounding orbitals. To construct
a set of eg like WFs, we proceed similarly to Refs. [43,49].
We calculate the Bloch functions within GGA+U (using the
structures corresponding to different a), and for each structure
we define an energy window, in which eg bands are located,
based on projected densities of states and band structures.
Then, using the VASP2WANNIER90 interface and WANNIER90

code, we construct four WFs via projection of atomiclike |dz2〉
and |dx2−y2〉 orbitals centered on two Mn sites (1 and 2) on the
majority spin Bloch bands within the chosen energy window.
Then we calculate the occupation matrices in the basis of these
WFs for several values of a and two types of ordering of the Mn
magnetic moments (A- and G-AFM). Solving the eigenvalue
problem for these matrices, we find |ψi〉 (i = 1,2) and, thus,
θi . We plot θ1 as a function of a starting from a=0.4 (see
Fig. 7, left half of the graph), since smaller amplitudes of JT
distortion give a metallic ground state. θ2 has the same values
as θ1, but the opposite sign.

As we expected, the calculated θ are different for A- and
G-AFM orderings. With increasing JT distortion from 40%
to 100% the mixing angles for both AFM orders change by
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FIG. 7. (Color online) Orbital mixing angle as a function of the
amplitudes of JT and GdFeO3-type distortions for G-AFM and
A-AFM magnetic orderings in TbMnO3. In the part of the graph
highlighted with violet (cyan), only the amplitude of the JT (GFO)
distortion is varied. ϕ is determined using Eq. (3).

approximately 6◦ and tend to the value of ϕ ≈ 114◦ which is
imposed by the structure [ϕ is calculated using Eq. (3) and
experimental lengths of long, medium, and short bonds in
Mn-O octahedra]. It is important, that the difference in the
orbital mixing angles �θ between A- and G-AFM orderings
(in other words, the variation of the orbital ordering by the
change in the magnetic structure) is quite small for the whole
range of JT distortion amplitudes and reaches a maximum of
�θ ≈ 3◦. In order to check whether such a small variation
of the orbital mixing angle �θ can cause the deviation from
Heisenberg behavior which was found in Sec. III, we perform
the calculations of the total energies rotating the spins from
A-AFM to G-AFM ordering and using the structures with
different amplitudes of JT distortion (a = 0.4 and 1). The
obtained angular dependencies of the total energy and their
fittings to f (α) [Eq. (11)] are shown in Figs. 8(a) and 8(b).
It is clearly seen that the calculated E(α) fit well with the
Heisenberg Hamiltonian for both amplitudes of JT distortion.
Therefore, one can conclude, that the variation in θ associated
with the change in the magnetic order is not sufficient to
explain the large deviation from the Heisenberg model which
was observed in our previous calculations. It should be taken
into account, however, that the energy scale is 4–6 times larger
than in the case where we perform the calculations using the
experimental crystal structure (Fig. 5). This is because in the
latter case the exchange energy is reduced by the presence of
GFO distortion. Thus, it is also possible, that the contribution
from �θ is not significant in comparison with the strong
exchange energy within the tetragonal structure, but could be
important when the orthorhombic distortion comes into play.
Therefore, we are motivated to analyze next the effect of GFO
distortion on the orbital and magnetic orderings.

To investigate the variation of the orbital mixing angle
by GFO distortion we again construct four projected WFs.
In this case, to initialize projections, we introduce a local
coordinate system for each MnO6 octahedron in such a way
that x, y, and z axes are aligned as much as possible along

FIG. 8. (Color online) Dependence of the energy E (relative to
the energy of A-AFM order) on the rotation angle α of spins
from A-AFM to G-AFM state for the structures of TbMnO3 with
different amplitudes of JT and GFO distortions. Dots indicate the
results of DFT calculations; lines show the fittings to the Heisenberg
Hamiltonian [Eq. (11)]. (a) and (b) show the values for the structures
with 40% and 100% JT distortion, respectively, without octahedral
tiltings; (c) and (d) show the values for the structures with the full JT
distortion and 60% and 100% GFO distortion, respectively. Plot (d)
was obtained using the crystal structure which unlike the experimental
one does not include the antiferroelectric displacements of R cations,
thus it is not identical to the one shown in Fig. 5.

