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Kondo effect in a topological insulator quantum dot
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We investigate theoretically the nonequilibrium transport properties of a topological insulator quantum dot
(TIQD) in the Coulomb blockade and Kondo regime. An Anderson impurity model is applied to a TIQD system
coupled to two external leads, and we show that the model realizes the spin-orbital Kondo effect at the Dirac
point where the edge states are not split by a finite-size effect, leading to an additional SU (4) symmetry because
of the presence of strong mixture among four internal degrees of freedom. In a more realistic situation where
the degeneracy is lifted due to the finite-size effect, we demonstrate that there is a richer structure in transport
measurements. We illustrate a continuous crossover from four (spin and orbital) Coulomb peaks with large
interpair spacing and small intrapair spacing to a double-peak structure in the local density of states (LDOS) as
increasing the hybridization strength � within the Coulomb blockade regime. When temperature falls below the
Kondo temperature TK , four Kondo peaks show up in the nonequilibrium LDOS. Two of them are located at the
chemical potential of each lead, and the other two are shifted away from the chemical potential by an amount
proportional to the TIQD’s bare energy level, leading to a triple-peak structure in the differential conductance
when a bias voltage is applied.
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I. INTRODUCTION

The study of transport properties in quantum dot (QD)
systems is one of the fundamental paradigms of meso-
scopic condensed-matter physics. Compared to conventional
condensed-matter systems, the QD provides a controllable
circumstance to investigate the strong correlated physics such
as the Kondo effect. The conventional Kondo effect requires
the presence of a magnetic impurity in the bulk of material.
However, the localized electron within a QD behaves like a
quantum impurity with spin- 1

2 . It enables many studies of
Kondo effect in QD systems. At low temperatures, a spin
singlet state is formed between the localized electrons in a
QD and the conduction electrons from external leads at the
Fermi level. Hence, QD systems exhibit the Kondo effect at the
temperatures below the Kondo temperature TK [1]. The spin
of localized electrons is strongly correlated with conduction
electrons and are screened accordingly. The competition
between Coulomb interaction and band hybridization plays
an important role in producing the Kondo effect. The An-
derson’s impurity model provides an excellent description
of Kondo physics at low temperatures [2]. One of the most
remarkable features of the Kondo effect is the emergence of
a Kondo resonance at the Fermi level in the local density of
states (LDOS). As a result, the theory predicts a zero-bias peak
in the differential conductance [3,4]. The Kondo effect and its
related transport properties have been observed experimentally
in many QD systems [5–9].

Recent development in nanofabrication techniques allows
controllable studies of Kondo physics in more complex
coupled QD systems, as well as carbon nanotube quantum dot
(CNQD) systems. For double quantum dot (DQD) devices,
spin degrees of freedom within each dot and orbital degrees
of freedom crossing two dots are coupled to each other,
leading to a realization of the so-called spin-orbital Kondo
effect. The orbital degrees of freedom in DQDs play the role
of psuedospin in addition to the spin degrees of freedom.
Similarly, the orbital degrees of freedom in CNQD systems

correspond to the clockwise and counterclockwise wrapping
modes in CNQDs. It is the quantum fluctuations among a
QD’s four internal degrees of freedom that result in the
spin-orbital Kondo effect. The spin-orbital Kondo effect has
been investigated in great amount in CNQDs [10–25],vertical
QDs [26], grain-dot systems [27,28], and parallel QDs [29–
43]. Compared with the conventional Kondo effect, in which
only spin degrees of freedom are involved, the spin-orbital
Kondo effect is characterized by the intradot and interdot
interactions in DQD systems. The intradot interaction is
determined by the usual spin Kondo correlation, while the
interdot interaction is associated with the on-site Coulomb
interaction between two QDs. A SU (4) Kondo state with
entangled spin and orbital degrees of freedom emerges when
intradot interaction is fine tuned to be interdot interaction.
One of the technical obstructions in observing the SU (4)
spin-orbital Kondo effect in DQD systems is the difficulty
of fine-tuning intra- and interdot interactions symmetrically.
These two on-site interactions are not directly measurable
physical quantities within our knowledge. They can only be
inferred through fitting experimental data to some theoretical
formulas; thereby, it makes the symmetrical control even
worse, experimentally. CNQD systems face similar obstacles
since there is no guarantee that the on-site Coulomb interac-
tions between spin degrees of freedom should be identical
to those between wrapping (orbital) modes. A fine tuning
among experimental parameters is required in order to realize
the SU (4) Kondo effect in DQD systems as well as CNQD
systems.

Because of the requirement of fine-tuning in DQD systems
as well as CNQD systems, we propose another way to
realize the spin-orbital Kondo effect based on one QD
made by a topological insulator (TI). TIs have nontrivial
bulk band topology with the presence of peculiar metallic
states on their surfaces. These surface states are protected
by time-reversal symmetry; hence, they are stable against
any time-reversal invariant perturbation. The backscattering,
which requires an electron to flip its spin, is strictly prohibited
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due to the presence of time-reversal symmetry. Gapless
surface states can be described by a massless Dirac equation,
where spin and momentum are locked together [44–48].
The electrical conductance due to time-reversal symmetry
protected edge states was measured in a quantum well structure
of HgTe/CdTe, showing a signature of the existence of
quantum spin Hall insulators (two-dimensional TIs) [49]. The
experimental realizations of three-dimensional TIs’ symmetry
protected surface states were also observed afterwards in
materials such as Bi2Se3 and Bi2Te3 using angle-resolved
photoemission spectroscopy (ARPES) [50–52]. In addition,
there are many other researchers studying the quantum effect
induced by magnetic impurities on the surface of TIs [53–58].
However, the study of the Kondo effect in topological insulator
quantum dots (TIQDs) is still sparse. Because of the intrinsic
spin-orbital locking feature existing in TI materials, a TIQD is
a natural candidate to realize the spin-orbital Kondo effect. One
of the advantages of using such devices is that it can avoid the
possible fine tuning between intradot and interdot Coulomb
repulsive interactions, as usually required by conventional
DQD systems as well as CNQD systems. We highlight the
fact that SU (4) Kondo physics can be probed in such a setup,
eliminating the obstacle faced by DQD and CNQD systems.
Recent successful fabrication of the QD made by Bi2Se3 makes
the study of the spin-orbital Kondo effect in TIQDs more
promising in the future [59].

This article is organized as follows. In Sec. II, we introduce
the model starting from an Anderson-type Hamiltonian. We
demonstrate that the effective Anderson Hamiltonian exhibits
SU (4) Kondo features at the Dirac point due to strong
entanglement between spin degrees of freedom and orbital
degrees of freedom. In Sec. III, the LDOS based on the
nonequilibrium Green’s function method is calculated in the
mean-field regime, Coulomb blockage regime, and Kondo
regime. In the Kondo regime, a triple-peak structure in
the differential conductance is also shown in Sec. III. The
main results are then summarized in Sec. IV. Some detailed
calculations of the nonequilibrium Green’s functions are
presented in the appendixes.

II. MODEL HAMILTONIAN

We consider a QD formed in a thin circular TI slab as
depicted schematically in Fig. 1. The dot is coupled to two
external leads symmetrically. A gate voltage is applied to the
system so that only the energy levels near the Dirac point
contribute to transport through the TIQD.

