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We study the braiding statistics of particlelike and looplike excitations in two- (2D) and three-dimensional (3D)
gauge theories with finite, Abelian gauge group. The gauge theories that we consider are obtained by gauging the
symmetry of gapped, short-range entangled, lattice boson models. We define a set of quantities, called topological
invariants, that summarize some of the most important parts of the braiding statistics data for these systems.
Conveniently, these invariants are always Abelian phases, even if the gauge theory supports excitations with
non-Abelian statistics. We compute these invariants for gauge theories obtained from the exactly soluble group
cohomology models of Chen, Gu, Liu, and Wen, and we derive two results. First, we find that the invariants take
different values for every group cohomology model with finite, Abelian symmetry group. Second, we find that
these models exhaust all possible values for the invariants in the 2D case, and we give some evidence for this
in the 3D case. The first result implies that every one of these models belongs to a distinct symmetry-protected
topological (SPT) phase, while the second result suggests that these models may realize all SPT phases. These
results support the group cohomology classification conjecture for SPT phases in the case where the symmetry
group is finite, Abelian, and unitary.
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I. INTRODUCTION

Topological insulators [1,2] are a special case of symmetry-
protected topological (SPT) phases [3–10]. These phases can
occur in quantum many-body systems of arbitrary dimension
and arbitrary symmetry. By definition, a gapped quantum
many-body system belongs to a (nontrivial) SPT phase if it
satisfies three properties. First, the Hamiltonian is invariant
under some set of internal symmetries, none of which are
broken spontaneously. Second, the ground state is short-range
entangled: that is, it can be transformed into a product state or
atomic insulator using a local unitary transformation [11–13].
Third, the ground state cannot be continuously connected with
a product state, by varying some parameter in the Hamiltonian,
without breaking one of the symmetries or closing the energy
gap. In addition, nontrivial SPT phases typically have robust
boundary modes [1,2,14–17] analogous to that of topological
insulators, but this property is not part of the formal definition.

Chen, Gu, Liu, and Wen [10] have proposed a general classi-
fication scheme for SPT phases built out of bosons. Their clas-
sification scheme is based on their construction of a collection
of exactly soluble lattice boson models of arbitrary symmetry
and spatial dimension. The authors conjecture that these mod-
els, called group cohomology models, have two basic proper-
ties: (i) every group cohomology model belongs to a distinct
SPT phase and (ii) every SPT phase can be realized by a group
cohomology model. If both properties hold, then it follows
logically that there is a one-to-one correspondence between the
group cohomology models and SPT phases. In Ref. [10], the
authors assumed this to be the case, and thereby derived a clas-
sification scheme for SPT phases based on group cohomology.

While the results and arguments of Ref. [10] represent
a major advance in our understanding of SPT phases, they
leave several questions unanswered. First, it is not obvious
that properties (i) and (ii) hold in general [in fact, property (ii)
is known to fail for SPT phases with antiunitary symmetries
[17–19]. Second, even if these properties do hold at some level,
the resulting classification scheme is not completely satisfying

since it does not tell us how to determine to which SPT phase
a microscopic Hamiltonian belongs.

Motivated by these problems, several proposals have been
made for how to physically characterize and distinguish
SPT phases [15–17,20–32]. Here, we will focus on the
suggestion of Refs. [15,24] which applies to two- (2D) and
three-dimensional (3D) SPT models with unitary symmetries.
Reference [15] showed, via a simple example, that one
can probe 2D SPT models by gauging their symmetries
and studying the braiding statistics of the excitations in the
resulting gauge theory. These braiding statistics data are
useful because they are invariant under arbitrary symmetry-
preserving deformations of the Hamiltonian, as long as the
energy gap remains open. Therefore, if two SPT models give
rise to different braiding statistics, then they must belong to
distinct SPT phases [33]. The braiding statistics approach
can also be applied to 3D SPT phases [24,25]. In that case,
after gauging the symmetry, one studies the braiding statistics
of the vortex loop excitations in the resulting gauge theory.
More specifically, different SPT phases can be distinguished
by examining their three-loop braiding statistics, the statistics
associated with braiding a loop α around another loop β, while
they are both linked to a third loop γ .

When considered together, the braiding statistics approach
and the group cohomology construction raise several ques-
tions:

(1) Does every group cohomology model lead to distinct
braiding statistics?1

(2) Do the group cohomology models exhaust all possible
types of braiding statistics that can occur in SPT systems?

(3) If two SPT models give rise to the same braiding
statistics, do they always belong to the same phase?

1Here, when we say braiding statistics, we mean the complete set
of algebraic data for anyon systems, including quantum dimensions
and fusion rules. For more details, see e.g. Appendix E of Ref. [34].
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The answers to these questions have powerful implications,
especially if we can answer them affirmatively. For example,
if we can answer the first question in the affirmative, we can
immediately conclude that every group cohomology model
belongs to a distinct phase. Likewise, if we can answer
the second and third questions in the affirmative, then we
can conclude that the group cohomology models realize all
possible SPT phases. If we can answer all three questions
affirmatively, then it follows that (1) the group cohomology
classification is correct and (2) the braiding statistics data
provide a universal probe for characterizing and distinguishing
different SPT phases with unitary symmetries.

In this work, we consider the first and second questions for
the case of 2D and 3D SPT phases with finite Abelian unitary
symmetry group G = ∏K

i=1 ZNi
. We answer the first question

in the affirmative and we find evidence that the same is true
for the second question, as we explain in the following.

We obtain our results by focusing on a subset of the
braiding statistics data that summarizes some of its most
important features (in fact, for systems with Abelian statistics,
this subset is equivalent to the full set of braiding data,
see Sec. VIII). In the 2D case, this subset consists of three
tensors {�i,�ij ,�ijk} that take values in [0,2π ], where
1 � i,j,k � K . In the 3D case, it consists of three tensors
{�i,l,�ij,l,�ijk,l} with 1 � i,j,k,l � K . These tensors, which
we call topological invariants, are defined by considering
the Berry phase associated with certain composite braiding
processes of vortices or vortex loops. Conveniently, these
Berry phases are always Abelian phases regardless of whether
the full set of braiding statistics is Abelian or non-Abelian.

We report two main results. First, we show that the topolog-
ical invariants take different values in every group cohomology
model. Second, we show that the group cohomology models
exhaust all possible values for the topological invariants in the
2D case and we give some evidence for this in the 3D case.
Our first result implies that the group cohomology models all
belong to distinct phases. Our second result can be interpreted
as evidence that the group cohomology models realize all pos-
sible SPT phases with finite Abelian unitary symmetry group.

Some of our results have appeared previously in the
literature, although in a slightly different form. In particular,
in the 2D case, Ref. [32] introduced invariants similar to ours
and showed that the invariants can distinguish all the 2D group
cohomology models. Also, much of our analysis of 3D gauge
theories is similar to that of our previous work [24]. However,
this paper goes further than Ref. [24] in three key ways. First,
we study both Abelian and non-Abelian loop braiding statis-
tics, while Ref. [24] only studied Abelian statistics. Second, we
consider a general finite Abelian symmetry group

∏K
i=1 ZNi

while Ref. [24] only considered groups of the form (ZN )K .
Finally, we make a systematic comparison between the topo-
logical invariants and the group cohomology classification,
while Ref. [24] only made this comparison in a few examples.

A note on our terminology: throughout the paper, we will
refer to gauged SPT models as simply gauge theories. Also,
we will refer to the gauged group cohomology models as
Dijkgraaf-Witten models [35]. The Dijkgraaf-Witten models
were studied long before the discovery of SPT phases,
however, it can be shown that they are equivalent to the gauged

group cohomology models (the equivalence is discussed in
Appendix C).

The rest of the paper is organized as follows. In Sec. II,
we introduce the models that we will study, both the general
gauged SPT models and the more specific Dijkgraaf-Witten
models. In Sec. III, we discuss the general structure of braiding
statistics in gauged SPT models and we define the topological
invariants. Next, we compute the topological invariants in 2D
and 3D Dijkgraaf-Witten models in Sec. IV. In Sec. V, we
show that the topological invariants take different values in
every Dijkgraaf-Witten model. In Sec. VI, we derive general
constraints that the topological invariants must satisfy in any
gauged SPT model. In Sec. VII, we discuss whether the
Dijkgraaf-Witten models exhaust all possible values for the
invariants. The relation between the topological invariants and
the full set of braiding statistics in the case of Abelian statistics
is discussed in Sec. VIII. Finally, in Sec. IX, we conclude and
discuss the implications of our results for SPT phases. The
Appendices contain several technical details.

II. MODELS

A. Gauge theories

The main systems we will study in this paper are 2D and
3D lattice gauge theories with finite Abelian gauge group G =∏K

i=1 ZNi
. More specifically, we will study a particular class of

gauge theories that are obtained from a two-step construction.
The first step of the construction is to pick a 2D or 3D lattice
boson or spin model with a global

∏K
i=1 ZNi

symmetry. This
boson model can be quite general, with the only restrictions
being that (1) it has local interactions, (2) the symmetry is an
internal (onsite) symmetry rather than a spatial symmetry, and
(3) its ground state is gapped and short-range entangled, that
is, the ground state can be transformed into a product state
by a local unitary transformation. Here, by a local unitary
transformation, we mean a unitary tranformation U of the
form U = exp(iHs), where H is a local Hermitian operator
and s is a finite constant that does not scale with the system size
[11–13]. (Note that the transformation U need not commute
with the symmetry.)

The second step of the construction is to gauge the global
symmetry of the lattice boson model and couple it to a
dynamical lattice gauge field with group G. In Appendix A,
we give a precise prescription for how to implement this
gauging procedure. This prescription mostly follows the
usual minimal coupling scheme [36]. However, there is one
nonstandard element that is worth mentioning: our procedure
is defined so that the gauge coupling constant is exactly zero.
More precisely, what we mean by this is that the Hamiltonian
for the gauged model commutes with the flux operators that
measure the gauge flux through each plaquette in the lattice.
This property is convenient because it makes the low-energy
physics of our models well controlled. In particular, using this
property it can be shown that the gauge theories constructed
via our gauging procedure are guaranteed to be gapped and
deconfined as long as the original boson models are gapped and
do not break the symmetry spontaneously (see Appendix A).

The above two-step construction defines the class of models
that we will study in this paper. From now on, when we use the
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term gauge theory we will be referring exclusively to models
of this type, unless we state otherwise.

Before concluding this section, we would like to mention
that although we find it convenient to use the particular gauging
prescription in Appendix A, we do not expect that our results
actually depend on the details of the gauging procedure, or
on the fact that the resulting gauge theories have zero gauge
coupling. Indeed, our results are guaranteed to hold for any
model that can be continuously connected to one of the above
gauge theories without closing the energy gap. We expect
that the latter category includes models obtained from generic
gauging procedures, as long as the gauge coupling constant is
sufficiently small.

B. Dijkgraaf-Witten models

In part of this work we will study a particular set of exactly
soluble gauge theories, known as Dijkgraaf-Witten models
[35] which are obtained by gauging the group cohomology
models of Ref. [10]. We now briefly review the properties of the
group cohomology models and the corresponding Dijkgraaf-
Witten models. For the explicit definition of these models, see
Appendix C.

The group cohomology models are exactly soluble lattice
boson models that can be defined in any spatial dimension d.
The basic input needed to construct a d-dimensional group
cohomology model is a (finite) group G and a (d + 1)-cocycle
ω. Here, an n-cocycle ω is a function ω : Gn → U (1) that
satisfies certain conditions. One may define an equivalence
relation on cocycles and the equivalence classes are labeled
by the elements of the cohomology group Hn[G,U (1)] (a
brief introduction to group cohomology [37] is given in
Appendix B). It can be shown that the models constructed
from equivalent cocycles are identical so we will say that
the d-dimensional group cohomology models are labeled by
elements of Hd+1[G,U (1)].

Like the group cohomology models, the basic input needed
to construct a Dijkgraaf-Witten model in spatial dimension
d is a group G and a (d + 1)-cocycle ω. Also, like the group
cohomology models, the Dijkgraaf-Witten models constructed
from equivalent cocycles are the same, so we will say that
they are labeled by different elements of Hd+1[G,U (1)].
Here, we will focus on the case G = ∏K

i=1 ZNi
and

d = 2,3.

C. Braiding statistics and phases of SPT models
and gauge theories

Before proceeding further, we briefly review some results
on the relationship between SPT models, gauge theories,
and braiding statistics. We begin by defining phases of SPT
models and phases of gauge theories. The former definition is
relatively simple: we say that two lattice boson models with
the same symmetry group belong to the same SPT phase if
they can be continuously connected to one another by varying
some parameter in the (symmetry-preserving) Hamiltonian,
without closing the energy gap.

Defining phases of gauge theories is more subtle. In
fact, there are two inequivalent ways to define this concept,
both of which have their merits. In the first definition, two

gauge theories belong to the same phase if they can be
continuously connected by varying some parameter in the
(gauge-invariant) Hamiltonian without closing the energy gap.
In the second definition, not only do we require the existence
of an interpolating Hamiltonian with an energy gap, but we
also demand that the interpolating Hamiltonian has vanishing
gauge coupling, that is, the Hamiltonian must commute with
the flux operators that measure the gauge flux through each
plaquette in the lattice. While the first definition is very natural
if one is interested in gauge theories for their own sake, the
second definition is more relevant to the study of SPT phases.
In this paper, our primary interest is in SPT phases, so we will
use the second definition.

In parallel to the two ways of defining phases of gauge
theories, there are also two ways to define what it means for two
gauge theories to have the “same” braiding statistics data. In
the first definition, two gauge theories have the same braiding
statistics data if one can map the excitations of one gauge
theory onto the excitations of the other gauge theory such that
the corresponding excitations have identical braiding statistics.
In the second definition, the corresponding excitations are
required both to have the same braiding statistics and the same
gauge flux. In this paper, we will use the second definition
since it fits more naturally with our definition of phases of
gauge theories.

With these definitions in mind, we can now discuss some
results. An important observation is that if two lattice boson
models belong to the same SPT phase, then the corresponding
gauged models must also belong to the same phase. To see
this, note that our gauging prescription (Appendix A) maps
gapped lattice boson models onto gapped zero-coupling gauge
theories; hence, any continuous interpolation between two SPT
models can be gauged to give an interpolation between the two
corresponding gauge theories.

Another important observation is that if two gauge theories
belong to the same phase, then they must have the same
braiding statistics. One way to see this is to note that
braiding statistics data can only take on discrete values and
cannot change continuously. (This discreteness property is
known as Ocneanu rigidity [34].) Combining the above two
observations, we derive a useful corollary: if two lattice boson
models belong to the same SPT phase, then they must give rise
to the same braiding statistics after gauging their symmetries.
The converse of this statement may also be true, but it is not
obvious.

III. DEFINING THE TOPOLOGICAL INVARIANTS

In this section, we construct a set of topological invariants
for gauge theories with gauge group G = ∏K

i=1 ZNi
. (Here,

when we say “gauge theory,” we mean a gauge theory of the
type discussed in Sec. II.) These invariants are defined in terms
of the braiding statistics [34,38] of the excitations of the gauge
theory. They are denoted by �i,�ij ,�ijk in the 2D case and
�i,l,�ij,l,�ijk,l in the 3D case, where the indices i,j,k,l range
over 1, . . . ,K . For pedagogical purposes, we first define the
invariants in the case where the braiding statistics are Abelian,
and then discuss the general case (where the statistics may be
Abelian or non-Abelian).
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A. 2D Abelian case

We start with the simplest case: we consider 2D gauge
theories with group G = ∏K

i=1 ZNi
and with Abelian braiding

statistics.

1. Excitations and braiding statistics

We first discuss the excitation spectrum of these gauge
theories. In general, every excitation α in a discrete gauge
theory [36] can be labeled by the amount of gauge flux φα that
it carries. In our case, the gauge flux φα can be described by
a K-component vector φα = (φ1α,φ2α, . . . ,φKα) where each
component φiα is a multiple of 2π

Ni
, and is defined modulo 2π .