the long, short, and medium Mn-O bonds, respectively. Other
than that, we proceed in the same way as before: Starting
from the fully JT distorted structure [Fig. 6(b)], we gradually
increase the octahedral rotations to reach the experimentally
observed Mn-O-Mn bond angles. The final structure is shown
in Fig. 6(c); in comparison with the experimental structure,
this one does not include a small antiferroelectric shift of Tb
cations. We calculate the orbital mixing angles as a function
of the amplitude of GFO distortion for A- and G-AFM
orderings (Fig. 7, right part of the graph). Then we perform
spin rotations from A- to G-AFM ordering with 60% and
100% GFO distorted crystal structures. Corresponding angular
dependencies of the total energy are presented in Figs. 8(c)
and 8(d).

We find that increasing GFO distortion causes smaller vari-
ation of the orbital mixing angle (≈1.5◦−3◦) in comparison
with JT distortion for both magnetic orderings. Moreover, it
almost does not affect �θ between different types of magnetic
ordering (indeed, curves for A-AFM and G-AFM stay almost
parallel). However, it induces and enhances the deviation of
E(α) from f (α) as shown in Figs. 8(c) and 8(d). Therefore we
conclude that non-Heisenberg behavior originates from the
modification of Mn-O-Mn bond angles due to the reduction of
the energy of the exchange interactions between NN Mn spins,
which makes weak energy contributions more significant.

In order to check whether these weak contributions are
provided by �θ , we perform the same spin rotations for two
compounds which do not contain JT active ions (therefore,
do not have an orbital ordering), TbCrO3 (Cr3+: t3

2ge
0
g)

and TbFeO3 (Fe3+: t3
2ge

2
g). In these calculations we use
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FIG. 9. (Color online) Dependence of the energy E (relative to
the energy of A-AFM order) on the rotation angle α of spins from
the A-AFM to G-AFM state for compounds without orbital ordering:
(a) TbCrO3 and (b) TbFeO3. Dots correspond to the results of DFT
calculations; lines show the fittings to the Heisenberg Hamiltonian
[Eq. (11)].

the structure of TbMnO3 with Mn3+ replaced by Cr3+ and
Fe3+, respectively, which allows us to modify the strength of
NN exchange interactions by changing the occupation of d

orbitals without any variation of the crystal structure. Indeed,
in TbCrO3 magnetic couplings are mostly provided by the
hopping processes between t2g orbitals (mediated by oxygen
p states) as eg orbitals are empty, whereas in TbFeO3 both
t2g and eg states of one spin direction are fully occupied and
participate in exchange interactions. Moreover, the eg orbitals
in octahedral coordination have stronger overlap with O p

states than the t2g due to their geometry, and therefore provide
stronger coupling. As a result, one can expect significantly
larger magnitudes of NN exchanges for TbFeO3 than for
TbCrO3.

The calculated E(α) are presented in Fig. 9. Both com-
pounds exhibit deviations of E(α) from the cosinusoidal
behavior even in the absence of an orbital ordering. Notably,
the deviation is stronger for the case of TbCrO3 than for
TbFeO3. We assume that in TbCrO3 the couplings which are
not considered in the Heisenberg Hamiltonian are comparable
in magnitude with NN exchanges between the Mn t2g states and
cause a stronger deviation from cosinusoidal behavior, whereas
in TbFeO3 they are not significant relative to the strong
NN exchange and the Heisenberg model works sufficiently
well. Thus, the observed non-Heisenberg behavior cannot be
explained by the presence of the orbital ordering. Instead, it
appears in the materials where the energy of the exchange
couplings is reduced by the modification of Mn-O-Mn bond
angles or by the occupation of the orbitals participating in the
superexchange.