A full model Hamiltonian can be written as

H = Hdot + Hcol + Hl + Ht. (1)

The first term, Hdot, describes the electrons’ edge states in a
TIQD. It has been shown that the edge states of a disk-shaped
TIQD can be characterized as massless Dirac fermions [60].
These edge states are fully spin polarized and exhibit so-called
spin-angular momentum locking: Spin-up electrons rotate
clockwise, while spin-down electrons rotate counterclockwise.
A similar conclusion can also be applied to a three-dimensional
TIQD, where its surface states can be approximated by Dirac
equations with spin connection [61,62]. Therefore, the low-
energy spectrum of a circular TIQD is linear against the angular

FIG. 1. (Color online) Sketch of a TIQD attached to two external
leads. The geometry of the TIQD is a thin circular slab. The gate
voltage VG adjusts the energy levels so that only those levels near the
Dirac point contribute to the transport properties of the TIQD. The
biased voltage eV is controlled by the difference between left and
right leads’ chemical potential: eV = μL − μR .

momentum quantum number m, and the low-energy edge
states are described by a four-band effective Hamiltonian in
basis |↑+〉, |↑−〉, |↓+〉, and |↓−〉. The effective Hamiltonian
then reads

Hdot =
∑
m,

σ = ↑,↓,

τ = +,−

c†m,στH (m)στ,σ ′τ ′cm,σ ′τ ′ ,

where

H (m) =
(

A�vF kF mσx �I
�∗I −A�vF kF mσx

)
, (2)

in which A is a dimensionless constant of order 1, vF is the
Fermi velocity, kF is the Fermi wave vector, and m is the
angular momentum quantum number.

Here c
†
m,στ (cm,στ ) creates (annihilates) a localized electron

with angular momentum m and spin σ = {↑,↓} on either the
top (τ = {+}) or the bottom (τ = {−}) side of the TIQD. �

is a finite-size energy gap produced by the coupling between
the top and the bottom edge states. The geometry of the TIQD
considered in this paper is a circular thin slab with thickness
L. In this case, the level spacing of the edge states would
be dominated by the size of the TI slab, while the finite-size
gap � decays in an exponential law of the thickness L [63].
It is the quantum fluctuations among four internal channels:
{↑ + ,↓ + ,↑ − ,↓−} that lead to an unusual strongly corre-
lated Fermi liquid behavior.

Hamiltonian (2) can be diagonalized with eigenvalues
E± = ±

√
A2

�
2v2

F k2
F m2 + |�|2 by introducing a new set of

basis states,

cα =
∑
στ

Uα,στ cστ , α = 1,2,3,4;

στ = ↑ +, ↓ +, ↑ −, ↓ − , (3)
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where matrix U is defined as

U = 1√
2

⎛
⎜⎜⎜⎝

sin �
2 cos �

2 −eiφ sin �
2 eiφ cos �

2

cos �
2 sin �

2 eiφ cos �
2 −eiφ sin �

2

− cos �
2 sin �

2 eiφ cos �
2 eiφ sin �

2

sin �
2 − cos �

2 eiφ sin �
2 eiφ cos �

2

⎞
⎟⎟⎟⎠.

The parameters in matrix U are defined as eiφ = �
|�| , sin � =

A�vF kF m
E+

, and cos � = |�|
E+

. Then Eq. (2) can be rewritten in
terms of the new basis vectors {cα}s as

Hdot =
∑
m

∑
α

εα(m)c†αcα, (4)

where ε1 = ε2 = E+ and ε3 = ε4 = E−. We have to point
out that Hamiltonian (4) has fourfold degeneracy at the Dirac
point when � = 0. In practice, this fourfold degeneracy nearly
retains even if � �= 0 provided � is much smaller than all other
energy scales, such as temperature. This is an important aspect
in realizing the SU (4) Kondo effect.

The second term, Hcol, represents the on-site Coulomb
repulsive interaction between the localized electrons in the
TIQD. The strength of repulsive interaction is characterized
by a Coulomb integral [2],

Uαα′ =
∫

|
α(r1)|2e2|r12|−1|
α′ (r2)|2dr1dr2, (5)

where 
α ≡ c†α |0〉 is the eigenfunction of Hamiltonian (2).
The Coulomb repulsive interaction strength, Uαα′ , is approxi-
mately proportional to the inverse of the slab’s thickness L.

Furthermore, we notice that the density distributions of 
α

are related to the density distributions of edge states’ wave
functions through the relations

|
1,4|2 = 1

2

[
sin2 �

2
(|
↑+|2 + |
↑−|2)

+ cos2 �

2
(|
↓+|2 + |
↓−|2)

]
,

|
2,3|2 = 1

2

[
cos2 �

2
(|
↑+|2 + |
↑−|2)

+ sin2 �

2
(|
↓+|2 + |
↓−|2)

]
.

Since the top and bottom edge states’ wave functions 
↓±
are related by means of the time-reversal operation, 
↓± =
�
↑∓, we find that the density distributions of 
α equally
mix the density distributions of both top and bottom edge
states,

|
α|2 = 1

2
|
+|2 + 1

2
|
−|2, α = 1,2,3,4, (6)

where |
±|2 ≡ |
↑±|2 = |
↓±|2 because of the presence of
time-reversal symmetry in the TIQD system. This implies that
all four internal states must have the same Coulomb integrals:
Uαα′ = U . Formally, an exchange and correlation term can be
written as

1

2
U

(∑
α

nα

)(∑
α

nα

)
− 1

2
U

(∑
α

nαnα

)
,

where nα = c†αcα and we have subtracted the contribution due
to self-correlation. Therefore, Hcol can be schematized as

Hcol = U
∑
α<α′

nαnα′ , (7)

where the on-site Coulomb integral Uαα′ is independent of
all internal degrees of freedom. This is the key to realizing
SU (4) symmetry in the TIQD system without the requirement
of fine tuning. Moreover, we notice that Hamiltonian (7) is
time-reversal invariant; thus, the single-particle edge states
remain intact even in the presence of large on-site Coulomb
repulsive interactions.

The third term, Hl , describes the unperturbed states of
conduction electrons from the left or the right reservoir,

Hl =
∑

τ = 1,2
σ =↑ , ↓

∑
k∈L,R

εkc
†
k,τ,σ ck,τ,σ , (8)

where εk is the energy spectrum of conduction electrons with
momentum k, L/R represents the left or the right lead, and
c
†
k,τ,σ (ck,τ,σ ) creates (annihilates) a conduction electron with

spin σ in channel τ . Without loss of generality, we assume
that there are two distinguished groups of channels τ = 1,2 in
left/right leads. Since the energy spectrum εk is independent
of the spin index σ as well as the artificial orbital index τ ,
Eq. (8) remains diagonal after rotating the basis vectors within
the spin-orbital σ -τ subspace. Therefore, one can rewrite
Eq. (8) in terms of a new set of basis states {|α〉}’s under
the transformation (3) as

Hl =
∑

α,k∈L,R

εkc
†
kαckα. (9)

We make a further assumption that the conduction bands
of both external leads are flat with bandwidth 2W . The
corresponding LDOS is then given by ρ̃(ε) = ρ̃0 = 1/(2W ).
This assumption is made just for simplicity and can be easily
released. One can verify that a reasonable energy variation of
ρ̃(ε) does not change the results qualitatively.