Excitations can be divided into two groups: charge excitations
that carry vanishing gauge flux and vortex excitations that carry
nonzero gauge flux.

As far as their topological properties go, charge exci-
tations are uniquely characterized by their gauge charge
q = (q1,q2, . . . ,qK ) where each component qi is defined
modulo Ni . In contrast, vortex excitations are not uniquely
characterized by the amount of gauge flux that they carry:
in fact, there are |G| = ∏K

i=1 Ni different types of vortices
carrying the same flux φ. All of these vortices can be obtained
by attaching charge excitations to a fixed reference vortex
with flux φ. Throughout this paper, we will use Greek letters
α,β,γ, . . . to denote vortices as well as general excitations,
and we will use the letter q to denote both a charge excitation
and its gauge charge.

Before proceeding further, we would like to point out a
possible source of confusion: Given what we have said about
the different types of vortices, it is tempting to try to label
vortex excitations by both their gauge flux and their gauge
charge. The problem with this approach is that we do not
know any physically meaningful way to define the absolute
charge carried by a vortex excitation in a discrete gauge theory.
Therefore, we will avoid using this notion in this paper. Instead,
we will only use the concept of relative charge: we will say
that two vortices α,α′ differ by charge q if α′ can be obtained
by attaching a charge excitation q to α.

Let us now consider the braiding statistics of the different
excitations. There are three different braiding processes to
consider: braiding of two charges, braiding of a charge around a
vortex, and braiding of two vortices. The first process is easy to
analyze: indeed, it is clear that the charges correspond to local
excitations in the ungauged short-range-entangled bosonic
state. Therefore, the charges are all bosons and have trivial
(bosonic) mutual statistics. The braiding between a charge
and a vortex is also easy to understand, as it follows from the
Aharanov-Bohm law. More specifically, the statistical Berry
phase θ associated with braiding a charge q around a vortex
with flux φ is given by

θ = q · φ, (1)

where “·” is the vector inner product. Note that attaching a
charge to the vortex does not change the Aharanov-Bohm law
since the charges have trivial mutual statistics with respect to
one another.

From the above arguments, we see that the charge-charge
and charge-vortex statistics are completely fixed by the gauge
group, leaving no room for variation. Therefore, the only

braiding process that has potential for distinguishing gauge
theories with the same gauge group is vortex-vortex braiding.
Motivated by this observation, we will define the topological
invariants �i,�ij in terms of the vortex-vortex braiding
statistics.

2. Topological invariants

Let α be a vortex carrying a unit flux 2π
Ni

ei , where ei =
(0, . . . ,1, . . . ,0) with a 1 the ith entry and 0 everywhere else.
Let β be a vortex carrying a unit flux 2π

Nj
ej . Here, i and j can

take any value in 1, . . . ,K . We define

�ij = Nij θαβ, �i = Niθα, (2)

where θαβ is the mutual statistics between α and β, θα is the
exchange statistics of α, and Nij is the least common multiple
of Ni and Nj (More generally, throughout the paper, we use
Nij...k to denote the least common multiple of Ni,Nj , . . . ,Nk

and use Nij...k to denote the greatest common divisor of
Ni,Nj , . . . ,Nk .)

For the quantities �ij and �i to be well defined, we need
to check that Nij θαβ and Niθα only depend on i and j , and
not on the choice of the vortices α,β. To see that this is the
case, imagine that we replace α,β with some other vortices
α′,β ′ carrying flux 2π

Ni
ei and 2π

Nj
ej . Then, clearly the vortices α

and α′ differ only by the attachment of charge, as do β and β ′.
Therefore, according to the Aharonov-Bohm law, the change
in �ij that occurs when we replace α → α′, β → β ′ is

�ij → �ij + 2πNij

(
x

Ni

+ y

Nj

)
, (3)

where x,y are integers that describe the amount of type-i
and type-j charge that is attached to β and α, respectively.
But, Nij is divisible by both Ni and Nj so we see that this
replacement does not change �ij modulo 2π . Similarly, the
Aharonov-Bohm law tells us that the change in �i that occurs
when we replace α → α′ is

�i → �i + 2πNi

z

Ni

, (4)

where z is the type-i charge that is attached to α. Thus, �i is
also unchanged modulo 2π . We conclude that the quantities
�ij and �i are both well defined.

In addition to being well defined, it is possible to show that
�ij and �i have another nice property: they contain the same
information as the full set of braiding statistics. We will derive
this result in Sec. VIII.

B. 2D general case

In this section, we move on to general 2D gauge theo-
ries with gauge group G = ∏K

i=1 ZNi
. Unlike the previous

section, we do not assume that the braiding statistics of the
excitations is Abelian. This additional generality is important
because, contrary to naive expectations, gauge theories with
Abelian gauge groups can sometimes have excitations with
non-Abelian statistics. For example, this phenomenon occurs
in 2D

∏K
i=1 ZNi

Dijkgraaf-Witten models when K � 3 (cf.
Ref. [39]).
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In the general case, we will define three topological
invariants �i,�ij ,�ijk . The first two �i,�ij reduce to those
defined in Eq. (2) when restricted to Abelian statistics. The
third invariant �ijk is new to the non-Abelian case, and
vanishes in the Abelian case.

1. General aspects: Excitations, fusion rules,
and braiding statistics

Many features of the Abelian case carry over to the general
case without change. First, we can still label every excitation
α by the amount of gauge flux φα = (φ1α, . . . ,φKα) that it
carries, where φiα is a multiple of 2π

Ni
and is defined modulo 2π .

Also, we can still divide excitations into two groups: charges,
that carry vanishing flux, and vortices, that carry nonzero
flux. Charge excitations are still characterized uniquely by
their gauge charge q = (q1, . . . ,qK ) with qi defined modulo
Ni , while vortices are still characterized nonuniquely by
their gauge flux. Finally, charges are still Abelian particles
with trivial charge-charge statistics, and with charge-vortex
statistics given by the Aharonov-Bohm law: θ = q · φ where
φ is the gauge flux carried by the vortex. The main new element
in the general case is that vortices can be non-Abelian, i.e., they
can have non-Abelian fusion rules and non-Abelian braiding
statistics with one another [34,38].

While the possibility of non-Abelian vortices complicates
our analysis, we can still make some general statements about
the fusion rules and braiding statistics in these systems. In
what follows, we focus on the fusion rules, and we list some
properties which will be useful in our later arguments (see
Appendix D for proofs and details). To begin, imagine we fuse
together two excitations α and β. In general, there may be a
number of possible fusion outcomes corresponding to other
excitations γ :

α × β =
∑

γ

N
γ

αβγ, (5)

where N
γ

αβ is the dimension of the fusion space Vγ

αβ . One
property of these fusion rules is that

φγ = φα + φβ (6)

for any fusion product γ . In particular, if φα + φβ = 0, then
all the γ ’s that appear on the right-hand side of (5) are pure
charges.

A second property is that the fusion of a charge q and an
excitation α always results in a single excitation

α × q = α′, (7)

where α′ is not necessarily distinct from α and φα′ = φα . A
third property is that if two excitations α,α′ have the same
flux, φα′ = φα , then there exists at least one charge q with
α′ = α × q.

To describe the final property, let α and β be two excitations,
and let γ be one of their fusion channels. Let α′ and β ′ be two
other excitations with φα′ = φα and φβ ′ = φβ , and let γ ′ be
one of their fusion channels. The final property states that there
exist charges q1 and q2 such that α′ = α × q1, β ′ = β × q2,
and γ ′ = γ × q1 × q2.

α β

(a)

α βγ

(b)

FIG. 1. Space-time trajectories of the vortices in the braiding
processes associated with �ij [(a); Nij = 3] and �ijk [(b)]. The arrow
of time is upward.

2. Topological invariants

Similarly to the Abelian case, we define the topological
invariants �i,�ij ,�ijk in terms of the braiding statistics
of vortices. Let α,β,γ be three vortices carrying unit
fluxes 2π

Ni
ei,

2π
Nj

ej ,
2π
Nk

ek , respectively. The topological invari-
ants �i,�ij ,�ijk are defined as follows.

Definitions:
(1) �i = 2πNisα , where sα is the topological spin of α.
(2) �ij is the Berry phase associated with braiding α

around β for Nij times.
(3) �ijk is the Berry phase associated with the following

braiding process: α is first braided around β, then around γ ,
then around β in the opposite direction, and finally around γ

in the opposite direction.
Figure 1 shows the space-time trajectories of the vortices

in the braiding processes of �ij and �ijk . We note that the
definitions of �i and �ij reduce to our previous definitions (2)
in the Abelian case since 2πsα = θα for Abelian quasiparticles.
We can also see that �ijk = 0 in the Abelian case.

Before we show that these quantities are well defined, we
comment on the definition of �i . In defining �i , we have
used the notion of topological spin. The topological spin sα ,
0 � sα < 1, of an anyon α is defined [34] to be

ei2πsα = 1

dα

∑
γ

dγ tr
(
Rγ

αα

)
, (8)

where dα and dγ are the quantum dimensions of α and γ ,
respectively, Rγ

αα is the braiding matrix associated with a half-
braiding (exchange) of two α’s, and the summation is over the
γ ’s appearing in the fusion product of α × α.

We see that �i is rather abstract since sα does not have a
direct physical interpretation. In contrast, �ij ,�ijk are defined
in terms of concrete physical braiding processes. One might
wonder if there is a more concrete definition of �i . Indeed,
when Ni is even, we find an alternative definition of �i :

�i is the phase associated with exchanging two α’s for Ni

times, where α is any vortex carrying unit flux 2π
Ni

ei .
This alternative definition provides a direct way to “mea-

sure” �i when Ni is even. The equivalence between this alter-
native definition and the original topological spin definition of
�i follows from two facts: First, exchanging two identical α
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vortices N times is equivalent to braiding one around the other
N
2 times. Second, braiding two identical α vortices around one
another gives a pure phase ei4πsα . (The latter claim, which is
less obvious, is proved in Appendix E.)

One problem with the above definition is that it does not
make sense when Ni is odd since in this case the unitary matrix
associated with the exchange process is not necessarily a pure
phase. Fortunately, we will see later that when Ni is odd, �i

is uniquely determined by �ii , and the latter can be directly
“measured” using a concrete braiding process. This point can
be obtained from the constraints on the invariants, which we
will study in Sec. VI B.

3. Proving the invariants are well defined

For the invariants to be well defined, we need to prove two
points: (i) We need to show that the unitary transformations
associated with the above braiding processes are always
Abelian phases regardless of the fact that the vortices may be
non-Abelian. (ii) We need to show that these Abelian phases
are functions of i,j,k only and do not depend on the choice of
vortices α,β,γ as long as they carry fluxes 2π

Ni
ei,

2π
Nj

ej ,
2π
Nk

ek ,
respectively. Only point (ii) is needed for showing �i is well
defined.

Let us start with proving point (ii) for �i . We first review
some key properties of topological spin (a detailed discussion
of topological spin can be found in Ref. [34]). If α is an
Abelian anyon, 2πsα is just the exchange statistics of α. In
general, sα = sᾱ , where ᾱ is the antiparticle of α. An important
property of the topological spin is

R
γ

βαR
γ

αβ = ei2π(sγ −sα−sβ )idVγ

αβ
. (9)

Here, Vγ

αβ is the fusion space of α,β in the fusion channel γ

and R
γ

αβ is the braiding matrix associated with a half-braiding
of α and β in the fusion channel γ . The notation idVγ

αβ
denotes

the identity matrix in the fusion space Vγ

αβ .
With these properties in mind, we now show that �i is well

defined, i.e., we show that

2πNisα′ = 2πNisα (10)

for any two vortices α,α′ carrying unit flux 2π
Ni

ei . In the first
step, we note that we can assume without loss of generality
that α′ = q × α for some charge q since according to the
properties discussed in Sec. III B1, any vortex with unit flux
2π
Ni

ei can be constructed from a fixed vortex by fusing charges
with it. To prove the result for this case, we substitute β = q

and γ = α′ = q × α into Eq. (9), obtaining

Rα′
qαRα′

αq = ei2π(sα′ −sα−sq ) = ei2π(sα′ −sα ), (11)

where in the second equality we used the fact that q is a boson
so sq = 0. At the same time, we know

Rα′
qαRα′

αq = e
2π
Ni

×integer (12)

since the braiding of a charge around a vortex can be computed
from the usual Aharonov-Bohm law. Combining these two
relations, we see that 2πNi(sα′ − sα) vanishes modulo 2π ,
proving (10).

Next, we prove points (i) and (ii) in the case of �ij . Let
α and β be two vortices carrying unit flux 2π

Ni
ei and 2π

Nj
ej ,

respectively. Imagine we perform a full braiding of α around
β when they are in some fusion channel δ. From the general
theory of non-Abelian anyons [34], we know that the unitary
matrix associated with a full braiding of α around β in a fixed
fusion channel δ is a pure phase factor [this result is a corollary
of Eq. (9)]. Denoting this phase factor by eiθδ

αβ , the quantity
�ij can be computed as

�ij = Nij θδ
αβ. (13)

In order to establish properties (i) and (ii) above, it suffices to
show that

Nij θδ
αβ = Nij θδ′

α′β ′ (14)

for any other vortices α′,β ′ carrying unit flux 2π
Ni

ei,
2π
Nj

ej , and

for any other fusion channel δ′. Indeed, the independence of
Nij θδ

αβ with respect to the fusion channel δ implies point (i),
while the independence of Nij θδ

αβ with respect to α,β implies
point (ii).

In fact, it is enough to prove (14) for the case where α′ =
α × q1, β ′ = β × q2, and δ′ = δ × q1 × q2 for some charges
q1,q2 since according to the general properties discussed in
Sec. III B1, any α′,β ′,δ′ can be obtained in this way. But, it
is easy to prove (14) in this case. Indeed, from the Aharonov-
Bohm law we can deduce the relation

Nij
(
θδ′
α′β ′ − θδ

αβ

) = 2πNij

(
q2i

Ni

+ q1j

Nj

)
, (15)

where q2i and q1j are integers that describe the amount of
type-i and type-j charge carried by q2 and q1, respectively.
We then observe that the expression on the right-hand side
vanishes modulo 2π since Nij is divisible by both Ni and Nj .
This establishes (14) and proves properties (i) and (ii) for �ij .

The proof of points (i) and (ii) for �ijk is more technical
and is given in Appendix F.

C. 3D Abelian case

Having warmed up with the 2D gauge theories, we now
consider 3D gauge theories with gauge group G = ∏

i ZNi

and with Abelian loop statistics. The discussion that follows is
a generalization of the case G = (ZN )K , studied in Ref. [24].

1. Excitations and three-loop braiding statistics

Discrete gauge theories in three dimensions support two
types of excitations: charges and vortices. Charge excitations
are particlelike and are characterized by the amount of gauge
charge q that they carry, where q = (q1, . . . ,qK ) with qi

defined modulo Ni . Vortex excitations are stringlike and
are characterized by the amount of gauge flux φ that they
carry where φ = (φ1, . . . ,φK ) with the component φi being
a multiple of 2π

Ni
, and defined modulo 2π . We will refer

to vortex excitations as vortex loops or simply loops since
we will generally assume that the system is defined on a
closed manifold with no boundary so that vortex excitations
necessarily form closed loops [40]. We will use Greek letters
α,β,γ to denote vortex loop excitations, and will use φα to
denote the gauge flux carried by the loop excitation α.

As in the 2D case, it is important to keep in mind that while
charge excitations are uniquely characterized by their gauge
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charge, vortex loop excitations are not uniquely characterized
by their gauge flux: in fact, there are |G| = ∏K

i=1 Ni different
types of vortex loop excitations carrying the same gauge flux
φ. All of these excitations can be obtained by attaching charges
to a fixed reference loop with flux φ.