B. Higher order exchange couplings

Next we investigate whether exchange couplings of higher
order than the usual bilinear term might be responsible for
the observed deviation from the Heisenberg model. Generally
speaking, the higher order exchanges as well as the bilinear
coupling can be derived from a half-filled Hubbard model in
the limit t/U 
 1 (which is applicable for insulators),

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + c

†
jσ ciσ ) + U

∑
j

n̂j↑n̂j↓, (12)

where t is a hopping parameter, U describes the on-site
Coulomb repulsion, c

†
jσ and cjσ are operators of creation

and annihilation of electrons with spin σ in the Wannier
state w(r − Rj ), and n̂j↑ = c

†
j↑cj↑ is the occupation number

operator. Second-order perturbation theory in t gives the
energy correction in the form of Heisenberg exchange, whereas
the fourth order gives biquadratic, four-spin ring interactions
and additional contributions to NNN couplings. The four-spin
ring term describes the consecutive hopping processes between
NN ions forming a four-site plaquette and has the following
form [50,51]:

H4sp ∝ [(Si · Sj )(Sk · Sl) + (Si · Sl)(Sk · Sj )

− (Si · Sk)(Sj · Sl)], (13)

where i, j , k, and l enumerate spins of the plaquette. For the
Heisenberg model to be valid, all higher order terms should be
negligible compared with the bilinear term. As their strength
is defined by t4/U 3, and that of the bilinear term by t2/U , this
should be the case in the limit of small enough t/U . However,
several theoretical and experimental groups found that in some
compounds these terms are significant. For example, it was
shown that the results of a paramagnetic resonance study
[52] of pairs of Mn2+ ions in MgO fit much better with a
Hamiltonian that includes biquadratic exchange Hbq [Eq. (6)]
than with the ordinary Heisenberg Hamiltonian. Later, the
significance of Hbq was invoked to explain the establishment
of the E-AFM ordering [10] as we mentioned in Sec. II B.
The four-spin ring interaction was found to be important to
explain the dispersion of the magnetic excitations in La2CuO4

measured using inelastic neutron scattering experiments [53].
It was also shown to be significant in the spin-ladder cuprates
SrCu2O3, CaCu2O3, and Sr2CuO4 using ab initio quantum
chemistry embedded cluster calculations [54].

First, let us check whether the presence of the higher order
terms can explain the inconsistent values of the exchange
coupling constant Jc in TbMnO3 which were obtained in
Sec. III starting from different states with collinear spin
alignment. We already mentioned that the addition of Hbq

cannot affect the resulting values of exchanges as the applied
method considers the energy differences between states with
collinear spin orientations and in these differences biquadratic
terms always cancel out. Fourth-order contributions to NNN
interactions, if present, are already included in the analysis as
they cannot be distinguished from the bilinear NNN couplings.
To introduce the terms describing the four-spin ring exchanges
we have to consider the couplings between spins in the
plaquettes confined in the ab planes as well as from those
that contain pairs of Mn spins from neighboring ab planes.
We denote the corresponding coupling constants as G and
K [see Fig. 11(a)]. Thus, we can write the energies E↑↑, E↑↓,
E↓↑, and E↓↓ for the 80 atom supercell of TbMnO3 in A-AFM
and FM cases including four-spin interactions and put them
in Eq. (9) to extract Jc. In this way we find that the in-plane
ring exchanges G cancel each other for both cases in the linear
combinations of these energies and obtain (for S = 1)

Jc(A − AFM) → Jc − 4K, Jc(FM) → Jc + 4K. (14)

This result shows that the presence of K is the most likely
origin of the difference in the obtained values of Jc. Using
Eq. (14) and values of Jc(A − AFM) and Jc(FM) which were
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obtained in Sec. III, one finds the value of K ≈ 0.6 meV for
TbMnO3.

The same can be done for the 40-atom supercell of TbMnO3

with magnetic configurations shown in Fig. 4. As before,
here we find that the in-plane four-spin couplings G cancel
each other. The contributions to Jc arising from the interplane
ring exchanges obtained for these states are summarized in
Table III. One can see the relation between these contributions
and the values of Jc which were calculated with DFT using the
structures (a)–(d) and presented in the first line of Table III.
Indeed, for the states (a) and (b), the interplane four-spin
exchanges contribute exactly the same to Jc (E4sp = −4K),
and the values of Jc which we extracted using DFT for these
states are very similar. States (a) and (c) as well as (c) and
(d) have contributions to Jc which differ by 4K . Notably,
the Jc values which we extracted for these states vary by
approximately the same amount (in average 1.85 meV). This
gives the value of K ≈ 0.5 meV, which is in agreement with
the value of K obtained using Eq. (14). Thus we confirm the
presence of the strong four-spin interplane exchange couplings
in TbMnO3 and show that the addition of these couplings to
the model Hamiltonian can explain the inconsistent values of
NN exchanges which were found in Sec. III.