The fourth part of Eq. (1) is a hybridization term, which is
described as

Ht =
∑

α,k∈L,R

(Vkαc†αckα + H.c.). (10)

Thus, we conclude that the model Hamiltonian describing
a TIQD coupled to two external leads can be written as

H =
∑

α,k∈L,R

εkc
†
kαckα +

∑
m

∑
α

εα(m)c†αcα

+U
∑
α<α′

nαnα′ +
∑

α,k∈L,R

(Vkαc†αckα + H.c.). (11)

Since we are only interested in the temperature scales that
are much smaller than the average level spacing of a TIQD, we
consider the case that the angular momentum quantum number
m takes only one single value in the second term of Eq. (11).
The method we discuss in this paper can be readily extended
to multiple-m value cases. We conclude that full Hamiltonian
(11) realizes the spin-orbital Kondo effect because of the
existence of strong mixing among the TIQD’s four internal
channels. The spin-orbital Kondo effect in the TIQD system
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is characterized by a constant Coulomb repulsive interaction
strength U . In an idealized situation where all four internal
states are energetically degenerate at the Dirac point, the TIQD
exhibits an additional SU (4) symmetry and the spin-orbital
Kondo effect emerges. On the other hand, in general, the
fourfold degeneracy can be lifted by a finite-size effect, leading
to a triple-peak structure in the differential conductance within
the Kondo regime as shown in the following.

III. NONEQUILIBRIUM GREEN’S FUNCTION METHOD

We consider a problem involving a TIQD coupled to
two external leads. A nonequilibrium Green’s function is
constructed through the equations-of-motion (EOM) method
[4,64,65]. In the Heisenberg representation, the time evolution
of a Heisenberg operator is determined by its commutator with
the corresponding Hamiltonian. This is the essence of the EOM
method. Two coupled equations describing the EOM governed
by Hamiltonian (11) are obtained as

i�
∂

∂t
cα = εαcα +

∑
k∈L,R

Vkαckα +
∑
α′ �=α

Uc
†
α′cα′cα,

(12)

i�
∂

∂t
ckα = (εk − iη)ckα + V ∗

kαcα + Skα,

where a source term Skα is added into the second term of
Eqs. (12) ad hoc. The solution of the second equation in
Eqs. (12) reads

ckα = c
(0)
kα +

∫ +∞

−∞
dt ′V ∗

kαGkα(t − t ′)cα(t ′), (13)

where Gkα(t − t ′) = 1
i�

θ (t − t ′)e− i
�

(εk−iη)(t−t ′), which is the
Green’s function for the operator Lkα = i� ∂

∂t
− (εk − iη), and

Lkαc
(0)
kα = Skα . Plugging Eq. (13) into the first equation of

Eqs. (12) and performing the Fourier transformation on the
result, we obtain[

ω − εα − �(0)
α (ω)

]
cα = Sα +

∑
α′ �=α

UF {c†α′cα′cα}(ω), (14)

where Sα = ∑
k∈L,R Vkαc

(0)
kα , �(0)

α (ω) = ∑
k∈L,R

|Vkα |2
ω−εk+iη

, and

F {c†α′cα′cα}(ω) represents the Fourier transform of the triple-
product operator c

†
α′ (t)cα′(t)cα(t). Equation (14) can be solved

approximately by closing it up to a certain order, which
generates the Green’s function corresponding to that order.

A. Mean-field approximation

The simplest way to close Eq. (14) is the mean-field approx-
imation: {c†α′cα′cα}(ω) ≈ 〈nα′ 〉cα(ω). Therefore, the Green’s
function under the mean-field approximation can be written as

GMF
α (ω) = 1

ω − εα − �
(0)
α − U

∑
α′ �=α〈nα′ 〉

. (15)

The LDOS can be expressed in terms of the mean-field
Green’s function GMF

α as

ρ(ω) = − 1

π
Tr Im[Gα(ω)], (16)

where the trace accounts for the summation over all four
internal degrees of freedom. The occupation number of the
state α is given by

〈nα〉 = 1

2

∫
dω ρα(ω)[fL(ω) + fR(ω)] (17)

for symmetric barriers.
There is an obstruction to evaluating the Green’s function

GMF
α (ω). The expression of GMF

α (ω) depends on the occu-
pation configuration {〈nα〉} [see Eq. (15)], which, in turn,
itself has to be calculated through the Green’s function. This
requires solving the Green’s function and the occupations
simultaneously [see Eqs. (15) and (17)]. A self-consistent
iterative algorithm is developed as shown below.

(i) Start with an initial value of 〈n0
α〉 and calculate the

Green’s function GMF
α (ω) from Eq. (15).

(ii) Calculate the value of 〈nα〉 from Eq. (17) with ρ(ω)
given by Eq. (16).

(iii) Compare the new occupation 〈nα〉 calculated from
step (ii) with the initial guess 〈n0

α〉. If the new one 〈nα〉 is not
sufficiently close to the original guess, we revise our guess by〈

nnew
α

〉 = 〈
nold

α

〉 + ε
(〈nα〉 − 〈

nold
α

〉)
,

where ε is a positive number less than 1.
(iv) Repeat the iterative processes (i)–(iii) until the Green’s

function GMF
α (ω) yields the occupation configuration {〈nα〉}

which is sufficiently close to the previous input value within a
predetermined tolerance level.

The remaining question concerns how we could be able to
give a reasonable initial guess of 〈n0

α〉. Under the deep-level
assumption that the resonant level εα is deep well below the
chemical potential μ, the LDOS ρα(ω) in Eq. (16) is integrated
up to its extreme right side of the tail. Therefore, we can choose
〈n0

α〉 = 1 as a proper initial guess of the occupations in the
self-consistent calculation.

For each internal state with finite U , we find that all
single-particle resonances are shifted away from εα to εα +
U

∑
α′ �=α〈nα′ 〉, as shown in Fig. 2. The imaginary part of

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω / Γ

πΓ
ρ(

ω
)

FIG. 2. (Color online) Density of states ρ(ω) for TIQDs sym-
metrically coupled to two external leads with parameters U = 0.1�

and εα = ±2�. Two leads’ chemical potentials are set to be μL =
μR = 8�. Under the mean-field approximation, two distinct peaks
are shifted away from the original resonances ±2� to the new ones
±2� ∓ U〈n〉 in the LDOS.
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self-energy �(0)
α gives rise to the total energy level broadening

in the LDOS.
The mean-field approximation is valid only when kBT

or �α is comparable to U , where �α = π |Vkα|2ρ0 is the
hybridization strength between a TIQD and two external
leads. The mean-field approximation provides an acceptable
description when U is small or temperature is high. However,
in real experimental setups, the on-site Coulomb interaction
U is typically about the order of several meV, while both
the hybridization strength � and the temperature kBT are
typically of the order of several μeV. Therefore, the mean-field
approximation discussed in this section does not even provide
a qualitatively reliable scheme within the regimes for most of
the experimental setups. This requires us to obtain a theory
beyond the mean-field approximation, which we are going to
discuss in the following.