Also, just as in 2D, there is some subtlety in defining the
absolute charge carried by a vortex loop excitation. Therefore,
throughout this paper we will only use the concept of relative
charge: we will say that two vortex loops α and α′ differ by
charge q if α′ can be obtained by attaching a charge excitation
q to α. The only exception to this rule involves unlinked vortex
loops: when a vortex loop is not linked to any other loops, then
there is a natural way to define how much charge it carries: we
will say that such a vortex loop is neutral if it can be shrunk to
a point and annihilated by local operators. Similarly, we will
say that an unlinked vortex loop carries charge q if it can be
obtained by attaching charge q to a neutral loop.

Let us now consider the braiding statistics of these excita-
tions. There are several types of processes we can consider:
braiding of two charges, braiding of a charge around a vortex
loop, and braiding involving several vortex loops. As in the
2D case, it is easy to see that the charge-charge statistics are
all bosonic and the statistics between a charge q and a vortex
loop carrying a flux φ follow the Aharonov-Bohm law

θ = q · φ. (16)

We note that the above Aharonov-Bohm law holds quite
generally: it does not depend on the amount of charge attached
to the loop, nor on whether the loop is unlinked or linked with
other loops.

What is left are braiding processes involving several vortex
loops. In general, there are many kinds of loop braiding
processes we can consider, including processes involving
two loops [41–43], three loops [24–26,44,45], or even more
complicated configurations. Here, we will follow Ref. [24] and
focus on the three-loop braiding process depicted in Fig. 2, in
which a loop α is braided around a loop β while both are
linked to a third “base” loop γ . Reference [24] argued that this
three-loop braiding process is a useful probe for characterizing
and distinguishing 3D topological phases. As in Ref. [24],
we denote the statistical phase associated with this braiding
process by θαβ,c, where c is an integer vector that characterizes
the amount of flux carried by γ . More specifically, c is defined
by φγ = ( 2π

N1
c1, . . . ,

2π
NK

cK ). We use the notation θαβ,c rather
than θαβ,γ because the statistical phase is insensitive to the
amount of charge attached to γ and depends only on its flux φγ

which is parametrized by c. We will also consider an exchange
or half-braiding process, in which two identical loops α, both

(a) (b) (c)

α β

γ

β
Ωα

γ

× ×

γ

α β

FIG. 2. Three-loop braiding process. (a) The gray curves show
the paths of two points on the moving loop α. (b) Cross section of the
braiding process in the plane that γ lies in. (c) A torus �α is swept out
by α during the braiding, which encloses the loop β (dashed circle).

linked to the base loop γ , exchange their positions. We denote
the associated three-loop exchange statistics by θα,c.

2. Topological invariants

We define our topological invariants �i,l and �ij,l in terms
of the the three-loop braiding statistics of vortex loops. Let α

and β be two vortex loops carrying unit flux 2π
Ni

ei and 2π
Nj

ej ,
where ei = (0, . . . ,1, . . . ,0) with the ith entry being 1 and all
others being 0. Suppose both α and β are linked to a third
vortex loop γ carrying unit flux 2π

Nl
el . We define

�ij,l = Nij θαβ,el
, �i,l = Niθα,el

. (17)

Using arguments similar to those for �i,�ij from Sec. III A2,
one can show that the quantities �i,l,�ij,l depend only on i,j,l

and not on the choice of vortices α,β,γ . Thus, �ij,l and �i,l

are well-defined quantities.
In addition to being well defined, it is possible to show that

�ij,l and �i,l contain all the information about the three-loop
braiding statistics in the gauge theory. We will derive this result
in Sec. VIII.

D. 3D general case

In this section, we move on to general 3D gauge theories
with gauge group G = ∏K

i=1 ZNi
. Unlike the last section,

we do not assume that the three-loop braiding statistics is
Abelian. We will define three topological invariants �i,l, �ij,l ,
and �ijk,l . The first two, �i,l, �ij,l , reduce to those defined
in Eq. (17) when restricted to Abelian statistics. The third
invariant �ijk,l is new to the non-Abelian case, and vanishes
in the Abelian case.

1. General aspects of non-Abelian loop braiding

In order to analyze the general case, it is important to
recognize the analogy between 3D loop braiding and 2D
particle braiding. This analogy can be seen most easily by
examining a 2D cross section of a loop braiding process,
as shown in Fig. 2(b). Here, we see that a braiding process
involving two loops α,β that are linked to a base loop γ can
be mapped onto a braiding process involving two pointlike
particles in two dimensions. More generally, any braiding
process involving loops α1, . . . ,αN that are linked to a base
loop γ can be mapped onto a braiding process involving N

pointlike particles in two dimensions. It can be shown that this
mapping between 3D loop braiding and 2D particle braiding is
one-to-one, so that the 3D braid group for loops (when linked
to a base loop) is identical to the 2D braid group for particles
[46]. In addition to braiding, there is also a close analogy
between fusion processes in two and three dimensions. Just as
two particles can be fused together to form another particle,
two loops α,β that are linked to the same loop γ can be fused
to form a new loop that is also linked to γ (Fig. 3).

This correspondence between the 2D and 3D cases implies
that the algebraic structure of fusion and braiding in 2D anyon
theories [34] can be carried over without change to the theory
of 3D loop excitations. In particular, for any loops α and β

that are both linked with γ , we can define an associated fusion
spaceVδ

αβ,c, where δ denotes their fusion channel. Also, we can
define an F symbol F δ

αβμ,c that describes a unitary mapping
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β1 β2

γ

β1×β2

γ

FIG. 3. Fusion of two loops β1 and β2, both linked to γ . We
denote this type of fusion by β1 × β2. (This is different notation from
Ref. [24], where this type of fusion was denoted by β1 + β2.)

between two different ways of parametrizing the fusion of
three loops

F δ
αβμ,c :

⊕
ξ

V
ξ
αβ,c ⊗ V δ

ξμ,c →
⊕

η

V δ
αη,c ⊗ V

η

βμ,c, (18)

and that satisfies the pentagon equation [34]. Likewise, we can
define an R symbol Rδ

αβ,c which is a unitary transformation

Rδ
αβ,c : V δ

αβ,c → V δ
βα,c (19)

and that satisfies the hexagon equation [34]. As in the 2D
case, the R symbol describes a half-braiding of loops: a full
braiding of two loops α,β that are in a fusion channel δ is given
by Rδ

βα,cR
δ
αβ,c. Finally, we can define quantum dimensions and

topological spins of loop excitations. The topological spin of
a loop α that is linked to γ is given by

ei2πsα,c = 1

dα,c

∑
δ

dδ,ctr
(
Rδ

αα,c

)
, (20)

where dα,c and dδ,c are quantum dimensions.
For all of the above quantities,Vδ

αβ,c,F
δ
αβμ,c, etc., the depen-

dence on the base loop γ enters through the index “c” where
c is an integer vector defined by φγ = ( 2π

N1
c1, . . . ,

2π
NK

cK ). The
reason we use the notation Vδ

αβ,c, etc., rather than Vδ
αβ,γ , etc.,

is because it is clear that these quantities depend only on the
flux carried by γ which is parametrized by c.

2. Topological invariants

Having established the analogy between 3D loop braiding
and 2D particle braiding, we now define the 3D topological
invariants using the same approach as in the 2D case. Let
α,β,γ be three vortex loops that are linked with another loop
σ . Suppose that α,β,γ,σ carry unit flux 2π

Ni
ei,

2π
Nj

ej ,
2π
Nk

ek,
2π
Nl

el ,
respectively. The topological invariants �i,l,�ij,l,�ijk,l are
defined as follows.

Definitions:
(1) �i,l = 2πNisα,el

, where sα,el
is the topological spin of

α when it is linked to σ .
(2) �ij,l is the Berry phase associated with braiding the

loop α around β for Nij times, while both are linked to σ .
(3) �ijk,l is the phase associated with the following

braiding process: α is first braided around β, then around γ ,
then around β in an opposite direction, and finally around γ

in an opposite direction. Here, α,β,γ are all linked with σ .
Similarly to the 2D case, there is an alternative and more

concrete definition of �i,l when Ni is even: �i,l can be defined
as the phase associated with exchanging two α loops for Ni

times.

We need to prove two points to show these quantities
are well defined: (i) We need to show that the unitary
transformations associated with the above braiding processes
are always Abelian phases regardless of the fact that the
vortex loops may be non-Abelian. (ii) We need to show that
these Abelian phases are functions of i,j,k,l only and do not
depend on the choice of vortex loops α,β,γ,σ as long as they
carry fluxes 2π

Ni
ei,

2π
Nj

ej ,
2π
Nk

ek,
2π
Nl

el . These two properties can
be established using similar arguments to those given in the
2D case in Sec. III B.

E. Examples

To see some examples of these invariants, we consider
the gauged group cohomology models of Ref. [10] or,
equivalently, the Dijkgraaf-Witten models of Ref. [35]. We
will compute the invariants for these models in the next
two sections. All the results listed below follow from two
formulas which we will derive later, namely, (42a)–(42c) and
(49a)–(49c).

The simplest nontrivial example is given by the 2D

Dijkgraaf-Witten models with symmetry group G = Z2.
In this case, H 3[Z2,U (1)] = Z2 so we can construct two
Dijkgraaf-Witten models [15]. The only independent invariant
in this case is �1, which describes the phase associated with
exchanging two identical π vortices twice. The values of �1

in the two Dijkgraaf-Witten models are

Trivial model: �1 = 0,

Nontrivial model : �1 = π.

Importantly, we can see that �1 takes different values in the
two models, which proves that they belong to distinct phases.

More generally, for G = ZN , we have H 3[ZN,U (1)] =
ZN , so we can construct N Dijkgraaf-Witten models in
this case. Similarly to the Z2 case, these models can be
distinguished from one another by the topological invariant
�1, which takes a different value in 0, 2π

N
, . . . , 2π

N
(N − 1) for

each of the N models.
Another interesting example is given by the 2D Dijkgraaf-

Witten models with symmetry group G = ZN × ZN × ZN .
In this case, H 3[ZN × ZN × ZN,U (1)] = Z7

N so we can
construct N7 models. Interestingly, there are also seven
independent topological invariants in this case:

�1, �2, �3, �12, �13, �23, �123.

The invariant �1 is the topological spin of a vortex that carries
2π
N

(1,0,0) flux, multipled by N . The invariant �12 is the
phase associated with braiding a vortex carrying 2π

N
(1,0,0)

flux around a vortex carrying 2π
N

(0,1,0) flux for N times. The
invariant �123 is the phase associated with braiding 2π

N
(1,0,0)

flux around 2π
N

(0,1,0) flux in the counterclockwise direction,
then around 2π

N
(0,0,1) flux in the counterclockwise direction,

then around the same 2π
N

(0,1,0) flux and 2π
N

(0,0,1) flux in
the clockwise direction. The meanings of the other invariants
are similar. The invariant �123 is an indicator of non-Abelian
statistics: if �123 = 0, the corresponding statistics is Abelian;
otherwise, the statistics is non-Abelian. We find that all seven
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invariants take values in

0,
2π

N
,

4π

N
, . . . ,

2π (N − 1)

N
,

and that these values distinguish all of the N7 2D ZN × ZN ×
ZN models. Again, this result proves that the N7 models each
belong to a different phase according to the definition given in
Sec. II C.

Finally, we consider 3D Dijkgraaf-Witten models with sym-
metry group G = Z2 × Z2. In this case, H 3[Z2 × Z2,U (1)] =
Z2

2 so we can construct four models [47]. We find there are two
independent topological invariants in this case, namely, �1,2

and �2,1. While there exist other invariants such as �12,1,�12,2,
they are not independent, as we show in Sec. VI. The invariant
�1,2 is the phase associated with exchanging two identical
loops that carry a (π,0) flux while both loops are linked to a
third loop that carries a (0,π ) flux. The meaning of �2,1 is
similar. We find that

�1,2 = 0 or π, �2,1 = 0 or π.

Each of the four combinations of the values occurs in a different
model. Hence, once again, the invariants distinguish all of
the 3D Z2 × Z2 Dijkgraaf-Witten models and prove that they
belong to distinct phases according to the definition given in
Sec. II C.

IV. INVARIANTS IN DIJKGRAAF-WITTEN MODELS

In this section, we compute the topological invariants for
all 2D and 3D Dijkgraaf-Witten models with Abelian gauge
group G = ∏K

i=1 ZNi
. We obtain explicit expressions of the

invariants in terms of the cocycle ω that is used to define the
Dijkgraaf-Witten model.

A. 2D topological invariants

1. Review of braiding statistics in 2D Dijkgraaf-Witten models

In this section, we summarize some previously known re-
sults on the braiding statistics in 2D Dijkgraaf-Witten models.
Although these results do not provide an explicit formula for
the braiding statistics in Dijkgraaf-Witten models, they do
the next best thing: they give a well-defined mathematical
procedure for how to compute these statistics in terms of the
3-cocycle ω that defines the model. This procedure involves a
mathematical structure known as the twisted quantum double
algebra [48]. The twisted quantum double formalism is quite
general and can be applied to any finite group G, including
non-Abelian groups. However, in the following discussion,
we will specialize to the case of Abelian G, and we will only
give a minimal review of the ingredients that are necessary
for the computation of the invariants �i,�ij ,�ijk . For more
details, readers may consult Refs. [39,48].

The first component of the twisted quantum double for-
malism is a scheme for labeling quasiparticle excitations. Let
us consider a Dijkgraaf-Witten model corresponding to an
Abelian group G = ∏K

i=1 ZNi
and 3-cocycle ω. According to

the formalism, each excitation in this model can be uniquely
labeled by a doublet

α = (a,ρ), (21)

where a = (a1, . . . ,aK ) is a group element of G with 0 � ai �
Ni − 1, and ρ is an irreducible projective representation of G

satisfying

ρ(b)ρ(c) = χa(b,c)ρ(b + c), (22)

for all b,c ∈ G. Here, χa is a phase factor defined by

χa(b,c) = ω(a,b,c)ω(b,c,a)

ω(b,a,c)
, (23)

and is called the slant product of ω. The two labels (a,ρ) have
a simple physical meaning: the first component a describes the
amount of flux φα = ( 2π

N1
a1, . . . ,

2π
Nk

ak) carried by the excitation
α, while the second component ρ is related to the amount
of charge attached to α. For a more precise correspondence
between the mathematical labels (a,ρ) and the physical notions
of gauge flux and gauge charge, we refer the reader to
Appendix G.

The second component of the formalism is a formula for
the fusion rules of the excitations. Specifically,

(a,ρ) × (b,μ) =
∑

σ

Nσ
ρμ(a + b,σ ), (24)

where the fusion multiplicities Nσ
ρμ are computed as follows.

First, we define a projective representation ρ ∗ μ by

(ρ ∗ μ)(g) = ρ(g) ⊗ μ(g) · χg(a,b) (25)

for any g ∈ G. The Nσ
ρμ are then defined in terms of the decom-

position of ρ ∗ μ into irreducible projective representations σ :

ρ ∗ μ =
⊕

σ

Nσ
ρμσ. (26)

In addition to fusion rules, this formalism provides a
convenient way to parametrize the degenerate ground states
associated with a collection of (non-Abelian) excitations.
Consider a system of n excitations αi = (ai,ρi), i = 1, . . . ,n,
and suppose that these excitations fuse to the vacuum. The
ground-state manifold associated with these excitations can
be obtained in two steps. First, we construct the tensor product
V = V1 ⊗ · · · ⊗ Vn where Vi is the vector space on which
ρi is defined. Then, we project onto the subspace of V that
corresponds to the vacuum fusion channel. This projection is
implemented by the operator

P = 1

|G|
∑
g∈G

ρ1(g) ∗ · · · ∗ ρn(g). (27)

The degenerate ground states associated with α1, . . . ,αN can
be parametrized by vectors that lie in the image of P : V → V .

We are now ready to present a formula for the braiding
statistics of the excitations. Suppose that the above system of
n excitations are arranged in a line in the order α1, . . . ,αn.
Then, the unitary transformation associated with braiding αi

around its neighbor αi+1, is given by [39]

Bαiαi+1 = P · idV1 ⊗ · · · ⊗ idVi−1 ⊗ ρi(ai+1) ⊗ ρi+1(ai)

⊗ idVi+2 ⊗ · · · ⊗ idVn
· P, (28)

165119-9



CHENJIE WANG AND MICHAEL LEVIN PHYSICAL REVIEW B 91, 165119 (2015)

where idVi
denotes the identity matrix on the vector space

Vi of ρi . (The exchange statistics for the excitations can be
computed in a similar fashion, but we will not discuss them
here as they are not necessary for our purposes.)