The size of the in-plane four-spin coupling can be estimated
similarly by choosing the appropriate collinear spin states and
calculating energy differences for them. However, we proceed
in a different way. As we already calculated the total energies of
the 80 atom supercell of TbMnO3 for a large number (namely
54) of inequivalent magnetic collinear states, we can write
the energies of these states using the model Hamiltonian that
includes bilinear and four-spin ring couplings and construct
an overdetermined system of linear equations, where the
unknowns are the exchange coupling constants (bilinear ones
(see Fig. 3): Jc, Jab, Ja , Jdiag, Jb, J3ab, and four-spin ones
[Fig. 11(a), G and K]). To build this system of equations we
use only the states which are insulating and take the energy of
the A-AFM state as a reference. Then we use the least mean
square method to extract all coupling constants. The obtained
values are presented in Table IV. We find that the in-plane
four-spin coupling G is negligible in comparison with the
interplane one K . Further investigation is required to find an
explanation for this observation.

Using our extracted values of the coupling constants, we
calculate the expected energies of all 54 states using the
considered model Hamiltonian. We plot them versus the
energies of these states (referred to the energy of the A-AFM
state) calculated using DFT in order to examine how well our
model predicts the magnetic properties of the system (ideally,
model and DFT energies should be the same). The result is

FIG. 10. (Color online) Energies of the 80 atom supercell of
TbMnO3 with 54 inequivalent collinear magnetic configurations
(referred to the energy of the A-AFM state) predicted by (a) the pure
Heisenberg Hamiltonian and (b) the Hamiltonian, which includes
bilinear and four-spin ring couplings, and plotted versus the energies
of corresponding states calculated using DFT. Ideally, the model
and DFT energies should be equal and points should lie on the
dashed line. Insets show the deviations of the model energies from
those calculated using DFT. Each bar corresponds to one considered
magnetic configuration.

presented in Fig. 10(b). Similarly, we extract the coupling
constants and calculate the energies of the magnetic states
using the pure Heisenberg Hamiltonian (in an overdetermined
system of equations, the only unknowns are the bilinear
coupling constants: Jc, Jab, Ja , Jdiag, Jb, and J3ab). The
model energies plotted versus the energies obtained from
first-principles calculations are shown in Fig. 10(a). Moreover,
we extract the deviations of the energies predicted by both

TABLE IV. Coupling constants (in meV) for bilinear (Jc, Jab, Ja , Jdiag, Jb, and J3ab), four-spin ring (G and K), and biquadratic (jc and jab)
exchanges calculated using different values of U and JH (in eV) for TbMnO3, PrMnO3, and LuMnO3.

U JH Jc Jab Ja Jdiag Jb J3ab G K jc jab

TbMnO3 2.0 0.0 1.22 −6.01 −0.47 0.31 0.65 1.21 −0.05 0.50 −0.81 −2.29
3.0 1.0 4.78 0.02 −0.29 0.22 0.68 0.96 0.07 0.28 −0.62 −1.44

PrMnO3 1.0 0.0 1.79 −14.16 −0.48 0.88 0.26 3.25 −0.07 0.80 −2.61 −2.95
TbMnO3 1.0 0.0 4.26 −3.86 −0.37 0.58 0.85 1.77 −0.02 0.77 −0.47 −2.09
LuMnO3 1.0 0.0 3.76 −0.48 −0.55 0.53 0.93 1.75 0.15 0.66 −0.37 −2.29
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Hamiltonians from their values obtained with DFT for each
considered magnetic state. These deviations are summarized
in the bar charts shown in the insets in Fig. 10. One can
see that the Hamiltonian which includes both bilinear and
four-spin terms gives much better agreement with the results
of DFT calculations than the pure Heisenberg Hamiltonian. We
repeat this analysis also for the Hamiltonian which involves six
bilinear exchange couplings and only interplane four-spin ring
coupling K , as G was found to be negligible. The extracted
coupling constants as well as the deviations between model
and DFT energies remain almost the same as those which
were obtained using the full Hamiltonian (which includes also
G). This means that the addition of just one parameter K into
the model Hamiltonian can already significantly improve the
description of the magnetism in the considered compound.