B. Coulomb blockade regime

When the Coulomb interaction strength U between local-
ized electrons exceeds both the temperature kBT and the
hybridization strength �, the Coulomb blockade effect is
dominant in this regime provided that T < TK . One has to
truncate the EOM up to next-to-leading order in order to close
Eq. (14). The corresponding Green’s function is derived in
Appendix A,

GCB
α (ω) =

1 − ∑
α′ �=α

( 〈nα′ 〉
N (α)

α′

)
ω − εα − �

(0)
α

+
∑
α′ �=α

( 〈nα′ 〉
N (α)

α′

)
ω − εα − UN (α)

α′ − �
(0)
α

, (18)

where N (α)
α′ ≡ 1 + ∑

β �=α,α′ 〈nβ〉, and �(0)
α (ω) =∑

k∈L,R
|Vkα |2

ω−εk+iη
is the self-energy term due to tunneling

of the α electrons into the leads. The Green’s function
GCB

α (ω) in the Coulomb blockade regime has four resonances
for each internal channel α. One of them is located at
the resonant level εα weighted by the probability factor
1 − ∑

α′ �=α(〈nα′ 〉/N (α)
α′ ), and the other three are shifted and

located at εα + UN (α′)
α weighted by the probability factor

〈nα′ 〉/N (α′)
α .

The Green’s function GCB
α (ω) depends on both temperature

and chemical potential through the occupation configuration
{〈nα〉} in general. The occupations have to be computed
via the self-consistent algorithm with constraints 〈n1〉 = 〈n2〉
and 〈n3〉 = 〈n4〉, as discussed in the previous section. To
determine a reasonable guess of an initial 〈n0

α〉, we assume
that the resonant level εα of TIQDs is deep enough below
the chemical potential μ: |μ − εα| � |εα|. We further assume
that the occupations of four internal states are all identical, i.e.,
〈nα〉 ≡ 〈n〉, ∀ α = 1,2,3,4, in order to accelerate the iterative
processes in the self-consistent computation. It is the Coulomb
interaction energy U that dominates all the energy scales in
this regime. Therefore, only one single resonant level εα is
occupied, while the energy levels of unoccupied states are
raised by UN . Double occupancy is energetically costly
and hence is forbidden in the large U limit. All unoccupied

levels are pushed outside the chemical potential in this limit,
and the occupied levels are the only ones contributing to the
occupations. This leads to an equation for the initial guess of
the occupation number 〈n0〉:

〈n0〉 = 1 −
∑
α′ �=α

〈n0〉
1 + ∑

β �=α,α′ 〈n0〉 . (19)

The solution of Eq. (19) reads 〈n0〉 = 1
2 (

√
3 − 1). This

solution turns out to work quite well as a clever initial guess
of the occupation configuration {〈nα〉} for the self-consistent
algorithm. The occupations will eventually converge to certain
consistent values after several iterative steps. After obtaining
the self-consistent occupation numbers, the corresponding
Green’s function in the Coulomb blockade regime can be
inferred through Eq. (18). Under the assumption that all
the occupations are the same, three shifted resonances εα +
UN (α′)

α (α′ �= α) in GK
α (ω) are degenerate to be one located at

εα + U (1 + 2〈n〉) for each index α. Therefore, one shall expect
that the corresponding LDOS exhibits four split Coulomb
peaks at ω = ±|ε| and ω = ±|ε| + U (1 + 2〈n〉), respectively,
when the hybridization strength � is not too strong compared
to the QD’s absolute energy level |εα|, as indicated in
Fig. 3(a).

In principle, a four-peak structure should occur in the
LDOS when all the occupation numbers are nearly the same.
However, only two peaks, split by the amount of UN ,
remain when the hybridization strength � exceeds a critical
value �c ≈ |εα|, as shown in Fig. 3(b). The suppression of
peak numbers follows from the fact that the hybridization

0.5

1

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

ω / U

πΓ
ρ(

ω
)

Γ = 0.1U

Γ = 0.3U

(a)

(b)

FIG. 3. (Color online) Local density of states π�ρ(ω) vs energy
ω in units of U in the Coulomb blockade regime with the hybridization
strength (a) � < �c and (b) � > �c. (a) The LDOS exhibits a
quadruple-peak structure at ε = ±0.2U and ε = ±0.2U + (1 +
2〈n〉)U in the weak coupling limit (� = 0.1U ). The occupations
〈n〉 converge to 0.3670 via the self-consistent algorithm. (b) Four
Coulomb peaks merge into a double-peak structure when the
hybridization strength � is above the critical value �c ≈ 0.2U in
the strong coupling limit (� = 0.3U ).
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strength � characterizes the level broadening of each discrete
eigenstate caused by the coupling between the TIQD and two
external leads. When the hybridization strength � is made
to be greater than �c, the LDOS spreads out around the
original resonant peaks due to the level broadening. As a
result, two peaks at ω = ±ε are merged together as well as
the other two peaks located at ω = ±ε + UN . We conclude
that there exists a continuous crossover from a four-peak
structure to a double-peak structure in the LDOS as the
hybridization strength � increases in the Coulomb blockade
regime.

In summary, when � is relatively small compared to |εα|,
we find that Coulomb peaks form pairs with large interpair
spacing (∼UN ) and small intrapair spacing (∼|εα|) within
the Coulomb blockade regime. Two intrapair peaks have
comparable width and height, while the height of interpair
peaks is usually different. As the hybridization strength � is
increased above the critical value �c, the intrapair peaks merge
together; nevertheless, two interpair peaks still remain in the
LDOS. Since electric conductance is proportional to the LDOS
at low temperatures, similar features should be expected to be
observed in the electric conductance measurement as well.
The separation between the conductance’s interpair peaks is
set by the large on-site Coulomb interaction energy, whereas
the separation between the intrapair peaks is determined by
the QD’s absolute energy level. In the Coulomb blockade
regime, a transition from weak to strong coupling between
localized and conduction electrons results in a crossover from
a quadruple-peak structure to a double-peak structure in the
LDOS and electric conductance.

C. Kondo effect regime

In this section, our aim is to calculate the transport current
through a TIQD as well as the corresponding differential
conductance via the self-consistent EOM method in the Kondo
regime.

1. Renormalization group analysis

In the framework of the renormalization group (RG),
high-energy degrees of freedom are successively integrated
out and one obtains a low-energy effective theory eventually.
A poor man’s scaling approach based on the RG analysis
is applied to study the low-energy properties of Hamiltonian
(11). The key idea is to integrate out high-energy modes in the
interval [D,D0], where the cutoff D might be the bandwidth
of conduction electrons, and rescale all energies and fields
appropriately to construct a new effective Hamiltonian H (D).
The RG method relies on the fact that all physical quantities
should solely depend on the effective low-energy scales such
as the Kondo temperature TK . The band cutoff D should be
irrelevant and does not appear in any physically observable
quantity. As a consequence, it is possible to absorb the cutoff
D into renormalized coupling constants by the requirement
that physically observable quantities are invariant under the
RG rescaling, leading to the emergence of new energy
scales.

First of all, the original Hamiltonian(11) can be rewritten as

H =
∑

α,k∈L,R

εkc
†
kαckα +

∑
α

εαc†αcα

+
∑

α,k∈L,R

(V c†αckα + H.c.) + 1

2
U

(
N − 1

2

)2

− 1

8
,

(20)

where N ≡ ∑4
α=1 nα is the total number operator, and

we assume that all internal degrees of freedom in the
TIQD are equally coupled to two external leads, i.e.,
Vk1 = Vk2 = Vk3 = Vk4 ≡ V .