The final result we will need is an expression for the
topological spin. According to the twisted quantum double
formalism, the topological spin of an excitation α = (a,ρ) is
given by [39]

ei2πsα = 1

dim(ρ)
trρ(a), (29)

where dim(ρ) is the dimension of the representation ρ. This
formula can equivalently be written as

ei2πsα idV = ρ(a), (30)

where idV is the identity matrix in the vector space V of ρ. The
reason that (29) is equivalent to (30) is that ρ(a) is always a pure
phase. Indeed, this property follows from Schur’s lemma and
the observation that χa(a,b) = χa(b,a) so that ρ(a) commutes
with any other matrix ρ(b). [As an aside, we note that the
fact that ρ(a) is a pure phase is consistent with the results in
Appendix E.]

2. Explicit formulas for the invariants

We now compute the invariants �i , �ij , and �ijk for a
2D Dijkgraaf-Witten model with group G = ∏K

i=1 ZNi
and

3-cocycle ω. Let α,β,γ be three vortices carrying unit flux
2πei/Ni , 2πej/Nj , and 2πek/Nk , respectively. Using the
notation from the previous section, we can label these vortices
as α = (ei,ρ), β = (ej ,μ), and γ = (ek,ν) for some projective
representations ρ,μ,ν. We will denote the vector spaces
associated with ρ,μ,ν by V,W,X. To compute �i , �ij , and
�ijk , we need to find the topological spin of these vortices and
to analyze various braiding processes involving them.

We begin with �i . From (30) we derive

ei�i idV = ei2πNisα idV = ρ(ei)
Ni . (31)

We then rewrite the right-hand side as

ρ(ei)
Ni =

Ni−1∏
n=0

{ρ[(n + 1)ei]
−1ρ(ei)ρ(nei)}

=
Ni−1∏
n=0

χei
(ei,nei) idV , (32)

where the second line follows from Eq. (22). We conclude that
the invariant �i is given by

exp(i�i) =
Ni−1∏
n=0

χei
(ei,nei). (33)

Similarly, we can obtain expressions for �ij ,�ijk using (28):

ei�ij idV ⊗ idW = ρ(ej )N
ij ⊗ μ(ei)

Nij

,

ei�ijk idV = ρ(ek)−1ρ(ej )−1ρ(ek)ρ(ej ),

(a) (b)

α β

φ

α β

FIG. 4. (a) A thickened torus T2 × [0,1] with a flux φ threading
the inner hole. (b) The thickened torus drawn as a cube with the top
and bottom faces as well as the front and back faces identified.

which can then be related to χ using (22):

exp(i�ij ) =
Nij∏
n=1

χei
(ej ,nej )χej

(ei,nei),

exp(i�ijk) = χei
(ek,ej )

χei
(ej ,ek)

. (34)

Equations (33) and (34) are the formulas we seek, where χ is
defined by (23).

The properties of �i,�ij ,�ijk that were derived in
Sec. III B from more general considerations are manifest in the
above expressions. We can see that �i,�ij ,�ijk only depend
on i,j,k and not on the choice of vortices α,β,γ since the
representations ρ,μ,ν do not appear in the final expressions
(33) and (34). In addition, it is easy to verify that these formulas
are invariant under the change ω → ω · ν if ν is a coboundary
(see Appendix B for the definition of a coboundary). This is
to be expected since two cocycles that differ by a coboundary
are known to define the same Dijkgraaf-Witten model, and
therefore must give the same values for the invariants.

B. 3D topological invariants

1. Dimensional reduction

Our approach for computing the 3D invariants is based
on dimensional reduction: we derive a relationship between
vortex loop statistics in 3D Dijkgraaf-Witten models and
vortex statistics in 2D Dijkgraaf-Witten models, and then
we analyze the latter using previously known 2D results. A
similar dimensional reduction approach was used in Ref. [24].
The derivation we discuss here is more general than that of
Ref. [24] in some ways and less general in other ways. It is
more general because it applies even if the vortex loop statistics
are non-Abelian, but it is also less general because it is only
valid for Dijkgraaf-Witten models, while Ref. [24] derived
a dimensional reduction formula without restricting to these
exactly soluble systems.

To begin, consider a Dijkgraaf-Witten model associated
with a group G = ∏K

i=1 ZNi
and a 4-cocycle ω. Let us

define this model on a thickened 2D torus, i.e., the manifold
T2 × [0,1] (Fig. 4). Consider a state consisting of two loop
excitations α,β which wind around the inner hole of the torus,
and suppose that there is a flux

φ =
(

2π

N1
a1, . . . ,

2π

Nk

ak

)
(35)
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threading the inner hole. This geometry is equivalent to
a standard three-loop setup in which α,β are linked with
another loop carrying flux φ. Our task is to find the unitary
transformation associated with braiding α around β in the
presence of the flux φ.

To this end, we redraw the thickened torus T2 × [0,1] as a
cube whose top and bottom faces are identified as well as its
front and back faces. In this representation, the shaded square
in Fig. 4(b) corresponds to the shaded annulus in Fig. 4(a) and
the left and right faces of the cube correspond to the inner and
outer surfaces of the thickened torus. The flux loops α,β can be
drawn as lines connecting the top and bottom faces of the cube.

To proceed further, we make use of a special property
of Dijkgraaf-Witten models: these models can be defined
for any triangulation of space-time, and their properties do
not depend on the choice of triangulation. Therefore, we are
free to triangulate our cube however we like and it will not
affect the braiding statistics between α and β. Making use of
this freedom, we consider a triangulation with translational
symmetry in the x, y, and z directions. More specifically, we
consider triangulation in which there is only one unit cell in
the z direction, but many unit cells in the x and y directions.
With this choice of triangulation, the cube can be viewed as
a 2D system. Furthermore, the braiding process involving the
vortex loops α and β can be viewed as a process involving two
vortices in this effective 2D system.

By the same argument as in the Supplemental Material
of Ref. [24], one can show that this effective 2D system is
identical to a 2D Dijkgraaf-Witten model with group G and a
3-cocycle

χa(b,c,d) = ω(b,a,c,d)ω(b,c,d,a)

ω(a,b,c,d)ω(b,c,a,d)
, (36)

where a = (a1, . . . ,aK ) is defined in terms of φ as in Eq. (35).
Here, χa is known as the slant product of ω. One can check
that χa is indeed a 3-cocycle for any choice of a.

Putting this all together, we conclude that the vortex loop
statistics for a 3D Dijkgraaf-Witten model with 4-cocycle ω

and with a base loop with flux φ, are identical to the vortex
statistics in a 2D Dijkgraaf-Witten model with 3-cocycle χa .

2. Explicit formulas for the invariants

We are now ready to compute the invariants �i,l,�ij,l,�ijk,l

for a 3D Dijkgraaf-Witten model with group G = ∏K
i=1 ZNi

and 4-cocycle ω.
Let α,β,γ be three vortex loops carrying unit flux 2πei/Ni ,

2πej/Nj , and 2πek/Nk , respectively, and suppose that all
three are linked with another loop σ carrying unit flux 2πel/Nl .
To compute �i,l,�ij,l,�ijk,l , we need to analyze various
braiding processes involving α,β,γ . We can accomplish this
task with the help of the dimensional reduction results of
the previous section: according to those results, the braiding
statistics of the vortex loops α,β,γ in a 3D Dijkgraaf-Witten
model with cocycle ω are identical to the braiding statistics
of vortices in a 2D Dijkgraaf-Witten model with 3-cocycle χel

[Eq. (36)]. Therefore, the 3D invariants �i,l,�ij,l,�ijk,l can
be obtained from the corresponding 2D invariants [Eqs. (33)
and (34)] simply by substituting χel

(a,b,c) for ω(a,b,c). In

this way, we obtain

exp(i�i,l) =
Ni∏

n=1

χel,ei
(ei,nei),

exp(i�ij,l) =
Nij∏
n=1

χel,ei
(ej ,nej )χel,ej

(ei,nei), (37)

exp(i�ijk,l) = χel,ei
(ek,ej )

χel,ei
(ej ,ek)

,

where χel,ei
is defined as

χel,ei
(b,c) = χel

(ei,b,c)χel
(b,c,ei)

χel
(b,ei,c)

(38)

and where χel
is defined in Eq. (36).

V. SHOWING THE INVARIANTS DISTINGUISH ALL
DIJKGRAAF-WITTEN MODELS

In this section, we show that the invariants take different
values for each of the Dijkgraaf-Witten models with group
G. This result has two implications: (i) each of the Dijkgraaf-
Witten models belongs to a distinct phase and (ii) the invariants
can distinguish these phases.

A. 2D case

We now show that the invariants �i,�ij ,�ijk can dis-
tinguish all the 2D Dijkgraaf-Witten models corresponding
to the group G = ∏K

i=1 ZNi
. (A similar result was obtained

previously in Ref. [32].) Our proof is based on a counting
argument: let NDW

2D be the number of 2D Dijkgraaf-Witten
models with group G, let N phase

2D be the number of phases of
2D Dijkgraaf-Witten models with group G, and let N�

2D be the
number of distinct values that the invariants take over all 2D
Dijkgraaf-Witten models with group G. Clearly, we must have

N�
2D � N phase

2D � NDW
2D . (39)

What we will prove is the opposite inequality:

N�
2D � NDW

2D . (40)

It will then follow that N�
2D = N phase

2D = NDW
2D , which shows

that each of the Dijkgraaf-Witten models belongs to a distinct
phase and the invariants can distinguish all the phases
(according to the definition of phases given in Sec. II C).

To prove (40) we consider the set of 3-cocycles of the form

ω(a,b,c) = exp

⎧⎨
⎩i2π

∑
ij

Pij

NiNj

ai(bj + cj − [bj + cj ])

⎫⎬
⎭

× exp

⎧⎨
⎩i2π

∑
ijk

Qijk

Nijk

aibj ck

⎫⎬
⎭ , (41)

where Pij is an integer matrix and Qijk is an integer tensor
with Qijk = 0 if i,j,k are not all distinct. (The latter restriction
on Qijk is not essential, and we include it only to simplify
some of the formulas that follow.) Here, the symbol [bj + cj ]
is defined as the residue of bj + cj modulo Nj with values
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taken in the range 0, . . . ,Nj − 1. [One can verify that ω obeys
the 3-cocycle condition (B2) with straightforward algebra.]
Inserting the cocycle ω into the expressions in Eqs. (33) and
(34), one immediately obtains

�i = 2π

Ni

Pii, (42a)

�ij = 2π

Nij

(Pij + Pji), (42b)

�ijk = − 2π

Nijk

(Qijk + Qjki + Qkij − Qjik − Qikj − Qkji).

(42c)

From the above formulas, we see that the invariants �ij can
take on Nij different values as Pij ranges over all integer
matrices. Similarly, �i can take on Ni different values while
�ijk can take on Nijk different values. Furthermore, the values
of �i , and �ij with i < j , and �ijk with i < j < k, can be
varied independently from one another. Therefore, we have
the lower bound

N�
2D �

∏
i

Ni

∏
i<j

Nij

∏
i<j<k

Nijk. (43)

At the same time, we know that the Dijkgraaf-Witten models
are parametrized by elements of the group

H 3[G,U (1)] =
∏

i

ZNi

∏
i<j

ZNij

∏
i<j<k

ZNijk
, (44)

so that

NDW
2D = |H 3[G,U (1)]| =

∏
i

Ni

∏
i<j

Nij

∏
i<j<k

Nijk. (45)

Combining (43) and (45) gives the desired inequality (40) and
proves the result.

B. 3D case

We now show that the invariants �i,l,�ij,l,�ijk,l can
distinguish all the 3D Dijkgraaf-Witten models corresponding
to the group G = ∏K

i=1 ZNi
. The argument closely follows

the 2D case: let NDW
3D be the number of 3D Dijkgraaf-Witten

models with group G, let N phase
3D be the number of phases

of 3D Dijkgraaf-Witten models with group G, and let N�
3D

be the number of distinct values that the invariants take over
all 3D Dijkgraaf-Witten models with group G. Clearly, we
have

N�
3D � N phase

3D � NDW
3D . (46)

What we will show is that

N�
3D � NDW

3D . (47)

It will then follow that N�
3D = N phase

3D = NDW
3D , which shows

that each of the Dijkgraaf-Witten models belongs to a distinct
phase and the invariants distinguish all the phases (according
to the definition of phases given in Sec. II C).

To prove (47), we consider the set of 4-cocycles of the form

ω(a,b,c,d) = exp

⎧⎨
⎩i2π

∑
ijk

Mijk

NijNk

aibj (ck + dk − [ck + dk])

⎫⎬
⎭

× exp

⎧⎨
⎩i2π

∑
ijkl

Lijkl

Nijkl

aibj ckdl

⎫⎬
⎭ , (48)

where Mijk is an arbitrary integer tensor and Lijkl is an integer
tensor with Lijkl = 0 if i,j,k are not all distinct. [As in the
2D case, it is simple to verify that ω obeys the 4-cocycle
condition (B3).] Inserting the 4-cocycle ω into the expressions
in Eq. (37), we obtain

�i,l = 2π

Nil

(Mili − Mlii), (49a)

�ij,l = 2πNij

NilNj

(Milj − Mlij ) + 2πNij

NjlNi

(Mjli − Mlji), (49b)

�ijk,l = − 2π

Nijkl

∑
p̂

sgn(p̂)Lp̂(i)p̂(j )p̂(k)p̂(l), (49c)

where p̂ is a permutation of i,j,k,l and sgn(p̂) = ±1 is the par-
ity of p̂. From the above formulas, we see that different choices
of M and L give different values of �i,l, �ij,l , and �ijk,l .
More precisely, it can be shown that as M and L range over
the set of allowed integer tensors, the invariants �i,l, �ij,l , and
�ijk,l take on at least

∏
i<l(Nil)2 ∏

i<j<l(Nijl)2 ∏
i<j<k<l Nijkl

different values (this counting is done in Appendix I).
Therefore, we have the lower bound

N�
3D �

∏
i<l

(Nil)
2

∏
i<j<l

(Nijl)
2

∏
i<j<k<l

Nijkl . (50)

On the other hand, we know that the Dijkgraaf-Witten
models are parametrized by elements of the group

H 4[G,U (1)] =
∏
i<j

(
ZNij

)2 ∏
i<j<k

(
ZNijk

)2 ∏
i<j<k<l

ZNijkl
, (51)

so that

NDW
2D =

∏
i<l

(Nil)
2

∏
i<j<l

(Nijl)
2

∏
i<j<k<l

Nijkl . (52)

Combining (50) and (52) gives the desired inequality (47) and
proves the result.

VI. GENERAL CONSTRAINTS ON THE INVARIANTS

In this section, we derive general constraints on the invari-
ants that hold for any gauge theory with group G = ∏K

i=1 ZNi
.

In the next section, we will discuss whether these constraints
are complete, i.e., whether any solution to these constraints
can be realized by an appropriate gauge theory.

A. 2D Abelian case

Let us start with the case of 2D gauge theories with
gauge group G = ∏K

i=1 ZNi
and Abelian braiding statistics.

According to Sec. III A, there are two invariants �i and �ij in
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this case. We will now argue that �i and �ij must satisfy the
following general constraints:

�ii = 2�i, (53a)

�ij = �ji, (53b)

Nij�ij = 0, (53c)

Ni�i = 0, (53d)

where all equations are defined modulo 2π . To prove this
statement, we first recall the following general properties of
Abelian braiding statistics:

θαβ = θβα, (54a)

θαα = 2θα, (54b)

θα(β1×β2) = θαβ1 + θαβ2 , (54c)

θ(α×β) = θα + θβ + θαβ. (54d)

Here, θαβ denotes the mutual statistics of α,β, while θα

denotes the exchange statistics of α and α × β denotes the
excitation created by fusing together α and β. Each of
these identities follows from simple physical arguments. The
symmetry relation (54a) comes from the fact that braiding α

around β is topologically equivalent to braiding β around α.
The relation (54b) follows immediately from the definition of
exchange statistics. The linearity relation (54c) comes from
the fact that fusing β1 and β2 must commute with braiding α

around them. The other linearity relation (54d) has a similar
flavor.