The effect of the higher order exchange interactions in
TbMnO3 can also be examined using noncollinear calcula-
tions. The simplest approach is to map the angular dependence
of the total energy, obtained in Sec. III from the spin rotations
from A-AFM to G-AFM orderings, to the Hamiltonian which
includes bilinear, biquadratic, and four-spin ring interactions
by fitting to the function,

g(α) = A2 + B2 cos(α) + C2 cos2(α). (15)

The result is shown in Fig. 5 and clearly demonstrates that
the introduction of the higher order couplings into the model
Hamiltonian greatly improves the fitting. The strengths of these
couplings are determined by the fitting parameter C2. Note
that this term includes the contributions from four-spin ring
exchanges as well as from the in-plane biquadratic couplings
and that these terms cannot be separated. Similar behavior of
E(α) was found in Ref. [36] for hexagonal YMnO3 using ab
initio calculations within the LDA+U approximation, where
it was discussed only in terms of bilinear and biquadratic
exchanges.

To complete the analysis of the full model Hamiltonian
we need to estimate the coupling constants which define the
biquadratic exchanges in TbMnO3. For this we only take
into account the biquadratic interactions between the nearest
neighbors in ab planes and along the c axis and denote the
corresponding coupling constants as jab and jc (see Fig. 11).
The problem can be simplified if we eliminate the contribution
from four-spin interplane ring exchanges by considering the
magnetic states which set to zero at least one scalar product in
each of the three terms in Eq. (13). This can be achieved by
setting three Mn spins in the unit cell perpendicular to each
other as shown in Fig. 11. By rotation of the remaining spin
the angular dependence of the total energy can be obtained and
the coupling constants can be found from the corresponding
fittings. To extract jab we start from the magnetic state shown
in Fig. 11(a) and rotate spin 4 by an angle α from 0◦ to 180◦
in the ac plane. The energy of this system can be written as
follows:

E(α) = E + 4Jab cos(α) + 8Jdiag sin(α)

+ 4jab cos2(α) + 8G cos2(α), (16)

where the third term is given by spins 1 and 4 and all other
terms by spins 3 and 4 (S=1) and E includes the exchange
couplings which are constant at every α for the considered
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FIG. 11. (Color online) Magnetic orderings which are used to
extract the biquadratic exchange interactions: (a) jab in the ab planes
(G and K indicate four-spin ring exchange couplings in plaquettes
of Mn spins confined in the ab planes and those containing pairs of
spins from neighboring ab planes, respectively); (b) jc along the c

axis (violet dashed rectangle indicates a rotation plane of spin 4).

magnetic states and other nonmagnetic interactions. The
coupling constants can be extracted by fitting to the function:

f (α) = A1 + 4Jab cos(α) + 8Jdiag sin(α)

+ (D1 + 8G) cos2(α), (17)

where we set the values of Jab, Jdiag, and G to those which
were extracted in the collinear calculations and presented in
the first line of Table IV. D1/4 defines jab = −2.29 meV. We
proceed in a similar way to extract the coupling constant jc.
Starting from the magnetic state presented in Fig. 11(b) and
rotating spin 4 by α from 0◦ to 180◦ in the ac plane, we obtain
E(α). One can see that in the considered magnetic state neither
in-plane nor interplane four-spin ring couplings contribute to
E(α) and fitting to

g(α) = A2 + 2Jc cos(α) + 8Jdiag sin(α) + D2 cos2(α), (18)

gives jc = D2/2 = −0.81 meV.
Thus we demonstrate that the higher order exchange in-

teractions are significant in TbMnO3 (especially the four-spin
ring interplane coupling K and biquadratic in-plane coupling
jab) and have to be included in the model Hamiltonian to
properly describe the magnetic properties of this material.