We now investigate the limit of U → ∞. In this case, only
one electron is accommodated in the whole TIQD system. We
obtain the following effective Kondo-type Hamiltonian after
performing a Schriffer-Wolf transformation [66],

HK =
∑

α,k∈L,R

εkc
†
kαckα + J [S · (
†

r σ
r )

+ (
†
r τ
r ) · T + S · (
†

r σ τ
r ) · T], (21)

where 

†
k = (c†k1,c

†
k2,c

†
k3,c

†
k4) is the spinnor of the conduction

electrons in two leads and 

†
r ≡ ∑

k 

†
k . Similarly, the field

operator for the TIQD is defined as 

†
d ≡ (c†1,c

†
2,c

†
3,c

†
4). S is

the spin operator for the TIQD defined as S ≡ 

†
dσ
d , while

T ≡ 

†
dτ
d defines the orbital pseudospin operator. σ (τ ) are

Pauli matrices operating on the spin (pseudospin) space. The
effective coupling constant J in the infinity U limit is initially
given by J = |V |2

|μ−εd | and the corresponding scaling equation
up to the second order in J reads

dJ

d ln D
=−4ρ̃0J

2, (22)

where ρ̃0 is the DOS of external leads and D is the renormal-
ization energy cutoff. The coupling constant J exponentially
flows into the strong coupling limit as the cutoff D is reduced.
This reflects a fourfold degeneracy among spin and pseudospin
degrees of freedom. We notice that Hamiltonian (21) is the
renowned SU (4) Kondo Hamiltonian, where the spin and
orbital pseudospin degrees of freedom are entangled due
to the presence of the third term in Eq. (21). Physically,
the spin-orbital entanglement is realized naturally in the TI
system through its unique spin-orbital locking phenomena. It
avoids the possible fine-tuning requirement faced by the DQD
and CNQD system. The corresponding Kondo temperature is
given by TK ≈ D exp(−1/4ρ̃0J ). Similar results have been
examined in carbon nanotube systems [13], vertical QDs
systems [26,67], grain-dot systems [27], and parallel DQD
systems [31,68,69]. This discussion based on the RG analysis
demonstrates the existence of SU (4) Kondo states in the TIQD.
In the next section, we show that the LDOS and differential
conductance would indicate the main features of spin-orbital
Kondo physics, which can be used as experimental probes to
detect the spin-orbital Kondo effect in the TIQD system.

2. Local density of states and differential conductance

Before we start to calculate any relevant physical quantities,
let us discuss several important characteristic energy scales
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in the Kondo regime. The depth of a QD’s energy level εα

relative to the chemical potential μ is one of these characteristic
scales. It is defined as �εdep ≡ |μ − εα|. One requirement
of the emergence of Kondo physics is that the hybridization
strength � has to be smaller than this energy scale �εdep.
Otherwise, localized electrons can spread from the QD into the
leads without applying external voltage. Charge quantization is
completely lost even at zero temperature due to this spread-out
effect. Therefore, the condition � < �εdep has to be held in
the Kondo regime. Another characteristic energy scale deter-
mining the Kondo effect is the Kondo temperature: TK . The
hybridization strength and on-site Coulomb interaction give
rise to the Kondo physics only if the temperature is comparable
to or lower than the Kondo temperature, i.e., kBT < kBTK .
On the other hand, the hybridization strength � cannot be
too small; otherwise, the conduction electrons from the leads
would be completely trapped in the QD and no transport
would occur. This requires � to be large enough to overcome
the Kondo temperature kBTK . In summary, the characteristic
energy scales have a hierarchical structure: kBT < kBTK <

� < �εdep in the Kondo physics regime. On-site Coulomb
repulsive interaction U is the last significant characteristic
energy scale. In most experimental setups, U ≈ 1 meV and
� ≈ 1–10 μeV. It means that the on-site Coulomb interaction
U is several orders of magnitude larger than the hybridization
strength � in reality and hence is the largest energy scale in the
Kondo regime. U is typically set to be infinity in theory in order
to forbid possible double occupancy. This limit is consistent
with the vast majority of experimental setups for the QD
systems.

As shown in the RG analysis, the Kondo temperature TK for
the SU (4) Kondo-type model is enhanced exponentially by a
factor of 2, comparing to the conventional single-level SU (2)
Anderson model. An estimation for the Kondo temperature
in the enhanced Kondo regime is TK ≈ De−π |μ−εα |/4�α [see
Eq. (22)], where D is the bandwidth cutoff and �α is the
hybridization strength. In addition, we take the conduction
band of two symmetric leads to be flat with width 2W , so
the DOS of two external leads is given by ρ̃(ω) = ρ̃0 =
1/(2W ) for |ω| < W . Thus, the hybridization strength for each
lead could be rewritten as �

L/R
α (ω) = 2π

∑
k∈L/R |Vkα|2δ(ω −

εkα) = 2πρ̃0|Vkα|2. It is convenient to redefine a mod-
ified hybridization strength as �α = �L

α �R
α /(�L

α + �R
α ) =

πρ̃0|Vkα|2, serving as a unit of energy in the following
discussion.

The LDOS of TIQDs can be calculated via the nonequi-
librium Green’s function [see Eq. (16)]. We combine the
EOM method and the self-consistent algorithm to calcu-
late a consistent Green’s function GK (ω) in the Kondo
regime as shown in Appendix B. Numerical computations
based on the nonequilibrium Green’s function have been
extremely useful to present a quantitative reliable picture
of low temperature, nonequilibrium transport through a QD
[4,13,64,65]. In this section, we derive a nonequilibrium
Green’s function based on the self-consistent EOM method
to produce the LDOS and nonlinear differential conductance
in the Kondo regime. The full nonequilibrium Green’s function
is given by Eq. (B10) as derived in Appendix B. In the
infinite-U limit, it can be simplified and reduced to the

form

GK
α (ω) =

1 − ∑
α′ �=α

〈nα′ 〉
N (α)

α′

ω − εα − �
(0)
α − ∑

α′ �=α
1

N (α)
α′

�̃
(2)
α′α

,

with

�(0)
α (ω) =

∑
k∈L,R

|Vkα|2
ω − εk + iη

,

(23)

�̃
(2)
α′α(ω) =

∑
k∈L,R

|Vkα′ |2fkα′

ω − εα + εα′ − εk + iη
,

where fkα′ is the Fermi-Dirac distribution in the left/right lead.
The overall amplitude of the nonequilibrium Green’s function
GK

α (ω) is proportional to the factor 1 − ∑
α′ �=α

〈nα′ 〉
N (α)

α′
, where

〈nα′ 〉 is the occupation numbers of internal channels other
than α, and N (α)

α′ ≡ 1 + ∑
β �=α,α′ 〈nβ〉.

As discussed in the previous section, the occupations have
to be computed using the self-consistent algorithm along with
the nonequilibrium Green’s function, Eq. (23). Under the same
assumption as in the last section, the initial guess of the oc-
cupation numbers can be chosen as 〈n0

α〉 = 1
2 (

√
3 − 1). After

obtaining the final convergent occupation numbers through the
iterative process, the corresponding Green’s function Eq. (23)
can be automatically computed without any ambiguity.