We can see that Eqs. (53a) and (53b) follow immediately
from these general constraints. To prove (53c), consider
braiding a vortex α that carries a unit flux 2π

Ni
ei around Nj

identical vortices β, with each β carrying a unit flux 2π
Nj

ej .
Clearly, the associated statistical phase is Njθαβ . At the same
time, according to the linearity relation (54c), this statistical
phase is equal to the phase associated with braiding α around
the fusion product of all the β vortices. Since the total flux of
Nj β vortices is zero, they fuse to a charge. It then follows from
the Aharanov-Bohm law that the latter quantity is a multiple
of 2π

Ni
. We conclude that

Njθαβ = 2π

Ni

× integer.

Equation (53c) follows immediately using NijN
ij = NiNj

together with the definition (2) of �ij .
To prove (53d), imagine exchanging a set of Ni α’s with

another set of Ni α’s. According to the linearity relation (54d)
and the relation (54b), the associated exchange statistical phase
is N2

i θα = Ni�i . However, this phase must be a multiple of 2π

since Ni α’s fuse to a charge which is a boson. Thus, Eq. (53d)
must hold.

B. 2D general case

We now consider the case of general 2D gauge theories
with gauge group G = ∏K

i=1 ZNi
. There are three invariants,

�i,�ij ,�ijk in this case. We will now argue that �i,�ij again
satisfy the constraints (53a)–(53d), as in the Abelian case. In

γ

α β

FIG. 5. A Borromean ring obtained by closing up the trajectories
in Fig. 1(b).

addition, the third invariant �ijk satisfies

�ijk = sgn(p̂)�p̂(i)p̂(j )p̂(k), (55a)

�iij = 0, (55b)

Nijk�ijk = 0, (55c)

where p̂ is a permutation of the indices i,j,k and sgn(p̂) = ±1
is its parity and again all the equations are defined modulo 2π .
We note that the constraint (55a) tells us that �ijk is fully
antisymmetric modulo 2π , while (55b) is a stronger constraint
on �iij than its antisymmetry since the antisymmetry only
requires that 2�iij = 0 (mod 2π ).

We first prove the above constraints for �ijk; afterwards
we will prove (53a)–(53d). To prove that �ijk is fully anti-
symmetric, i.e., (55a), we consider the space-time trajectories
[Fig. 1(b)] of the vortices in the braiding process associated
with �ijk . Since the unitary transformation associated with the
braiding process is Abelian, we can close up the space-time
trajectories in Fig. 1(b), so that they form the Borromean ring
in Fig. 5. The closed-up trajectories are associated with the fol-
lowing process: we first create three particle-antiparticle pairs
α,ᾱ, β,β̄, and γ,γ̄ out of the vacuum, where α,β,γ carry unit
flux 2π

Ni
ei,

2π
Nj

ej ,
2π
Nk

ek , respectively, then braid α,β,γ in the way
that leads to the phase �ijk , and finally annihilate the three
pairs to return to the vacuum. The fact that we can annihilate
the particles at the end of the process is guaranteed by
the fact that the braiding results in a pure phase, otherwise the
particle-antiparticle need not be in the vacuum fusion channel
after the braiding.

With this picture in mind, we can see that �ijk is equal
to the phase associated with the Borromean ring space-time
trajectories. Since the Borromean ring is cyclically symmetric,
we deduce that �ijk = �jki = �kij . It is also not hard to
see that reversing the braiding process associated with �ijk

gives rise to the phase �ikj . So, �ijk = −�ikj . Putting these
relations together, we see �ijk is fully antisymmetric.

To prove (55b), we make use of the result in Appendix E
which shows that braiding a vortex α around another α

gives only a pure phase. Consider three vortices α,α,β with
φα = 2π

Ni
ei and φβ = 2π

Nj
ej and imagine the braiding process

associated with �iij : α is braided around the other α, then
around β, then around the other α in the opposite direction,
and finally around β in the opposite directions. In this four-step
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(i)

α β

γ1

γ2

γ3

(ii)

α β

γ1

γ2

γ3

FIG. 6. Thought experiment to prove the constraint (55c) (Nk = 3
is taken for illustration). For clarity, we split the composite braiding
into two steps (i) and (ii). In the thought experiment, (ii) follows
immediately after (i).

process, we can switch the order of the second and third steps
since the third step gives only a pure phase. Thus, it is obvious
that this four-step process neither changes the state of the
system nor leads to any Abelian phase. Hence, Eq. (55b) holds.

To prove (55c), we consider a collection of excitations
α,β,γ1, . . . ,γNk

, where φα = 2π
Ni

ei , φβ = 2π
Nj

ej , and φγt
=

2π
Nk

ek for any t = 1, . . . ,Nk . We consider a composite braiding
process shown in Fig. 6: first we braid α around β in the coun-
terclockwise direction, then sequentially round γ1, . . . ,γNk

in
the counterclockwise direction, then around β in the clockwise
direction, and sequentially around γNk

, . . . ,γ1 in the clockwise
direction. This braiding process can be described by a product
of operators

B ≡ B−1
αγ1

. . . B−1
αγNk

B−1
αβ BαγNk

. . . Bαγ1Bαβ,

where Bαβ,Bαγ1 , . . . ,BαγNk
are the operators associated with

braiding α around β,γ1, . . . ,γNk
respectively. Now, according

to the definition of �ijk , we have B−1
αγt

B−1
αβ Bαγt

Bαβ = ei�ijk Î

for any t = 1, . . . ,Nk . It then follows that

B = eiNk�ijk Î , (56)

where Î is the identity operator. On the other hand, braiding
α around γ1, . . . ,γNk

in sequence is equivalent to braiding α

around the fusion product of γ1, . . . ,γNk
. Since γ1, . . . ,γNk

fuse to some charge q, we derive

B = B−1
αq B−1

αβ BαqBαβ, (57)

where Bαq denotes the operator associated with the braiding
of α around q. Now, by the Aharonov-Bohm formula, we
know that Bαq is a pure phase, which implies that B is
just the identity operator B = Î . Therefore, eiNk�ijk = 1, i.e.,
Nk�ijk = 0. Similarly, we can show Ni�ijk = Nj�ijk = 0.
Putting this together, we derive the constraint (55c).

Next, we prove the constraints (53a)–(53d) in the non-
Abelian case. The constraint (53a) follows immediately from
Appendix E while (53b) is obvious. To prove (53c), we
consider a vortex α carrying a flux 2π

Ni
ei , together with Nj

vortices β1, . . . ,βNj
all carrying a flux 2π

Nj
ej . Imagine α is

braided around β1 for Nij times, then around β2 for Nij times,
and so on. The result is a total phase Nj�ij . This sequence of
braiding processes can be described by a product of operators

B ′ = BNij

αβNj
. . . BNij

αβ2
BNij

αβ1
, (58)

where Bαβt
represents the operator associated with braiding

α around βt once. Any two operators Bαβt
and Bαβs

commute
because the commutator B−1

αβt
B−1

αβs
Bαβt

Bαβs
= ei�ijj and �ijj =

0 according to (55b). Therefore, the operator B ′ can be
rewritten as

B ′ = (
BαβNj

. . . Bαβ2Bαβ1

)Nij

, (59)

which means B ′ is equivalent to braiding α around β1, . . . ,βNj

as a whole for Nij times. However, the vortices β1, . . . ,βNj

fuse to a pure charge, and when α is braided around any charge
for Nij times, the result is no phase at all. Therefore, we obtain
Nj�ij = 0. Similarly, one can show that Ni�ij = 0. Putting
this together, we derive the constraint (53c).

Finally, to prove the constraint (53d), we use the diagram-
matical representation of the topological spin [34]

= ei2πsα

α α

α α

(60)

Let us imagine Ni identical α’s, which should fuse to some
charge q. Consider the following diagram:

ααα

=

α α α

(61)

where the case Ni = 3 is shown for simplicity. The left-hand
side equals the topological spin ei2πsq = 1, while the right-
hand side equals

ei2πNisα+∑Ni−1
n=0 i4πnsα = ei2πN2

i sα = eiNi�i , (62)

where the result of Appendix E is used. We conclude that
Ni�i = 0 modulo 2π , which proves the constraint (53d).

C. 3D Abelian case

We now consider the case of 3D gauge theories with gauge
group G = ∏K

i=1 ZNi
and Abelian braiding statistics. In this

case, there are two invariants �i,l and �ij,l . We will argue that
these invariants must satisfy the following general constraints:

�ii,l = 2�i,l, (63a)

�ij,l = �ji,l, (63b)

Nijl�ij,l = 0, (63c)

Nil�i,l = 0, (63d)

Nijl

Nij
�ij,l + Nijl

Njl
�jl,i + Nijl

Nli
�li,j = 0, (63e)

�i,l

Nil

Ni

+ �il,i = 0, (63f)

�i,i = 0 (conjectured). (63g)
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β1

γ1

β2

γ2

β1◦β2

γ2

γ1

FIG. 7. Fusion of two loops β1 and β2 that carry the same amount
of flux φβ1 = φβ2 and that are linked to different base loops. We
denote this type of fusion by β1 ◦ β2. This is different notation from
Ref. [24], where this type of fusion was denoted by β1 ⊕ β2.

We note that the above constraints are a generalization of
those derived in Ref. [24].

To prove these constraints, we make use of the following
general properties of Abelian three-loop statistics:

θαα,c = 2θα,c, (64a)

θαβ,c = θβα,c, (64b)

θα(β1×β2),c = θαβ1,c + θαβ2,c, (64c)

θ(α×β),c = θα,c + θβ,c + θαβ,c, (64d)

θ(α1◦α2)(β1◦β2),(c1+c2) = θα1β1,c1 + θα2β2,c2 , (64e)

θα◦β,c1+c2 = θα,c1 + θβ,c2 . (64f)

Note that these equations involve two types of fusions of
loops, i.e., the “×” and “◦” fusions, shown in Figs. 3 and
7 respectively. The “×” fusion involves two loops that are
linked to the same base loop, while the “◦” fusion involves
two loops that carry the same amount of fluxes but are linked
to different base loops (note that these types of fusion were
denoted by “+” and “⊕” in Ref. [24]). One can see that the
first four equations resemble Eqs. (54a)–(54d) in 2D systems,
while the last two are new to 3D systems. We call (64b) the
symmetry relation and call (64c)–(64f) the linearity relations.
Like the 2D relations, the linearity relations encode the fact
that braiding and exchanging of loops commute with fusion
of loops. The linearity relations (64c) and (64d) only involve
a single base loop and are similar to the 2D linearity relations
(54c) and (54d). The linearity relations (64e) and (64f) involve
the “◦” fusion with different base loops, and have no analog
in 2D systems. A graphical proof of (64e) can be found in
Ref. [24] and the proof for (64f) is similar.

With the help of these general properties, we will now prove
the constraints (63a)–(63f). The constraints (63a) and (63b) are
the simplest to prove, as they follow immediately from (64a)
and (64b). To prove (63c), we first imagine braiding a vortex
loop α around Nj identical vortex loops β, where both α and
β are linked to a base loop γ and φα = 2π

Ni
ei , φβ = 2π

Nj
ej ,

φγ = 2π
Nl

el . Clearly, the total statistical phase is Njθαβ,el
. On

the other hand, from the linearity property (64c), we know
that this phase is equal to that of braiding α around the fusion
product of the β’s. Since the Nj β’s fuse to a pure charge, it

follows that the latter quantity is a multiple of 2π/Ni . Hence,
we derive

Njθαβ,el
= 2π

Ni

× integer. (65)

Comparing with the definition of �ij,l , we deduce that

Nij�ij,l = 0, (66)

modulo 2π . Next, we imagine a collection of Nl identical
three-loop linked structures. In each structure, loops α and β

are linked with γ , and α is braided around β. The total phase
in the Nl braiding processes is Nlθαβ,el

. We then fuse together
all the linked structures and make use of the linearity relation
(64e), and obtain

Nlθαβ,el
= θAB,Nlel

, (67)

where A,B denote the two loops A = α ◦ · · · ◦ α and B =
β ◦ · · · ◦ β. Now, since the Nlel = 0, the two loops A and B are
not linked to any base loop so the statistical phase on the right-
hand side can be computed using the conventional Aharonov-
Bohm law (see Ref. [24] for a more detailed argument):

θAB,Nlel
= 2π

Nj

qA · ej + 2π

Ni

qB · ei, (68)

where qA,qB denote the amount of charge carried by the
(unlinked) loops A,B. We conclude that

Nlθαβ,el
= 2π

Ni

× integer + 2π

Nj

× integer, (69)

which implies that

Nl�ij,l = 0 (70)

modulo 2π . Combining (66) and (70), we immediately derive
the constraint (63c). The proof of (63d) is similar, the only
difference being that one needs to consider exchange statistics
rather than mutual statistics, and the linearity relations (64d)
and (64f) rather than (64c) and (64e).

The proof of the “cyclic relations” (63e) and (63f) follows
the same philosophy as above, and involves considering certain
thought experiments. These thought experiments are described
in Ref. [24] in the case of G = (ZN )K . It is not hard to extend
these thought experiments to G = ∏

i ZNi
, so we do not repeat

them here and instead refer the reader to Ref. [24].
It is unfortunate that we are not able to prove the last

constraint (63g). Therefore, this relation is just a conjecture.
However, from (63d) and (63f), we can prove the weaker
constraint 3�i,i = 0.

D. 3D general case

To complete our discussion, we now consider the case of
general 3D gauge theories with gauge group G = ∏K

i=1 ZNi
.

In this case, there are three invariants �i,l , �ij,l , and �ijk,l .
We will now argue that �i,l,�ij,l satisfy the constraints (63a)–
(63d), as in the Abelian case. In addition, the third invariant
�ijk,l satisfies

�ijk,l = sgn(p̂)�p̂(i)p̂(j )p̂(k),l , (71a)

�iij,l = 0, (71b)

Nijk�ijk,l = 0. (71c)
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Unlike the other cases that we have discussed, we expect
that the above list of constraints is incomplete: that is, there
are likely further constraints on the invariants beyond the
ones listed here. One reason for this belief is that in the
case of the Dijkgraaf-Witten models, the invariants obey the
cyclic constraints (63e)–(63g), and �ijk,l satisfies the stricter
constraint

�ijk,l = sgn(p̂)�p̂(i)p̂(j )p̂(k),p̂(l),

�iij,l = 0,

Nijkl�ijk,l = 0,

where p̂ is a permutation of the indices i,j,k,l and sgn(p̂) = ±
is its parity. We find it plausible that these additional constraints
may apply more generally than to the Dijkgraaf-Witten
models, but we have not been able to prove this fact.

The easiest constraints to establish are (71a)–(71c). These
constraints follow identical arguments to the 2D results (55a)–
(55c). Likewise, the two constraints (63a) and (63b) follow
from the same logic as the 2D results (53a) and (53b), which
were proved in the general case in Sec. VI B.

To prove (63c), we first notice that Nij�ij,l = 0 can be
established in the same way as its 2D analog (53c). Next, we
consider a thought experiment with Nl identical three-loop
linked structures {α,β,γ } with φα = 2π

Ni
ei, φβ = 2π

Nj
ej , φγ =

2π
Nk

ek . We imagine braiding each α around the corresponding

β for Nij times. The result of each braiding process is an
Abelian phase �ij,l . Therefore, the result of braiding all the
α’s simultaneously is Nl�ij,l . Now, since all the phases are
Abelian, a linearity relation such as (64e) applies in this case.
More specifically, one can argue that the phase associated with
this braiding process is equal to that of braiding the loop A =
α ◦ · · · ◦ α around B = β ◦ · · · ◦ β for Nij times, while both
A,B are linked to a base loop which carries a flux Nlφl . Now,
since Nlφl = 0 modulo 2π , A,B are not linked to any base
loop so this phase can be computed from the Aharonov-Bohm
law, as in Eq. (68). In this way, we deduce that

Nl�ij,l = Nij

(
2π

Ni

× integer + 2π

Nj

× integer

)
= 0. (72)

Combining this with Nij�ij,l = 0, we derive the constraint
(63c). The proof of (63d) is similar and involves the use of a
linearity relation for �i,l analogous to (64f).