V. U AND JH DEPENDENCE OF EXCHANGE COUPLINGS

In general, microscopic exchange interactions calculated
within the DFT+U approach are sensitive to the choice of
the on-site Coulomb repulsion U and the on-site exchange
interaction JH . Indeed, as was shown in Ref. [55] for the
case of LaMnO3, the effective eg hopping amplitudes depend
significantly on U . In addition JH has been shown to have large
effects on the magnetic ground state of noncollinear magnets
[56]. Therefore, it is important to investigate how the relative
strength of bilinear and higher order terms varies with these
parameters.

First, we analyze the effect of U by performing spin
rotations from A-AFM to G-AFM states (see Sec. II C 2)
within the 20-atom unit cell of TbMnO3 and setting U = 4 eV
and 8 eV (with JH = 0 eV). We map the obtained E(α)
(relative to the energy of the A-AFM state) onto both the pure
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FIG. 12. (Color online) Dependencies of the energy E (relative to the energy of A-AFM order) of TbMnO3 on the rotation angle α of spins
from A-AFM to G-AFM state calculated using (a) U = 4 eV and JH = 0 eV; (b) U = 8 eV and JH = 0 eV; (c) U = 3 eV and JH = 1 eV. The
results of DFT calculations are shown by dots. The blue line indicates the fitting to the Heisenberg model [Eq. (11)] and the red line—fitting to
a Hamiltonian which includes bilinear and higher order exchange couplings [Eq. (15)]. B2 and C2 are the fitting parameters of Eq. (15), which
define sizes of the bilinear and higher order terms, respectively.

Heisenberg Hamiltonian and then on the Hamiltonian that also
includes biquadratic and four-spin ring terms, by fitting to f (α)
[Eq. (11)] and g(α) [Eq. (15)], respectively. The size of bilinear
and higher order terms are defined by fitting parameters B2 and
C2 of Eq. (15). The obtained curves and corresponding fitting
parameters are summarized in Figs. 12(a) and 12(b). One can
see that for both values of U , the addition of biquadratic and
four-spin ring terms to the model Hamiltonian significantly
improves the fitting of DFT energies. Although the effect of
these terms seems less pronounced for the case of U = 8 eV,
the reason for this is the drastic increase of the bilinear
couplings with respect to the higher order contributions, which
are less affected by increasing U .

Next, to investigate the effect of JH we set U = 3 eV and
JH = 1 eV corresponding to the same value of Ueff = U −
JH = 2 eV, which was used in all calculations described in
the previous sections. We extract again E(α) for TbMnO3 by
rotating spins from A-AFM to G-AFM order. The obtained
angular dependence of the energy of the system (relative to
the energy of A-AFM order) and its fits to f (α) [Eq. (11)] and
g(α) [Eq. (15)] are presented in Fig. 12(c). We find that the
addition of JH in the calculations strongly changes the energy
of magnetic interactions. Indeed, the energy scale is reduced
by more than a factor of 5 relative to the case of U = 2 eV and
JH = 0 eV (see Fig. 5). By comparing the fitting parameters
B2 and C2 for these two cases one can see that the strength
of the bilinear couplings is sharply reduced by the addition of
JH . Moreover, it makes the effect of higher order terms even
more significant as their magnitude is now larger than the one
of the bilinear terms.

To understand which exchanges have the strongest JH

dependence we extract all coupling constants separately for the
full model Hamiltonian (which includes bilinear, biquadratic,
and four-spin ring terms). We calculate the total energies of 45
inequivalent collinear spin configurations using the 80 atom
supercell of TbMnO3 and setting U = 3 eV and JH = 1 eV.
Then we construct an overdetermined system of equations
with exchange couplings Jc, Jab, Ja , Jdiag, Jb, J3ab, G and K

as variables, and with the E-AFM energy as the reference.
Using the least mean square method we obtain all these
couplings. After that we extract biquadratic NN in-plane jab

and interplane jc couplings by the same procedure as was
described in Sec. IV B. All obtained values of exchanges are
presented in Table IV. One can see that Jc and especially Jab

drastically change on the addition of JH and the latter even
changes sign, while other couplings are affected much less by
JH . In this case, Jb becomes strong enough in comparison to
Jab to provide a spiral state according to Eq. (5). Moreover,
this result confirms that all higher order couplings K , jc, and
jab become more significant for JH = 1 eV as they are now
even stronger than the bilinear NN in-plane term.