The terms �(0)
α (ω) and �̃

(2)
α′α(ω) in Eq. (23) are the self-

energies due to the coupling to the leads. The locations
of Kondo resonances are totally determined by the poles
of Green’s function. Since Re{�(0)

α (ω)} = 0, the self-energy
�(0)

α (ω) has no contribution to the poles. It is the other self-
energy term, �̃

(2)
α′α(ω), that gives rise to the Kondo resonances

in the nonequilibrium LDOS. Because the Fermi-Dirac distri-
bution fkα′ has an abrupt change near the chemical potential
μL,R at low temperature, Re{�̃(2)

α′α(ω)} has single-particle
resonances, which are logarithmically divergent at ω = μL,R

and ω = μL,R + 2εα . It produces the Kondo resonances in
the LDOS near those energies. The equilibrium LDOS for
each internal channel α: ρα(ω) = − 1

π
Im[GK

α (ω)] displays
a double-peak structure. One peak is located at chemical
potential μ = μL = μR , and another is shifted away from the
chemical potential by 2εα . The peak moves downwards for
those negative energy states (α = 1,2) and upwards for those
positive energy states (α = 3,4), as shown in Figs. 4(a) and
4(b). As a bias voltage �μ is applied, two Kondo peaks are
split into pairs, leading to a quadruple-peak structure exhibited
in the nonequilibrium LDOS. In this case, two original Kondo
peaks in the equilibrium LDOS are further split into pairs
spaced by the chemical potential difference �μ. For each
state index α, four Kondo peaks appear near ω = μL,R and
ω = μL,R + 2εα as shown in Figs. 4(c) and 4(d). A new energy
scale, the Kondo peak broadening �b, emerges. The size of
�b is about the same magnitude as the Kondo temperature
kBTK , which can serve as a practical tool to determine the
Kondo temperature experimentally.

Our goal is to calculate the electric current I through the
TIQD. I can be expressed in terms of the nonequilibrium
Green’s function and the Fermi-Dirac distribution. An exact
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FIG. 4. (Color online) Local density of states π�ρα(ω) for a
TIQD symmetrically coupled to two external leads with the chemical
potential μL and μR in the limit of U → ∞. The TIQD is prepared
to have four internal states with levels ε1,2 = −� and ε3,4 = �.
Temperature is set to be T = 0.01�, while the Kondo temperature is
roughly estimated to be TK ≈ 0.08�. Panels (a) and (b) display the
equilibrium (μL = μR = 10�) LDOS for negative levels εα=1,2 (a)
and positive levels εα=3,4 (b). It exhibits a double-peak structure at
ω = 10� and ω = 9� for (a) and at ω = 10� and ω = 11� for (b).
Panels (c) and (d) are the nonequilibrium LDOS for negative energy
states (c) and positive energy states (d). Four Kondo peaks emerge
in the nonequilibrium LDOS. Two of them are located at each lead’s
chemical potential: μL = 10.5�, μR = 10� (arrows 1 and 2), and
the other two peaks are shifted either downwards from the chemical
potential by −2� (= −2|εα|) [arrows 3 and 4 in (c)] or upwards from
the chemical potential by 2� (= 2|εα|) [arrows 5 and 6 in (d)].

expression for I follows from the Keldysh formalism [70],

I = e

�

∑
α

∫
dω[fL(ω) − fR(ω)]�α(ω)

[
− 1

π
ImGK

α (ω)

]
,

(24)

where �α(ω) = πρ0|Vkα|2 and fL/R(ω) ≡ f (ω − μL/R) is the
Fermi-Dirac distribution function for left/right lead with μL =
μR + �μ. The differential conductance σd is sequentially
defined as differentiating the current I with respect to the
applied bias voltage �μ: σd ≡ e dI

d�μ
. σd is an experimentally

observable quantity and can be used as a means of detection
to Kondo physics.

The nonlinear differential conductance σd exhibits a triple-
peak structure for temperatures below the Kondo temperature
kBTK , as shown in Fig. 5. This can be explained intuitively
through the so-called “matching mechanism.” As discussed
previously, Kondo resonances are located at ω = μL,R and
ω = μL,R ± 2|εα| in the nonequilibrium LDOS. The differen-
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0.4
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0.8
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2

Δμ / Γ
σ d  (

e2 /h
)

k
B
 T  = Γ / 100

k
B
 T  = Γ / 5

εα = ± 1

FIG. 5. (Color online) Differential conductance as a function of
the applied bias voltage �μ in units of e2/h via the EOM method
for the temperatures above TK (solid line) and below TK (dashed
line). When �μ is adjusted so that the Kondo peaks in the left lead’s
DOS coincides with those in the right lead’s DOS, the differential
conductance σd is enhanced. It shows a triple-peak structure at �μ =
0 and �μ = ±2|εα| = ±2� (solid line). When the temperature is
raised above the Kondo temperature TK , the triple-peak structure in
the differential conductance disappears, as shown by the dashed line.

tial conductance σd is enhanced if and only if three Kondo
peaks in the left lead’s LDOS match the other three peaks
in the right lead’s LDOS. Accordingly, a triple-peak structure
appears in the differential conductance at �μ = 0 and �μ =
±2|εα|, respectively. As the chemical potential is shifted away
from the Kondo peaks, the differential conductance σd falls off
rapidly once the mismatch between two external leads exceeds
the Kondo peak broadening �b. This means that the full width
at half maximum (FWHM) of the differential conductance
linewidth should have the same order of magnitude as
the peak broadening �b of the LDOS. The triple-peak structure
in the differential conductance disappears as the temperature
is raised above the Kondo temperature due to the complete
destruction of Kondo states when T > TK , as shown by
the dashed line in Fig. 5. The experimental observation of
this triple-peak structure in the differential conductance was
reported recently in parallel DQD systems when the orbital
degeneracy is artificially lifted [38].

Next we provide a more rigorous theoretical treatment of
differential conductance and demonstrate that the differential
conductance σd is closely related to the summation of LDOS
over all four internal conduction channels. Hence, the peak
structure in the differential conductance is determined by
the corresponding peak structure in the LDOS. In particular,
the zero-temperature current I can be calculated as an
integral of LDOS over the interval [μR,μL], weighted by the
hybridization strength �α(ω). Therefore, we can obtain an
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exact expression for the differential conductance in terms of
the single-particle LDOS in the zero-temperature limit:

σd = e2

h
2π�

∫
dω

[
− ∂f (ω − μR − �μ)

∂ω

] ∑
α

ρα(ω).

(25)

We notice that − ∂f (ω)
∂ω

becomes a Dirac δ function when T →
0, so we can rewrite Eq. (25) as

σT =0
d (�μ) ∼= e2

h
2π�

∑
α

ρα(μR + �μ). (26)

Equation (26) connects the nonlinear differential conductance
at zero temperature to the summation of LDOS over four
internal degrees of freedom. In this limit, the peak structure
of the differential conductance depends on the value of the
corresponding LDOS at μR + �μ, leading to a condition for
the peak structure of the differential conductance:

μR + �μ = μR,L,μR,L ± 2|εα|. (27)

Three cases need to be discussed separately.
Case (1): μR + �μ = μL. This condition is trivially

satisfied. It illustrates the existence of the overall background
conductance in σd , which is independent of the applied bias
voltage �μ.

Case (2): μR + �μ = μL ± 2|εα|. There is no solution that
can be found in this case.

Case (3): μR + �μ = μR or μR ± 2|εα|. This is the most
interesting condition, where three solutions exist: �μ = 0, ±
2|εα|. These three solutions correspond exactly to the locations
of the three peaks built upon the background conductance
in σd , as depicted in Fig. 5. The result agrees with our
intuitive argument as well as the general numerical calculation.
Although the analysis is performed in the zero-temperature
limit, the triple-peak structure still preserves for temperatures
below the Kondo temperature TK .