VII. DO THE DIJKGRAAF-WITTEN MODELS EXHAUST
ALL POSSIBLE VALUES FOR THE INVARIANTS?

In this section, we ask and partially answer the following
question:

Do there exist Abelian gauge theories for which the
invariants acquire values beyond those given by the Dijkgraaf-
Witten models?

If the answer to this question is “yes,” then it follows that
there exist gauge theories that do not belong to the same
phase as any of the Dijkgraaf-Witten models. On the other
hand, if the answer is “no,” we cannot make any rigorous
statements about the existence or nonexistence of gauge
theories beyond the Dijkgraaf-Witten models since we cannot
rule out the possibility that two gauge theories may share the

same invariants but still belong to distinct phases. That being
said, a negative answer can be interpreted as circumstantial
evidence that the Dijkgraaf-Witten models exhaust all possible
Abelian gauge theories.

To address this question, we compare the general con-
straints derived in the previous section with our explicit
computation of the invariants in the Dijkgraaf-Witten models.
We first consider the 2D case. In that case, we know that
the invariants must obey constraints (53a)–(53d) as well as
(55a)–(55c). At the same time, we know that the Dijkgraaf-
Witten models can realize any (�i,�ij ,�ijk) of the form given
in Eqs. (42a)–(42c). Comparing these two results, one can
easily verify that the Dijkgraaf-Witten models can realize
all possible values of the invariants that are consistent with
the general constraints. We conclude that in the 2D case, the
Dijkgraaf-Witten models exhaust all possible values of the
invariants.

Next, we consider the 3D Abelian case: that is, 3D gauge
theories with gauge group G and Abelian three-loop statistics.
In this case, we know that the invariants must obey the
constraints (63). We also know that the Dijkgraaf-Witten
models with Abelian statistics [49] can realize any (�i,l,�ij,l)
of the form given in Eqs. (49a) and (49b). From these two facts,
one can show that the Abelian Dijkgraaf-Witten models realize
all possible values of the invariants that are consistent with the
general constraints; this derivation is given in Appendix H. One
loophole is that the last constraint (63g) is simply a conjecture.
Therefore, all we can say is that the Dijkgraaf-Witten models
exhaust all possible values of the invariants, assuming this
conjecture is correct.

Finally, let us consider the general 3D case: that is, 3D
gauge theories with gauge group G and any type of three-loop
statistics (Abelian or non-Abelian). In this case, we have only
managed to prove very weak constraints on the invariants, as
discussed in the previous section. As a result, the Dijkgraaf-
Witten models only realize a small subset of the invariants that
are consistent with our constraints. Hence, we cannot make any
statements as to whether the Dijkgraaf-Witten models exhaust
all possible values of the invariants.

VIII. RELATION BETWEEN THE INVARIANTS AND
BRAIDING STATISTICS

In this section, we show that the topological invariants
contain the same information as the full set of braiding
statistics data, for 2D or 3D gauge theories with gauge group
G = ∏K

i=1 ZNi
and Abelian statistics. We do not know whether

a similar result holds for gauge theories with gauge group G

and non-Abelian statistics.

A. 2D case

We begin with the 2D case. What we will show is that if two
2D gauge theories with Abelian statistics have the same values
for the invariants �i and �ij , then all their braiding statistics
must be identical. In this sense, the topological invariants
contain all the information about the braiding statistics in these
systems.

Before presenting our argument, let us recall our definition
for when two gauge theories have the “same” braiding
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statistics. As discussed in Sec. II C, we say that two gauge
theories have the same braiding statistics if there exists a one-
to-one correspondence between the quasiparticle excitations
in the two theories that (1) preserves all the algebraic structure
associated with braiding statistics, e.g., R symbols, fusion
rules, F symbols, etc., and (2) preserves the gauge flux of
excitations. In other words, for each excitation in one gauge
theory, there should be a corresponding excitation in the other
gauge theory that has the same braiding statistics properties
and the same gauge flux.

Given the above definition, our task is as follows. Consider
two 2D gauge theories with group G = ∏K

i ZNi
and Abelian

statistics. Suppose that the gauge theories have the same values
for the invariants �i and �ij . We have to show that there exists
a one-to-one correspondence between the excitations in the
two theories that preserves their exchange statistics, mutual
statistics, and gauge flux.

We construct this correspondence as follows. In the first
gauge theory, for each i = 1, . . . ,K , we choose one of the |G|
types of vortices that carry unit flux 2π

Ni
ei , and denote it by v̂i .

Similarly, in the second gauge theory, for each i = 1, . . . ,K ,
we choose one of the |G| types of vortices carrying unit flux
2π
Ni

ei and denote it by ŵi . Given that the two gauge theories
have identical values of �i and �ij , we know that the exchange
statistics and mutual statistics of {v̂i} and {ŵi} are related by

θv̂i
= θŵi

+ 2πxi

Ni

, θv̂i v̂j
= θŵi ŵj

+ 2πyij

Nij
(73)

for some integers xi , yij , with yii = 2xi .
In the next step, we fuse some gauge charge qi =

(qi1, . . . ,qiK ) onto each vortex ŵi , to obtain another unit flux
vortex ŵ′

i . We choose the qi so that the new vortices ŵ′
i obey

θv̂i
= θŵ′

i
, θv̂i v̂j

= θŵ′
i ŵ

′
j
. (74)

To see that we can always do this, note that

θŵ′
i
= θŵi

+ 2πqii

Ni

,

θŵ′
i ŵ

′
j
= θŵi ŵj

+ 2πqij

Nj

+ 2πqji

Ni

(75)

by the Aharonov-Bohm formula. Hence, we can arrange for
Eq. (74) to hold if we choose the gauge charges qi so that they
satisfy

qii = xi (mod Ni),

1

Nij

(Niqij + Njqji) = yij (mod Nij ). (76)

We are now ready to construct the desired one-to-one
correspondence between the excitations in the two gauge
theories. We note that every excitation in the first gauge theory
can be written uniquely as a fusion product

α = (v̂1)a1 × · · · × (v̂K )aK × q, (77)

where ai are integers with 0 � ai � Ni − 1, and where q =
(q1, . . . ,qK ) is some gauge charge with 0 � qi � Ni − 1.
Similarly, every excitation in the second gauge theory can
be written uniquely as

α′ = (ŵ′
1)a1 × · · · × (ŵ′

K )aK × q. (78)

We define a one-to-one correspondence between two sets of
excitations by mapping

α = (v̂1)a1 × · · · × (v̂K )aK × q

↔ α′ = (ŵ′
1)a1 × · · · × (ŵ′

K )aK × q. (79)

It is clear that this correspondence preserves gauge flux since

φα =
(

2πa1

N1
, . . . ,

2πak

Nk

)
= φα′ . (80)

To see that this correspondence preserves the exchange
statistics and mutual statistics of the excitations, we need to
check that

θα = θα′ , θαβ = θα′β ′ (81)

for any α,β in the first gauge theory and corresponding α′,β ′ in
the second gauge theory. These relations follow immediately
from (74) together with the linearity relations (54c) and (54d).
This completes our argument: we have shown that if two gauge
theories have the same values of the invariants �i,�ij , then
all their braiding statistics is identical.

B. 3D case

We now repeat the argument in the 3D case. Consider two
3D gauge theories with group G = ∏K

i ZNi
and Abelian three-

loop statistics. Suppose that the gauge theories have the same
values for the invariants �i,l and �ij,l . We will show that the
two gauge theories have identical three-loop statistics. More
precisely, we will show that for each gauge flux φ, there exists
a one-to-one correspondence between the looplike excitations
in the two theories that are linked with base loops with flux φ,
such that the corresponding excitations have the same three-
loop statistics and the same gauge flux.

The derivation closely follows the 2D case. To begin, we
focus on the first gauge theory, and we fix a base loop that
carries unit flux 2π

Nl
el . For each i = 1, . . . ,K , we choose one

of the |G| types of vortex loops that carry flux 2π
Ni

ei and are
linked with the base loop and we denote it by v̂i . We repeat
this process for the second gauge theory. That is, we fix a base
loop with flux 2π

Nl
el and we choose vortex loops {ŵi} that are

linked with the base loop and carry flux 2π
Ni

ei . Using the fact
that the two gauge theories have identical values of �i,l and
�ij,l , we know that the three-loop statistics of the {v̂i} and {ŵi}
loops are related by

θv̂i ,el
= θŵi ,el

+ 2πxi,l

Ni

, θv̂i v̂j ,el
= θŵi ŵj ,el

+ 2πyij,l

Nij

for some integers xi,l , yij,l , with yii,l = 2xi,l . Note that the
integers xi,l and yij,l may depend on l, that is, they may take
different values for different base loops.

We next fuse some gauge charge qi = (qi1, . . . ,qiK ) onto
each vortex loop ŵi , to obtain another vortex loop ŵ′

i . We
choose the qi so that the new vortex loops ŵ′

i obey

θv̂i ,el
= θŵ′

i ,el
, θv̂i v̂j ,el

= θŵ′
i ŵj ,el

. (82)

The fact that we can always find such a qi follows from the
same reasoning as in the 2D case.

We now construct a one-to-one correspondence between
the loop excitations in the two gauge theories, focusing on the
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excitations that are linked with a base loop with flux 2π
Nl

el .
The construction is identical to the 2D case. First, we note
that every loop excitation α in the first gauge theory can be
written uniquely as a fusion product of the v̂i vortex loops
together with some gauge charge, as in Eq. (77). Similarly,
every loop excitation in the second gauge theory can be written
uniquely as a product of the ŵ′

i vortex loops as in Eq. (78). We
can therefore define a one-to-one correspondence using the
mapping in Eq. (79). For the same reasons as in the 2D case, it
is clear that this correspondence preserves the statistics of the
loop excitations, as well as their gauge flux.

To finish the derivation, we need to generalize the above
one-to-one correspondence to the case where the base loop
carries arbitrary flux φ. This generalization is easy to prove
since we can construct base loops with arbitrary flux by fusing
together base loops with unit flux using the “◦” fusion process
(see Fig. 7). Furthermore, using the linearity relations (64e)
and (64f) we can see that the three-loop statistics associated
with these more general base loops is completely determined
by the three-loop statistics for the unit flux base loops. Putting
these pieces together, we can construct a similar one-to-one
correspondence between loop excitations that are linked with
base loops with arbitrary flux. This completes our argument
and proves that the two gauge theories have identical three-loop
statistics.

IX. CONCLUSION

In this paper, we have studied the braiding statistics of 2D
and 3D gauge theories with group G = ∏K

i=1 ZNi
, and we

have defined topological invariants that summarize some of
the most important aspects of this braiding structure. In the 2D
case, these invariants consist of three tensors {�i,�ij ,�ijk},
while in the 3D case, they consist of three tensors
{�i,l,�ij,l,�ijk,l}. These tensors are defined in terms of certain
composite braiding processes involving vortices and vortex
loops.

Using these invariants, we have obtained two results. First,
we have shown that the invariants distinguish all 2D and
3D Dijkgraaf-Witten models (= gauged group cohomology
models) with group G. Second, we have shown that the
Dijkgraaf-Witten models with group G exhaust all possible
values of the invariants in the 2D case and we have derived
similar, but weaker, results in the 3D case.

So far, our discussion has focused on gauge theories
or, more precisely, gauged SPT models. We now return to
the questions raised in the Introduction, and discuss the
implications of our findings for ungauged SPT models. We
begin with our result that the invariants take different values
for each of the 2D and 3D Dijkgraaf-Witten models (= gauged
group cohomology models) with group G. This result has an
immediate implication: the 2D and 3D group cohomology
models with group G all belong to distinct phases.

Next, we consider our finding that the 2D Dijkgraaf-Witten
models exhaust all possible values for the invariants. While we
cannot draw rigorous conclusions from this result, it is at least
consistent with the possibility that the 2D group cohomology
models realize all possible SPT phases with symmetry group
G. Our 3D results on this topic are also consistent with this
possibility, though they are somewhat weaker.

In short, our results support the group cohomology clas-
sification conjecture of Chen, Gu, Liu, and Wen [10] for the
case of finite, Abelian symmetry group G. In addition, our
results allow us to go further: they provide a simple diagnostic
for determining whether a specific microscopic Hamiltonian
belongs to the same phase as a specific group cohomology
model. The diagnostic involves gauging the Hamiltonian and
then computing the topological invariants of the associated
gauge theory. If the invariants for the microscopic Hamiltonian
are different from that of the group cohomology model, then
we may conclude that the Hamiltonian belongs to a distinct
phase. If the invariants are the same, then it may belong to
the same phase, though we cannot be certain because we do
not know if the invariants are complete in the sense that they
distinguish all possible SPT phases.

We see this work as a first step towards answering the
three questions raised in the Introduction. We have managed to
make some progress on these questions for the special case of
Abelian symmetry groups, but many issues remain unresolved.
First, although we have partially answered questions 1 and
2 from the Introduction, we have said nothing at all about
question 3, which asks whether the braiding statistics data
can distinguish all possible SPT phases. Another important
direction for future work is to understand the braiding statistics
in gauge theories with non-Abelian gauge group and see
if similar topological invariants could be defined in that
context. Finally, it would be interesting to study gauge theories
associated with fermionic SPT models. Such systems may have
an even richer braiding statistics structure than the bosonic case
analyzed here.
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APPENDIX A: GAUGING PRESCRIPTION

In this Appendix, we give a general prescription for how
to gauge a lattice boson model with an Abelian symmetry
group G = ∏K

i=1 ZNi
. The procedure we describe follows the

usual minimal coupling scheme for lattice gauge theories [36].
The only nonstandard element is that we will set the gauge
coupling constant to zero in order to maximize our control
over the models, as in Refs. [15,50]. More precisely, what we
mean by this is that the Hamiltonians for the gauged models
commute with the flux operators that measure the gauge flux
through each plaquette in the lattice. This property has a nice
consequence: the gauge theories we construct are guaranteed to
be gapped and deconfined as long as the original boson models
are gapped and do not break the symmetry spontaneously.

For concreteness, we will focus on a particular kind of boson
model with

∏K
i=1 ZNi

symmetry. Specifically, we will focus on
lattice boson models built out of K species of bosons, where
the particle number of the ith species is conserved modulo Ni

and where the different species of bosons live on the sites p of
some 2D or 3D lattice. We denote the boson creation operator
for the ith species on lattice site p by b

†
p,i . We assume that the

boson model has local interactions, so that the Hamiltonian of
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the bosons can be written as

H =
∑
A

HA({bp,i}), (A1)

where the sum is taken over localized regions A, and where
HA is some operator composed out of boson creation and
annihilation operators acting on region A.

We now discuss our procedure for gauging such a Hamilto-
nian. The first step is to introduce a Hilbert space Hpq of
dimension |G| = ∏K

i=1 Ni for each link pq of the lattice.
This Hilbert space is spanned by basis states {|m〉}, where
m = (m1, . . . ,mK ) with 0 � mi � Ni − 1. Along with the
Hilbert space, we introduce lattice gauge field operators μpq,i

for each species i = 1, . . . ,K . These operators are defined by

μpq,i |m〉 = e
±i 2π

Ni
mi |m〉 (A2)

with a + or − sign depending on whether pq is parallel or
antiparallel to some fixed orientation that we assign to every
link of the lattice. Likewise, we define a set of unitary shift
operators Spq,a for each group element a ∈ G:

Spq,a|m〉 = |m ± a〉 (A3)

with a + or − sign depending on whether pq is parallel
or antiparallel to the prescribed orientation. Here, we have
used a = (a1, . . . ,ak), 0 � ai � Ni − 1, to denote the group
elements of G = ∏K

i=1 ZNi
.