Thus we find that both U and JH have a dramatic effect on
the values of the calculated exchange couplings (especially, the
bilinear NN ones) and have to be accurately chosen to relate
the results of DFT calculations to experimental data. Under-
standing of this behavior of the exchange couplings and deter-
mination of the values of U and JH that give the best agreement
with the experiment, requires further investigations, which go
beyond the scope of the present paper. Nevertheless, we can
definitely say that the higher order terms are significant and
have to be considered for all reasonable values of U and JH .

VI. EXCHANGE INTERACTIONS IN OTHER O-RMNO3

Finally, in this section we investigate the evolution of the ex-
change couplings in o-RMnO3 with increasing GFO distortion
due to decrease in the radius of the R cation. For this purpose
we consider PrMnO3 and LuMnO3, which have among the
largest and the smallest R radii in the series of o-RMnO3,
respectively. We set U = 1 eV (and JH = 0 eV) for Mn d

states, which gives the correct magnetic ground state for both
considered systems. We calculate the total energies of these
systems within the 80 atom supercells (experimental unit cells
[41,42] are duplicated along a and b directions) for 34 and 32
inequivalent collinear magnetic states, respectively. By writing
the expressions for the energies of these magnetic states using
the model Hamiltonian that includes bilinear and four-spin
ring exchange interactions, we obtain overdetermined systems
of equations with respect to six bilinear and two four-spin ring
couplings for each compound. In both cases the lowest energy
state was taken as the reference (the A-AFM state for PrMnO3

and the E-AFM state for LuMnO3). We solve these systems
of equations using the least mean square method and find the
values of all coupling constants (Table IV). For comparison, we
calculate the exchange couplings in a similar way for TbMnO3

for the considered value of U . From Table IV one can see that
the increasing GFO distortion has the strongest effect on the
in-plane NN coupling Jab which changes by more than one
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FIG. 13. (Color online) Energies of the 80 atom supercells of PrMnO3 (a) and (b), TbMnO3 (c) and (d), and LuMnO3 (e) and (f) with more
than 30 inequivalent magnetic configurations (referred to that of the lowest-energy state) predicted by the pure Heisenberg Hamiltonian (blue
dots) and the Hamiltonian which includes bilinear and four-spin ring exchanges (red dots) and plotted versus the energies of corresponding
states calculated using DFT.

order of magnitude from Pr to Lu. It also enhances Jb as we
expected (see Sec. II B). However, the behavior of the other
coupling constants (particularly the absence of a trend in the
variation of Jc and Ja , and the strong change in some coupling
constants and weak change in others) with the variation of
Mn-O-Mn bond angles still requires further analysis.

As the next step, we use the extracted values of the
exchange couplings to calculate the energies of all considered
magnetic states within this model Hamiltonian and plot them
versus the energies of these states which we calculate using
DFT [see Figs. 13(b), 13(d), and 13(f)]. For comparison,
we extract similarly the coupling constants using the pure
Heisenberg Hamiltonian for each compound, then calculate
the energies of all states, predicted by this Hamiltonian, and
plot them versus the DFT energies of these states [Figs. 13(a),
13(c), and 13(e)]. The insets in all resulting graphs show the
deviations of the model energy from the DFT energy for
each considered state. From Fig. 13 we find that the model
Hamiltonian which includes both the bilinear and four-spin
ring exchanges gives much better agreement with the results
of the first-principles calculations. One can conclude that the
Heisenberg model works relatively well for PrMnO3, since
the model and DFT energies almost coincide in Fig. 13(a).
However, if one compares the �E values which were obtained
for the bilinear-only case [see insets in Figs. 13(a), 13(c),
and 13(e)], one can see that they are similar and even larger
than those of TbMnO3 and LuMnO3, but small relative to the
energy scale of the bilinear couplings, in particular, Jab (see
Table IV). When GFO distortion increases and Jab drops (as
in TbMnO3 and LuMnO3), the �E due to the non-Heisenberg
terms become significant. However, when the four-spin ring
couplings are added in the model Hamiltonian [Figs. 13(b),
13(d), and 13(f)], the �E values reduce drastically.