This discussion demonstrates the existence of spin-orbital
Kondo states in TIQD systems. One of the advantages of such
devices is that it can potentially avoid the fine-tuning between
intradot and interdot charging energies in DQDs or the fine
tuning between spin and wrapping modes in CNQDs. We also
prove that the differential conductance σd , as an experimental
measurable quantity, indicates the principal features of spin-
orbital Kondo effect. The fact that the spin-orbital Kondo states
can be observed in TIQD systems as a triple-peak structure in
the nonlinear differential conductance is important, since it
could serve as a means of experimental detection of spin-
orbital Kondo physics.

IV. SUMMARY AND CONCLUSIONS

In this paper we investigate the nonequilibrium transport
properties of TIQDs in the Coulomb blockade and Kondo
regime. An Anderson-type model, which describes the low-
temperature transport properties through a QD, is derived. We
illustrate that the corresponding Anderson impurity Hamilto-
nian realizes the spin-orbital Kondo effect due to the intrinsic
spin-orbital entanglement in TI materials. We conclude that
TIQDs can be used to study the spin-orbital Kondo effect in
addition to conventional DQD or CNQD systems.

We demonstrate that the mean-field approximation is
not applicable to the energy scales related to the Coulomb
blockade or Kondo regime. A continuous crossover of peak
structures controlled by the hybridization strength is found in
the Coulomb blockade regime. As the hybridization strength
� is raised above a critical value �c, the intrapair peaks are
merged together so that only two interpair peaks remain in the
LDOS. A transition from a quadruple-peak to a double-peak
structure occurs when the hybridization strength � increases.
A similar crossover phenomena is also expected to be observed
in the transport measurements in the Coulomb blockade
regime. For temperatures below the Kondo temperature TK ,
we have shown the emergence of four Kondo peaks in the
nonequilibrium LDOS for each conduction channel α. Two
of them are located at the chemical potential μL/R , while
the other two peaks are shifted away from the chemical
potential by the amount of 2εα . This result leads to the
experimental prediction of a triple-peak structure in the
differential conductance σd provided that the energy hierarchy
kBT < kBTK < � < �εdep � U is satisfied. The triple-peak
feature vanishes when the temperature is high enough to
break the spin-orbital Kondo states. In contrast to conventional
DQD or CNQD systems, no fine-tuning of experimental
parameters is necessary in TIQD setups in order to realize the
SU (4) Kondo effect. Therefore, TIQD systems provide a more
controllable platform to investigate the spin-orbital Kondo
effect.

An interesting issue not discussed in this paper is the Kondo
physics in TIQD systems when a finite magnetic filed is
applied. Since the symmetry protected edge states are no longer
stable in the presence of an external magnetic field, we expect
a totally different transport behavior in comparison with the
usual DQD or CNQD systems. Our paper is just the first step
in understanding the spin-orbital Kondo physics associated
with TIQDs. Further investigations regarding the spin-orbital
Kondo effect in TIQDs under an external magnetic field are
demanded for future research.
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APPENDIX A: GREEN’S FUNCTION WITHIN
COULOMB BLOCKADE REGIME

In this section, we present a derivation of the Green’s
function GCB(ω) within the Coulomb blockade regime. We
start from Eq. (14) and notice that the expression of Eq. (14)
is not closed yet because of the presence of a triple-product
operator: c

†
α′ (t)cα′(t)cα(t). Therefore, we differentiate the

triple-product operator with respect to time in order to close
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the EOM. The final result is given by

i�
∂

∂t
(c†α′cα′cα) =−

(
−i�

∂c
†
α′

∂t

)
cα′cα + c

†
α′

(
i�

∂cα′

∂t

)
cα + c

†
α′cα′

(
i�

∂cα

∂t

)

= εαc
†
α′cα′cα +

∑
k∈L,R

(−V ∗
kα′c

†
kα′cα′cα + Vkα′c

†
α′ckα′cα + Vkαc

†
α′cα′ckα) + U

∑
β �=α

c
†
α′cα′cαc

†
βcβ

≈
⎡
⎣εα + U + U

⎛
⎝ ∑

β �=α,α′
〈nβ〉

⎞
⎠

⎤
⎦ c

†
α′cα′cα +

∑
k∈L,R

(Vkαc
†
α′cα′ckα), (A1)

where we ignore the contributions coming from terms c
†
kα′cα′cα and c

†
α′ckα′cα (notice α �= α′) up to the first-order approximation.

The Fourier transform of Eq. (A1) reads⎡
⎣ω − εα − U

⎛
⎝1 +

∑
β �=α,α′

〈nβ〉
⎞
⎠

⎤
⎦ F {c†α′cα′cα}(ω) =

∑
k∈L,R

VkαF {c†α′cα′ckα}(ω), (A2)

where F {· · · } represents the Fourier transform of any operator inside the curly bracket.
Equation (A2) still does not close the EOM because of the presence of another triple-product term c

†
α′cα′ckα . Hence, one has

to further take the time derivative over this triple-product:

i�
∂

∂t
(c†α′cα′ckα) =−

(
−i�

∂c
†
α′

∂t

)
cα′ckα + c

†
α′

(
i�

∂cα′

∂t

)
ckα + c

†
α′cα′

(
i�

∂ckα

∂t

)

= (εk − iη)c†α′cα′ckα +
∑

k′∈L,R

(−V ∗
k′α′c

†
k′α′cα′ckα + Vk′α′c

†
α′ck′α′ckα) + V ∗

kαc
†
α′cα′cα + Skαc

†
α′cα′

≈ (εk − iη)c†α′cα′ckα + V ∗
kαc

†
α′cα′cα + 〈nα′ 〉Skα. (A3)

The Fourier transform of Eq. (A3) gives

F {c†α′cα′ckα}(ω) = V ∗
kα

ω − εk + iη
F {c†α′cα′cα}(ω) + 〈nα′ 〉c(0)

kα (ω). (A4)

Substituting Eq. (A4) into Eq. (A2), a closed form is finally obtained as

F {c†α′cα′cα}(ω) = 〈nα′ 〉
ω − εα − U

(
1 + ∑

β �=α,α′ 〈nβ〉) − �
(0)
α

Sα. (A5)

Plugging Eq. (A5) into the original Eq. (14), one obtains the Green’s function in the Coulomb blockade regime as

Gα(ω)CB = (
ω − εα − �(0)

α

)−1

⎡
⎣1 +

∑
α′ �=α

U 〈nα′ 〉
ω − εα − U

(
1 + ∑

β �=α,α′ 〈nβ〉) − �
(0)
α

⎤
⎦

=
1 − ∑

α′ �=α

( 〈nα′ 〉
N (α)

α′

)
ω − εα − �

(0)
α

+
∑
α′ �=α

( 〈nα′ 〉
N (α)

α′

)
ω − εα − UN (α)

α′ − �
(0)
α

, (A6)

where N (α)
α′ ≡ 1 + ∑

β �=α,α′ 〈nβ〉.