In the second step, we replace each operator HA({bp,i})
by a gauged operator H̃A({bp,i ,μpq,i}) following the minimal
coupling procedure:

HA({bp,i}) → H̃A({bp,i ,μpq,i}). (A4)

For example, a nearest-neighbor hopping term undergoes the
following substitution under minimal coupling:

bp,ib
†
q,i → bp,ib

†
q,iμpq,i . (A5)

For more complicated terms involving multiple sites, the
substitution contains a product of μ operators acting on a path
that connects the sites. One subtlety is that there is an ambiguity
for how to choose the path. This ambiguity is eliminated by the
third step in the gauging procedure. In this step, we multiply
H̃A by a projection operator PA which projects onto the states
that have vanishing gauge flux through each plaquette that
belong to A. That is, the projector PA can be written as a
product

PA =
∏

〈pqr〉∈A

P〈pqr〉, (A6)

where P〈pqr〉 projects onto states with vanishing flux through
a particular plaquette 〈pqr〉, which we have assumed to
be triangular for concreteness. The projector P〈pqr〉 can be
explicitly written as

P〈pqr〉 = 1

|G|
K∏

i=1

(
Ni−1∑
k=0

(μpq,iμqr,iμrp,i)
k

)
. (A7)

After multiplying H̃A by PA, one can show that all paths
enclosed by A lead to the same term so that the minimal
coupling procedure is unambiguous. It is not hard to see that
P〈pqr〉 is a Hermitian operator.

In the last step of the gauging procedure, we add a term
of the form −�P〈pqr〉 to the Hamiltonian for each plaquette,
so that it costs finite energy to create vortex excitations. After
applying these steps, the final gauged Hamiltonian is

H̃ =
∑
A

H̃A({bp,i ,μpq,i})PA − �
∑
〈pqr〉

P〈pqr〉, (A8)

where we assume � is large and positive. This Hamiltonian is
defined on a Hilbert space consisting of gauge-invariant states,
i.e., states |�〉 satisfying

Tp,a|�〉 = |�〉 (A9)

for every p,a, where Tp,a is the gauge transformation associ-
ated with group element a ∈ G and site p:

Tp,a = e
i
∑

i

2πai
Ni

b
†
p,ibp,i

∏
q∈neigh.(p)

Sqp,a. (A10)

This constraint is the analog of the usual Gauss’s law of
electromagnetism ∇ · E = ρ.

The gauging prescription we have just described has
a special property: the Hamiltonian H̃ commutes with
the flux through each plaquette of the lattice. That is,
[H̃ ,μpq,iμqr,iμrp,i] = 0 for every plaquette 〈pqr〉 and every
i = 1, . . . ,K . This property has an important consequence:
the gauge theory H̃ is guaranteed to be gapped and deconfined
as long as H is gapped and does not break the symmetry
spontaneously. To see this, note that [H̃ ,P〈pqr〉] = 0, so the
eigenstates of H̃ are also eigenstates of P〈pqr〉. As long as
� is large, then all the low-energy eigenstates |�〉 will have
vanishing flux, that is, P〈pqr〉|�〉 = |�〉. At the same time, it is
easy to see that, within the zero flux sector, the energy spectrum
of H̃ is identical to the energy spectrum of the original
boson model H . We conclude that H̃ and H have identical
low-energy spectra. Hence, H̃ is guaranteed to be gapped if
H is gapped. Similar reasoning shows that H̃ is deconfined as
long as H does not break the symmetry spontaneously.

APPENDIX B: GROUP COHOMOLOGY

In this Appendix, we review the basic ingredients of the
cohomology of finite groups [10,37,39]. We focus on the
cohomology group Hn[G,U (1)].

Let G be a finite group. The basic objects that group
cohomology studies are n-cochains. An n-cochain is a U (1)
valued function c(g1, . . . ,gn):

c : G × G × · · · × G︸ ︷︷ ︸
n times

→ U (1).

The collection of n-cochains form an Abelian group Cn, where
the group operation is defined by

(c1 · c2)(g1, . . . ,gn) = c1(g1, . . . ,gn) · c2(g1, . . . ,gn).

The coboundary operator δ is a map δ : Cn → Cn+1, defined
by

δc(g1, . . . ,gn+1)

= c(g2, . . . ,gn+1)c(g1, . . . ,gn)(−1)n+1

×
n∏

i=1

[c(g1, . . . ,gigi+1, . . . ,gn+1)](−1)i . (B1)
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It is easy to check that the coboundary operator satisfies
δ(c1 · c2) = δc1 · δc2. More importantly, one can check that
δ is nilpotent: δ2 = 1.

With the help of the coboundary operator, we can now
define n-cocycles and n-coboundaries. An n-cocycle is an
n-cochain ω that satisfies δω = 1. For example, 3-cocycles
satisfy

ω(g2,g3,g4)ω(g1,g2g3,g4)ω(g1,g2,g3)

ω(g1g2,g3,g4)ω(g1,g2,g3g4)
= 1, (B2)

and 4-cocycles satisfy

ω(g2,g3,g4,g5)ω(g1,g2g3,g4,g5)ω(g1,g2,g3,g4g5)

ω(g1g2,g3,g4,g5)ω(g1,g2,g3g4,g5)ω(g1,g2,g3,g4)
= 1.

(B3)

Likewise, an n-coboundary is an n-cochain ν that can be
written as ν = δc where c ∈ Cn−1. The nilpotence of δ implies
that a coboundary must also be a cocycle. This allows us to
define an equivalence relation for the cocycles: two n-cocycles
ω1 and ω2 are said to be cohomologically equivalent if and
only if ω1 = ω2 · δc, for some c ∈ Cn−1. The equivalence
classes of the n-cocycles form an Abelian group, called the
nth cohomology group, which is denoted by Hn[G,U (1)].

In this paper, we will only need the cohomology group
Hn[G,U (1)] for G = ∏K

i=1 ZNi
and for n = 3 and 4. These

cohomology groups can be computed explicitly using the
Kunneth formula [10,39]

H 3[G,U (1)] =
∏

i

ZNi

∏
i<j

ZNij

∏
i<j<k

ZNijk
, (B4)

H 4[G,U (1)] =
∏
i<j

(
ZNij

)2 ∏
i<j<k

(
ZNijk

)2 ∏
i<j<k<l

ZNijkl
.

(B5)

APPENDIX C: GROUP COHOMOLOGY MODELS AND
DIJKGRAAF-WITTEN MODELS

In this Appendix, we briefly review the group cohomology
models of Ref. [10], as well as the Dijkgraaf-Witten models
of Ref. [35]. In addition, we show that coupling the group
cohomology models to a lattice gauge field gives exactly the
Dijkgraaf-Witten models. For convenience, we describe these
models as well as the gauging procedure using a path-integral
formulation in Euclidean space-time. This is different from
the gauging procedure in Appendix A which is described in a
Hamiltonian formulation. We expect the similar results can be
derived in a Hamiltonian formulation (e.g., see Refs. [51,52]
for a Hamiltonian description of Dijkgraaf-Witten models).

1. Group cohomology models

The basic data needed to construct a d + 1-dimensional
group cohomology model with (finite) group G is (1) a
d + 1-cocycle ω together with (2) a triangulation of d +
1-dimensional Euclidean space-time. To build the model,
we label the vertices of the triangulation by an ordered
sequence i,j, . . . , the links by [ij ],[jk], . . . , and the triangular
plaquettes by [ijk], . . . , etc. We will refer to the vertices as “0-
simplices,” the links as “1-simplices,” the triangular plaquettes

as “2-simplices,” and so on. The basic degrees of freedom in
the model are group elements gi ∈ G that live on the vertices
i of the triangulation. For every space-time configuration
{gi}, we assign a local weight [ω(g−1

i gj , . . . ,g
−1
k gl)]σij...kl to

each d + 1-simplex [ij . . . kl] (i < j < · · · < k < l) where
σij...kl = ±1 is the chirality of the simplex [ij . . . kl]. The
action corresponding to {gi} is given by the product of the
local weights

e−S1({gi }) =
∏

[ij ...kl]

[
ω

(
g−1

i gj , . . . ,g
−1
k gl

)]σij...kl
. (C1)

Summing over all the configurations {gi}, we obtain the
partition function

Z1 = 1

|G|Nv

∑
{gi }

e−S1({gi }), (C2)

where 1
|G|Nv

is a normalization factor, |G| is the size of the
group, and Nv is the number of vertices. One can easily check
that the action (C1) is invariant under the global symmetry

gi → ggi (C3)

for all g ∈ G. According to the arguments in Ref. [10], the
ground states of these models are gapped and short-range
entangled for any G and ω. Moreover, two cocycles that
differ by a coboundary define the same group cohomology
model. Thus, the group cohomology models are labeled by
equivalence classes of cocycles, i.e., by elements of the
cohomology group Hd+1[G,U (1)].

2. Dijkgraaf-Witten models

The basic data needed to construct a d + 1-dimensional
Dijkgraaf-Witten model with (finite) group G is the same
as that for a group cohomology model: (1) a d + 1-cocycle
ω together with (2) a triangulation of d + 1-dimensional
Euclidean space-time. Unlike the group cohomology SPT
models, the basic degrees of freedom in a Dijkgraaf-Witten
model are group elements hij ∈ G that live on the links
[ij ] of the triangulation. For every space-time configuration
{hij }, the corresponding action e−S2({hij }) is defined as follows.
First, one needs to determine if the configuration is flat, i.e.,
hijhjkhki = 1 for every 2-simplex [ijk]. If it is flat, we assign
a local weight [ω(hij , . . . ,hkl)]σij...kl to each d + 1-simplex
[ij . . . kl] (i < j < · · · < k < l) where σij...kl = ±1 is the
chirality of the simplex [ij . . . kl]. The action is then given
by

e−S2({hij }) =
∏

[ij ...kl]

[ω(hij , . . . ,hkl)]
σij...kl . (C4)

If the gauge configuration is not flat, then e−S2({{hij }) = 0.
Summing over all the configurations {hij }, we obtain the
partition function

Z2 = 1

|G|Nv

∑′

{hij }

∏
[ij ...kl]

[ω(hij , . . . ,hkl)]
σij...kl , (C5)

where 1
|G|Nv

is again a normalization factor, and
∑′ is a sum-

mation over flat gauge configurations. The partition function
Z2 describes the Dijkgraaf-Witten models. One can check that

165119-20



TOPOLOGICAL INVARIANTS FOR GAUGE THEORIES AND . . . PHYSICAL REVIEW B 91, 165119 (2015)

if two cocycles ω,ω′ differ by a coboundary, then they define
the same Dijkgraaf-Witten models. Thus, the Dijkgraaf-Witten
models are labeled by elements of Hd+1[G,U (1)], just like the
group cohomology models.

3. Connection between the two classes of models

We now show that the Dijkgraaf-Witten model with group
G and cocycle ω is equivalent to the group cohomology model
of the same group G and cocycle ω after the global symmetry
of the latter is gauged.

To gauge the symmetry in the group cohomology model,
we introduce lattice gauge fields hij ∈ G that live on the
links [ij ] of the triangulation. We then couple the matter
degrees of freedom {gi} and gauge degrees of freedom {hij } by
replacing each g−1

i gj in the action (C1) by g−1
i hij gj , following

the minimal coupling procedure. After this step, the action
becomes

e−S̃1({gi },{hij }) =
∏

[ij ...kl]

[
ω

(
g−1

i hij gj , . . . ,g
−1
k hklgl

)]σij...kl
.

(C6)

The next step is to choose a value for the gauge coupling con-
stant. Here, as in Appendix A, we choose the gauge coupling
constant to be 0. This means that we set e−S̃1({gi },{hij }) = 0 if the
gauge configuration is not flat. With this choice of coupling
constant, the gauged partition function acquires the form

Z̃1 = 1

|G|2Nv

∑
{gi }

∑′

{hij }

∏
[ij ...kl]

[
ω

(
g−1

i hij gj , . . . ,g
−1
k hklgl

)]σij...kl
,

(C7)

where the summation
∑′ is taken only over flat gauge

configurations, and where we have included a normalization
factor 1

|G|Nv
. By construction, the partition function Z̃1 has a

local gauge symmetry

gi → αigi, hij → αihijα
−1
j (C8)

for all αi ∈ G and all i,j.

To see the connection between the gauged group cohomol-
ogy models Z̃1 and the Dijkgraaf-Witten models Z2, we fix
the gauge in Z̃1. The gauge that we choose is

gi = 1 for all i. (C9)

In this gauge, the partition function Z̃1 becomes

Z̃1 = 1

|G|Nv

∑′

{hij }

∏
[ij ...kl]

[ω(hij , . . . ,hkl)]
σij...kl , (C10)

where the numerical factor |G|Nv comes from performing the
sum over {gi}. We can see that Z̃1 is identical to Z2, proving
that the gauged group cohomology model with group G and
cocycle ω is equivalent to the Dijkgraaf-Witten model with the
same G and ω.

APPENDIX D: PROPERTIES OF FUSION RULES IN
ABELIAN DISCRETE GAUGE THEORIES

In this Appendix, we derive some properties of the fusion
rules of excitations in 2D gauge theories with group G =∏

i ZNi
.

The first property is that any excitation γ that appears in the
fusion product α × β = ∑

γ N
γ

αβγ must obey φγ = φα + φβ .
This property is clear from the following thought experiment.
Imagine braiding an arbitrary charge q around α and β. One
can braid q around α and β sequentially, which gives a phase
q · (φα + φβ). Or, one can first fuse α and β into some γ ,
then braid q around γ , leading to a phase q · φγ . Clearly, the
two processes should give the same phase, so q · (φα + φβ) =
q · φγ . Since q is arbitrary, we have φα + φβ = φγ .

Another property of the fusion rules is that when an
excitation α is fused with a charge q, there is exactly one
fusion outcome:

q × α = α′, (D1)

where α′ might be the same as α. To prove this property,
we imagine four excitations α,ᾱ and q,q̄, where ᾱ denotes
the antiparticle of α and we suppose that the overall fusion
channel for the four excitations is the vacuum. We now count
the degeneracy of this four-excitation space in two different
ways. First, we note that q,q̄ are Abelian particles, so they
must fuse to the vacuum, which in turn forces α,ᾱ to fuse to
the vacuum. So, the four-excitation space is nondegenerate.
On the other hand, we can also fuse the particles in a different
order: we first fuse q with α and fuse q̄ with ᾱ, then fuse the
resulting particles. If we fuse the particles in this way, we can
see that the degeneracy is given by the number of different
fusion outcomes in q × α. We conclude that there is a unique
fusion outcome in q × α. Therefore, (D1) holds.

The third property is that an excitation α and its antiparticle
ᾱ can only fuse to charges, i.e.,

α × ᾱ = ∅ + q1 + q2 + · · · , (D2)

where ∅ denotes the vacuum. Moreover, the coefficient of each
qi appearing in the fusion rule is 1. The first statement is easy to
prove: all particles on the right side must be charges since φα +
φᾱ = 0. To prove that the coefficient associated with each qi is
1, we use the fact that N

γ

αβ = N
β̄
αγ̄ from the general algebraic

theory of anyons [34]. From this fact, we derive N
qi

αᾱ = Nα
αq̄i

=
0,1, where the last equality follows from property (D1). As a
corollary, we see that the charges qi appearing in Eq. (D2) are
exactly those that follow the fusion rule α × qi = α.

With the above properties, we now prove two claims. The
first claim states that for any two excitations α,α′ with φα′ =
φα , there exists at least one charge q with α′ = α × q. The
second claim is more complicated. To explain it, consider two
excitations α,β in a fusion channel γ , and two other excitations
α′,β ′ in a fusion channel γ ′. The claim states if φα′ = φα

and φβ ′ = φβ then there exist charges q1 and q2 such that
α′ = α × q1, β ′ = β × q2, and γ ′ = γ × q1 × q2.