Finally, we extract the biquadratic couplings jc and jab

for PrMnO3, TbMnO3, and LuMnO3 (see Table IV) applying

the method which was described in detail at the end of
Sec. IV B. For all compounds we obtain strong negative
in-plane biquadratic couplings jab, which favor collinear
alignment of spins within the ab planes and can drive an
evolution of a magnetic order from a spiral to an E-AFM
state for systems with large GFO distortions. This confirms
the finding of Ref. [10], where the biquadratic exchange
interaction was claimed to be important in the establishment
of the E-AFM order. The in-plane coupling jc is found to be
much more affected by GFO distortion than jab. Again, the
origin of this behavior still has to be clarified.

Thus we show that the Heisenberg Hamiltonian cannot
accurately predict the magnetic properties of o-RMnO3 with
large GFO distortions. In these materials the bilinear couplings
become comparable in magnitude with the biquadratic and
four-spin ring interactions and it is essential to include the
latter two into the model Hamiltonian for proper analysis of
the magnetism.

VII. SUMMARY AND CONCLUSIONS

In summary, we investigated the microscopic exchange
couplings in the series of o-RMnO3 in order to find a model
Hamiltonian (excluding effects due to spin-orbit coupling like
SIA and DMI) which can properly describe the magnetism in
these materials. The work was motivated by the inconsistencies
in the results obtained in several theoretical studies when the
exchange couplings in o-RMnO3 was mapped onto the Heisen-
berg Hamiltonian as well as by the absence of agreement
on the origin of the E-AFM order in o-RMnO3 with small
R cations (R = Ho . . . Lu). We started our analysis from the
most studied multiferroic orthorhombic manganite, TbMnO3,
and estimated the exchange couplings with several approaches
(collinear and noncollinear) using DFT. We observed a clear
deviation from the behavior predicted by the Heisenberg
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model. In the next step we explored whether the observed
non-Heisenberg behavior originates from the presence of
the orbital ordering in TbMnO3 and its coupling with the
Mn spins. To check this, we analyzed the changes in the
orbital mixing angle with structural distortions (Jahn-Teller
and GFO) and with variation of the magnetic ordering using
the Wannier function representation. We found that the orbital
mixing angle indeed can be affected by the magnetic order,
however, we showed that this variation is quite small and
is almost unchanged by the structural distortions. In turn,
we found that the deviation from Heisenberg behavior does
not appear when the amplitude of JT distortion is varied. It
appears only with increasing GFO distortion, which decreases
the energy of the NN exchange interactions and makes the
weak energy contributions more important. We demonstrated,
however, that these weak contributions do not originate from
the variation of the orbital ordering. Indeed, compounds which
do not have an orbital degree of freedom (such as TbCrO3 and
TbFeO3) also exhibit a deviation from the energy behavior
predicted by the Heisenberg model. Finally, we investigated
the effects of exchange couplings of higher order than the
ordinary bilinear exchange (biquadratic and four-spin ring

interactions), which are usually neglected. We demonstrated
that the higher order contributions are significant (especially
interplane four-spin ring exchange K and biquadratic in-
plane coupling jab) and can be comparable with the bilinear
exchanges for o-RMnO3 with small radii of R cations. We
showed that the inconsistent values of the exchange couplings
which were obtained from the collinear calculations within the
Heisenberg model (Sec. III) can be explained only by addition
of the four-spin ring couplings into the model Hamiltonian.
Moreover, we proved that such a model Hamiltonian predicts
the DFT energies of o-RMnO3 with much higher accuracy than
the pure Heisenberg Hamiltonian independently of the values
of U and JH , which are used in the calculations. The finding of
the strong negative in-plane biquadratic exchange interaction
jab, which favors a collinear spin alignment within the ab

planes, is in agreement with the suggestion of Refs. [10,28]
that Hbq is crucial in the establishment of the E-AFM
state.
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