APPENDIX B: GREEN’S FUNCTION WITHIN KONDO REGIME

We derive the Green’s function in the Kondo regime in this section. We start from Eq. (14) and apply the EOM method
up to the second-order approximation. The EOM method is based on the Heisenberg equation, and in this case it consists
of differentiating the triple-product operator c

†
α′cα′cα with respect to time. A series of operator-product terms is generated

and has to be approximated to certain order in order to close the EOM eventually. Higher-order approximation is required
in order for the emergence of Kondo physics. First of all, we take the time derivative over the triple-product operator
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c
†
α′cα′cα:

i�
∂

∂t
(c†α′cα′cα) =−

(
−i�

∂c
†
α′

∂t

)
cα′cα + c

†
α′

(
i�

∂cα′

∂t

)
cα + c

†
α′cα′

(
i�

∂cα

∂t

)

= εαc
†
α′cα′cα +

∑
k∈L,R

(−V ∗
kα′c

†
kα′cα′cα + Vkα′c

†
α′ckα′cα + Vkαc

†
α′cα′ckα) + U

∑
β �=α

c
†
α′cα′cαc

†
βcβ

≈
⎡
⎣εα + U + U

⎛
⎝ ∑

β �=α,α′
〈nβ〉

⎞
⎠

⎤
⎦ c

†
α′cα′cα +

∑
k∈L,R

(−V ∗
kα′c

†
kα′cα′cα + Vkα′c

†
α′ckα′cα + Vkαc

†
α′cα′ckα), (B1)

where the contributions from terms c
†
kα′cα′cα and c

†
α′ckα′cα are kept in this case. The Fourier transform of Eq. (B1) can be written

as ⎡
⎣ω − εα − U

⎛
⎝1 +

∑
β �=α,α′

〈nβ〉
⎞
⎠

⎤
⎦F {c†α′cα′cα} =

∑
k∈L,R

(−V ∗
kα′F {c†kα′cα′cα} + Vkα′F {c†α′ckα′cα} + VkαF {c†α′cα′ckα}). (B2)

In order to close the EOM, we have to further take the time derivatives over the remaining operator-product terms c
†
kα′cα′cα ,

c
†
α′ckα′cα , and c

†
α′cα′ckα , respectively. We have already obtained the Fourier transform F {c†α′cα′ckα} from Appendix A as shown

in Eq. (A4):

F {c†α′cα′ckα}(ω) = V ∗
kα

ω − εk + iη
F {c†α′cα′cα}(ω) + 〈nα′ 〉c(0)

kα (ω). (B3)

The time derivatives over the other two operator-product terms appearing in Eq. (B2) are given by

i�
∂

∂t
(c†kα′cα′cα) =−

(
− i�

∂c
†
kα′

∂t

)
cα′cα + c

†
kα′

(
i�

∂cα′

∂t

)
cα + c

†
kα′cα′

(
i�

∂cα

∂t

)

= (εα + εα′ − εk − iη)c†kα′cα′cα − Vkα′c
†
α′cα′cα +

∑
k′∈L,R

(Vk′α′c
†
kα′ck′α′cα + Vk′αc

†
kα′cα′ck′α)

+
∑
β �=α′

Uc
†
kα′c

†
βcβcα′cα +

∑
β �=α

Uc
†
kα′cα′c

†
βcβcα − S∗

kα′cα′cα

≈
⎛
⎝εα + εα′ − εk + U + 2U

∑
β �=α,α′

〈nβ〉 − iη

⎞
⎠ c

†
kα′cα′cα − Vkα′c

†
α′cα′cα + Vkα′fkα′cα, (B4)

where fkα′ is the unperturbed Fermi-Dirac distribution for the leads, and

i�
∂

∂t
(c†α′ckα′cα) =−

(
− i�

∂c
†
α′

∂t

)
ckα′cα + c

†
α′

(
i�

∂ckα′

∂t

)
cα + c

†
α′ckα′

(
i�

∂cα

∂t

)

= (εα − εα′ + εk − iη)c†α′ckα′cα +
∑

k∈L,R

(Vk′αc
†
α′ckα′ck′α − V ∗

k′α′c
†
k′α′ckα′cα) + V ∗

kα′c
†
α′cα′cα

−
∑
β �=α′

Uc
†
α′c

†
βcβckα′cα +

∑
β �=α

Uc
†
α′ckα′c

†
βcβcα + Skα′c

†
α′cα

≈ (εα − εα′ + εk − iη)c†α′ckα′cα − V ∗
kα′fkα′cα + V ∗

kα′c
†
α′cα′cα. (B5)

Then the Fourier transforms of Eqs. (B4) and (B5) can be written as

F {c†kα′cα′cα}(ω) =− Vkα′

ω − εα − εα′ + εk − U
(
1 + 2

∑
β �=α,α′ 〈nβ〉) + iη

F {c†α′cα′cα}(ω)

+ Vkα′fkα′

ω − εα − εα′ + εk − U
(
1 + 2

∑
β �=α,α′ 〈nβ〉) + iη

cα(ω) (B6)

and

F {c†α′ckα′cα}(ω) = V ∗
kα′

ω − εα + εα′ − εk + iη
F {c†α′cα′cα}(ω) − V ∗

kα′fkα′

ω − εα + εα′ − εk + iη
cα(ω). (B7)
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Substituting Eqs. (B3), (B6), and (B7) into Eq. (B2), we obtain a closed form,

F {c†α′cα′cα}(ω) = − �
(2)
α′α

ω − εα − �
(0)
α − UN (α)

α′ − �
(1)
α′α

cα(ω) + 〈nα′ 〉
ω − εα − �

(0)
α − UN (α)

α′ − �
(1)
α′α

Sα, (B8)

where the self-energy terms are defined as

�(0)
α (ω) =

∑
k∈L,R

|Vkα|2
ω − εk + iη

,

�
(1)
α′α(ω) =

∑
k∈L,R

[ |Vkα′ |2
ω − εα + εα′ − εk + iη

+ |Vkα′ |2
ω − εα − εα′ + εk − U

(
1 + 2

∑
β �=α,α′ 〈nβ〉) + iη

]
, (B9)

�
(2)
α′α(ω) =

∑
k∈L,R

[ |Vkα′ |2fkα′

ω − εα + εα′ − εk + iη
+ |Vkα′ |2fkα′

ω − εα − εα′ + εk − U
(
1 + 2

∑
β �=α,α′ 〈nβ〉) + iη

]
.

Finally, we substitute Eq. (B8) back into Eq. (14), so we obtain the full Green’s function within the Kondo regime:

GK
α (ω) =

⎛
⎝ω − εα − �(0)

α + U
∑
α′ �=α

�
(2)
α′α

ω − εα − �
(0)
α − UN (α)

α′ − �
(1)
α′α

⎞
⎠

−1 ⎛
⎝1 + U

∑
α′ �=α

〈nα′ 〉
ω − εα − �

(0)
α − UN (α)

α′ − �
(1)
α′α

⎞
⎠

=
1 − ∑

α′ �=α
〈nα′ 〉
N (α)

α′

ω − εα − �
(0)
α + U

∑
α′ �=α �

(2)
α′α

(
ω − εα − �

(0)
α − UN (α)

α′ − �
(1)
α′α

)−1

+
∑
α′ �=α

〈nα′ 〉
N (α)

α′

ω − εα − �
(0)
α − UN (α)

α′ − U
(
N (α)

α′ �
(1)
α′α − �

(3)
α′α

)(
ω − εα − �

(0)
α − �

(1)
α′α

)−1 , (B10)

where the self-energy �
(3)
α′α(ω) is defined as

�
(3)
α′α(ω) =

∑
β �=α

�
(2)
βα(ω)

(
ω − εα − �(0)

α − UN (α)
α′ − �

(1)
α′α

ω − εα − �
(0)
α − UN (α)

β − �
(1)
βα

)
. (B11)
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