To prove the first claim, consider an arbitrary excitation α′
with φα′ = φα . Imagine fusing together α,ᾱ,α′. We can do the
fusion in two different orders

(α × ᾱ) × α′ = (∅ + q1 + · · · ) × α′ (D3)
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and

α × (ᾱ × α′) = α × (q ′
1 + q ′

2 + · · · ), (D4)

where the “. . . ” means some charges. Since the order of fusion
cannot affect the final result, we conclude that α′ = α × q ′

i ,
where q ′

i is one of the charges in Eq. (D4). Hence, the claim
holds.

To prove the second claim, let α,β,α′,β ′ be any excitations
with φα′ = φα and φβ ′ = φβ . Let γ be one of the fusion
channels of α,β and let γ ′ be one of the fusion channels of
α′,β ′. Our task is to show that, given any state in Vγ

αβ , we can

construct at least one state in Vγ ′
α′β ′ by fusing charges onto α

and β. To show this, we note that γ ′ = γ × q for some charge
q, by the first claim, proven above. Let us consider the fusion
product (α′ × β ′) × (ᾱ × β̄) × q̄. The vacuum fusion channel
must appear at least once in this fusion product since

(α′ × β ′) × (ᾱ × β̄) × q̄ = (γ ′ + · · · ) × (γ̄ + · · · ) × q̄

(D5)

and γ ′ × γ̄ × q̄ contains the vacuum. We can now reorder the
fusion product as

(α′ × ᾱ) × (β ′ × β̄) × q̄. (D6)

This reordering should not change the result so the vacuum
must also appear in this product. We conclude q can be
written as a product q = q1 × q2 where q1 appears in the
fusion product of α′ × ᾱ and q2 belongs to the fusion
product of β ′ × β̄. Clearly, q1 and q2 satisfy q1 × α = α′ and
q2 × β = β ′. Also, we know that q1 × q2 × γ = q × γ = γ ′.
This proves the claim.

APPENDIX E: A PROPERTY OF Rβ
αα

In this Appendix, we show that when an excitation is
braided around another identical excitation in a 2D gauge
theory with group G = ∏K

i=1 ZNi
, the resulting unitary trans-

formation is a pure phase, i.e., proportional to the identity
matrix. Note that this result only holds for a full braiding:
the unitary transformation associated with an exchange of two
identical excitations need not be a pure phase.

Consider an arbitrary excitation α in a 2D gauge theory
with group G = ∏K

i=1 ZNi
. In the first step, we show that the

unitary transformation associated with braiding α around its
antiparticle ᾱ is a pure phase. To see this, note that according
to Appendix D, the only fusion outcomes for α and ᾱ are
charges: α × ᾱ = ∅ + q + · · · . For any q that appears in this
fusion rule, we can use the formula (9) to derive

R
q
ᾱαR

q
αᾱ = ei2π(sq−sα−sᾱ ) = e−i4πsα , (E1)

where we have used the facts dim(Vq
αᾱ) = 1, sq = 0, and sα =

sᾱ . Examining the above identity, we can see that the statistical
phase associated with braiding α around ᾱ is independent of
the fusion channel q. Hence, braiding α around ᾱ gives a pure
phase.

Next, we show that all the charges q that appear in the
fusion product α × ᾱ have vanishing braiding statistics with
α, i.e., θαq = 0. To see this, imagine we have two excitations
α and ᾱ in the vacuum fusion channel. If we now fuse q to
ᾱ, the excitation ᾱ will remain unchanged (i.e., q × ᾱ = ᾱ)

but after this fusion process, the two excitations α and ᾱ will
be in the fusion channel q. Let us imagine braiding α around
ᾱ before and after fusing q into ᾱ. Clearly, the two processes
will differ by a phase factor eiθαq . Hence,

R
q
ᾱαR

q
αᾱ = R∅

ᾱαR∅
αᾱeiθαq . (E2)

Then, since R
q
ᾱαR

q
αᾱ is independent of q, we derive θαq = 0.

To complete the argument, we consider a process in which
α is braided around a pair of α and ᾱ excitations. Independent
of the fusion channel of the α and ᾱ excitations, the unitary
transformation associated with this process must be the identity
since θαq = 0. At the same time, this braiding process can be
divided into two pieces: first α is braided around ᾱ, and then
around another α. Since the first piece is a pure phase e−i4πsα ,
the second must also be a pure phase. This proves the claim.
In addition, we have derived the formula

Rβ
ααRβ

αα = ei4πsα , (E3)

where β is any excitation in the fusion product α × α.

APPENDIX F: PROVING �i j k IS WELL DEFINED

In this Appendix, we prove that �ijk is a well-defined
quantity. More specifically, we show that (i) the unitary
transformation associated with the braiding process defining
�ijk is always an Abelian phase even if the vortices are
non-Abelian; we also show that (ii) the Abelian phase is a
function of i,j,k only and does not depend on the choice of
vortices α,β,γ as long as they carry fluxes 2π

Ni
ei,

2π
Nj

ej ,
2π
Nk

ek ,
respectively.

To prove points (i) and (ii), we make use of a diagrammatic
technique to compute the unitary matrix associated with
the braiding process in the definition of �ijk (for more
details about this diagrammatic technique, see Ref. [34].) The
technique uses space-time trajectories, where the arrow of
time is drawn upward. We will not use the technique to carry
out an actual calculation but only to show that the unitary
transformation associated with �ijk is a pure phase. We will
make use of two diagrammatic relations in our proof. The first
relation is

= uα

α

α

ᾱ

α

α

(F1)

This relation allows us to turn downward a trajectory of α

by introducing its antiparticle ᾱ, with a compensation of a
complex factor uα . The factor uα is related to the quantum
dimension dα by dα = |uα|−1. The second relation is

=
γ,n

α β

α β

α β

α β

γ
n

n

(F2)

which means that the propagation of two particles α,β can
be decomposed into a sum over their possible fusion channels,
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FIG. 8. Diagrammatic proof that the unitary matrix associated with the braiding process in the definition of �ijk is an Abelian phase.

where γ ranges over the fusion channels in α × β = ∑
γ N

γ

αβγ

and n ranges over 1, . . . ,N
γ

αβ . The vertices

γ

α β

n

γ

α β

n

mean the nth way of splitting and fusing α,β into γ ,
respectively.

Now, let α,β,γ be vortices carrying unit flux
2π
Ni

ei,
2π
Nj

ej ,
2π
Nk

ek , respectively. Consider the space-time trajec-
tories of α,β,γ associated with the braiding process in the
definition of �ijk (Fig. 8). Making using of the relation (F1),
we establish the first equation in Fig. 8. The second equation
is established by using the relation (F2) in the two shaded
regions in the second diagram in Fig. 8. The charges q,q̃

are those appearing in the fusion rule of α × ᾱ. We have
used the fact that N

q
αᾱ = 1 for any q, which is proven in

Appendix D. To establish the third equation, we notice that
q,q̃ have Abelian statistics with the vortices β,γ . Winding
q around γ in the counterclockwise direction gives rise to
a phase eiq·φγ , and winding q̃ around β in the clockwise
direction gives rise to a phase e−iq̃·φβ . In the fourth diagram
in Fig. 8, we see that β and γ are decoupled from α, while
α still has some “self-interaction.” However complicated this
“self-interaction” is, it only depends on α,q,q̃, but not on β,γ .
Therefore, we can denote everything as a complex number
Cα,φβ ,φγ

, after the summation over q,q̃ has been performed.
We see that Cα,φβ ,φγ

only depends on the flux of β,γ , but
not on the choice of β,γ , nor on their fusion channel. Since
the overall transformation must be unitary, Cα,φβ ,φγ

is a pure
phase.

To complete the argument, we have to show that the factor
Cα,φβ ,φγ

= ei�ijk only depends on the flux of α but not on the
choice of α. This can be proven by fusing charges to α. Let
the outcome of the fusion be a vortex α′. According to the
Aharanov-Bohm law, one can easily see that

Cα′,φβ ,φγ
= Cα,φβ ,φγ

eiq·φβ+iq·φγ −iq·φβ−iq·φγ

= Cα,φβ ,φγ
. (F3)

With this, we have shown that �ijk only depends on the flux
of α,β,γ , i.e., it only depends on i,j,k. Hence, �ijk is well
defined.

APPENDIX G: CORRESPONDENCE BETWEEN LABELS
(a,ρ) AND PHYSICAL NOTIONS OF GAUGE FLUX AND

GAUGE CHARGE

In this Appendix, we show how to translate between the
mathematical labels α = (a,ρ), used to denote excitations in
2D Dijkgraaf-Witten models, and the physical notions of gauge
flux and gauge charge. As discussed in the main text, the basic
outline of correspondence is simple: the first component a

describes the amount of flux carried by the excitation α, while
the second component ρ is related to the amount of charge
attached to α. We now explain how this works in more detail.

For each group element a = (a1, . . . ,aK ), the correspond-
ing gauge flux is given by φ = (φ1, . . . ,φK ) where φi = 2π

Ni
ai .

Likewise, for each representation ρ we should define a corre-
sponding gauge charge q = (q1, . . . ,qK ). This correspondence
is easy to define for the case where α is a pure charge excitation:
α = (0,ρ). Indeed in this case, Eq. (22) implies that ρ is a
linear representation of G, provided that we choose a “gauge”
[53] such that ω(a,b,c) = 1 if any of a,b,c is 0. It follows
that ρ can be written in the form ρ(h) = exp(

∑
k

2πi
Nk

qkhk)
for some integer vector (q1, . . . ,qK ). This defines the desired
correspondence ρ ↔ q = (q1, . . . ,qK ).

How does the correspondence work for vortex excitations
α = (a,ρ) where a �= 0? In this case, ρ is a projective
representation, so there is no natural way to translate ρ into an
integer vector (q1, . . . ,qK ). This is related to the general point
made in Sec. III A1: we do not know a physically meaningful
way to define the absolute charge carried by a vortex excitation.
On the other hand, if we compare two vortex excitations with
the same flux, α = (a,ρ) and α′ = (a,ρ ′), and we find that
ρ,ρ ′ are related by ρ ′(h) = ρ(h) exp(

∑
k

2πi
Nk

qkhk) for some
(q1, . . . ,qk), then we can say that α′ can be obtained from α

by attaching charge q = (q1, . . . ,qK ).

APPENDIX H: SHOWING THAT ALL SOLUTIONS TO THE
CONSTRAINTS (63) CAN BE WRITTEN IN THE FORMS

(49a) AND (49b)

In this section, we show that if �i,l and �ij,l obey the
constraints (63a)–(63g), then they can be written in the forms
(49a) and (49b), i.e.,

�i,l = 2π

Nil

(Mili − Mlii),

�ij,l = 2πNij

NilNj

(Milj − Mlij ) + 2πNij

NjlNi

(Mjli − Mlji) (H1)
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for some integer tensor Mijk . The first step is to rewrite the
second equation as

�ij,l = 2πNijl

NjlNijl

(Milj − Mlij ) + 2πNijl

NilNijl

(Mjli − Mlji). (H2)

This new form of the second equation can be derived from the
relations

Nij

NilNj

= Nijl

NjlNijl

,
Nij

NjlNi

= Nijl

NilNijl

, (H3)

which in turn follow from the identities

Nij = NiNj

Nij

, Nijl = NijNilNjlNijl

NiNjNl

. (H4)

We now construct the integer tensor Mijk . First, we set
Miii = 0 for all i, and we set

Mlii = Miil = 0, Mili = Nil

2π
�i,l (H5)

for all i �= l. Next, for each i < j < l, we define

Milj = −b
Nijl

2π
�ijl,

Mjil = Nijl

2π
(a�jli + b�lij ),

Mlji = −a
Nijl

2π
�ijl,

Mlij = 0, Mjli = 0, Mijl = 0, (H6)

where a and b are integers such that

a
Nijl

Nil
− b

Nijl

Njl
= 1. (H7)

(The existence of a,b will be established in the following.)
If one substitutes the tensor Mijk into (H1) and (H2), it
is straightforward to check that the resulting expressions
exactly reproduce the invariants �i,l and �ij,l as long as these
invariants obey the constraints (63).

At this point, we have successfully constructed a tensor
Mijk that satisfies equations (H1) and (H2). However, there
are two gaps in our derivation that need to be addressed. First,
we have to show that the components of Mijk are all integers.
Second, we have to show that we can always find integers a,b

satisfying (H7). The fact that the components of Mijk are all
integers is easy to prove, as it follows immediately from the
two constraints (63d) and (63c). As for the second statement,
this will follow if we can show that Nijl/Nil and Nijl/Njl

are relatively prime. The latter property can be derived from
a simple observation: we note that the only prime factors
appearing in Nijl/Nil are those that divide into j more times
than either i or l. Similarly, the only prime factors appearing
in Nijl/Njl are those that divide into i more times than j or l.
We conclude that these two numbers do not share any prime
factors so they are relatively prime.

APPENDIX I: COUNTING THE NUMBER OF VALUES
OF �i,l,�i j,l,�i j k,l

In this section, we consider the formulas (49a)–(49c),
reprinted below for convenience:

�i,l = 2π

Nil

(Mili − Mlii), (I1a)

�ij,l = 2πNijl

NjlNijl

(Milj − Mlij ) + 2πNijl

NilNijl

(Mjli − Mlji),

(I1b)

�ijk,l = 2π

Nijkl

∑
p̂

sgn(p̂)Lp̂(i)p̂(j )p̂(k)p̂(l). (I1c)

What we will show is that invariants �i,l,�ij,l,�ijk,l take
on at least ∏

i<j

(
Nij

)2 ∏
i<j<l

(
Nijl

)2 ∏
i<j<k<l

Nijkl (I2)

different values when Mijk ranges over all integer tensors, and
Lijkl ranges over all integer tensors obeying Lijkl = 0 if i,j,k

are not all distinct. [The reader may notice that the second
equation (I1b) differs slightly from Eq. (49b) in the main text.
The equivalence between these two equations follows from
simple identities and is explained in Appendix H.]

To perform our counting, we consider separately each of
the components of �i,l,�ij,l . First, we consider the invariant
�i,l for i �= l. From Eq. (I1a) we can see that �i,l can take on
Nil different values as we vary Mili,Mlii . We can also see that
the different �i,l invariants with i �= l are independent of one
another. Hence, all together the �i,l invariants can take on at
least

N1 =
∏
i �=l

Nil =
∏
i<l

(Nil)
2 (I3)

different values. Next, we fix i < j < l and consider the three
invariants �ij,l,�jl,i ,�lij . We will show that these invariants
can take on at least (Nijl)2 different values. To see this, we set

Milj = −bx, Mlji = −ax, Mjil = y,

Mlij = 0, Mjli = 0, Mijl = 0, (I4)

where x,y are arbitrary integers and a and b are chosen so that

a
Nijl

Nil
− b

Nijl

Njl
= 1.

(One can always find such a,b since Nijl

Nil and Nijl

Njl are relatively
prime, as explained at the end of Appendix H.) Substituting
these expressions for M into (I1b), it is straightforward to
derive the following two formulas:

�ij,l = 2πx/Nij,l,

a�jl,i + b�li,j = 2πy/Nijl . (I5)

From these formulas it is clear that �ij,l,�jl,i ,�li,j take on
different values for each x,y with 0 � x,y � Nijl − 1. Hence,
�ij,l,�jl,i ,�li,j can take on at least N2

ij l different values, as
claimed above. It is also clear that the values for different i,j,l
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are independent of one another. Hence, all together the �ij,l

invariants can take on at least

N2 =
∏

i<j<l

(Nijl)
2 (I6)

different values. Finally, we consider the invariants �ijk,l for
i < j < k < l. From Eq. (I1c), it is clear that �ijk,l can take
on Nijkl different values as we vary Lijkl . Hence, all together,

the number of distinct values of {�ijk,l} is at least

N3 =
∏

i<j<k<l

Nijkl . (I7)

Combining all the cases, we conclude that the total number
of values that the invariants can take on is at least N1N2N3,
which is what we wanted to show. (In fact, with more careful
accounting, one can show that this inequality is actually an
equality, but we will not need this sharper result here.)
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