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Valence fluctuations and electric reconstruction in the extended Anderson model on the
two-dimensional Penrose lattice
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We study the extended Anderson model on the two-dimensional Penrose lattice, combining the real-space
dynamical mean-field theory with the noncrossing approximation. It is found that the Coulomb repulsion between
localized and conduction electrons does not induce a valence transition, but the crossover between the Kondo
and mixed valence states is in contrast to the conventional periodic system. In the mixed-valence region close
to the crossover, nontrivial valence distributions appear, characteristic of the Penrose lattice, demonstrating that
the mixed-valence state coexists with local Kondo states in certain sites. The electric reconstruction in the mixed
valence region is also addressed.
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I. INTRODUCTION

Quasicrystals have been receiving a lot of attention since
their discovery [1]. Some interesting examples are the rare-
earth compounds Au-Al-Yb synthesized recently [2]. In the
alloys, there are the quasicrystal Au51Al34Yb15 and the approx-
imant Au51Al35Yb14, where the Yb icosahedra are arranged in
quasiperiodic and periodic structures, respectively. The former
quasicrystal shows non-Fermi liquid behavior with a nontrivial
exponent in the specific heat and susceptibility, while the latter
shows heavy fermion behavior [3,4]. This fact gives us a stage
to study the role of the quasiperiodic structure in strongly
correlated electron systems [5–7]. It has also been reported that
the valence of ytterbium in these compounds is intermediate,
which indicates hybridizations between the 4f and the
conduction electrons [3]. This naturally raises a fundamental
question of how heavy fermion behavior is realized in strongly
correlated electron systems on the quasiperiodic lattice. An
important point is that each lattice site in the quasiperiodic
system is not equivalent, which is in contrast to the conven-
tional periodic system. Therefore, it is highly desired to clarify
how the local geometry affects valence fluctuations and the
Kondo state is realized by treating the quasiperiodic structure
correctly.

In this paper, we study valence fluctuations in the extended
version of the Anderson lattice model (EALM) [8] which
includes the Coulomb interaction between the conduction
and f electrons. We consider here the two-dimensional
Penrose lattice (see Fig. 1) as a simple quasiperiodic lat-
tice. To take into account local electron correlations in
the quasiperiodic lattice, we apply the real-space dynami-
cal mean-field theory (RDMFT) [9–12] to the model. We
then study how valence fluctuations are affected by the
quasiperiodic structure at finite temperatures, comparing with
the results of the EALM with the periodic lattice. The
electric reconstruction in the mixed valence region is also
addressed.

The paper is organized as follows. In Sec. II, we introduce
the EALM and briefly summarize our theoretical approach. In
Sec. III, we study how valence fluctuations are enhanced in
the system on the Penrose lattice. A brief summary is given
in the last section.

II. MODEL AND METHOD

We study valence fluctuations in the EALM [8], which
should be described by the Hamiltonian

Ĥ = −t
∑
〈i,j〉σ

(c†i cj + H.c.) − V
∑
iσ

(f †
iσ ciσ + H.c.)

+ εf

∑
iσ

n
f

iσ + Uf

∑
i

n
f

i↑n
f

i↓ + Ucf

∑
iσσ ′

nc
iσ n

f

iσ ′ , (1)

where 〈i,j 〉 denotes the summation over the nearest neighbor
sites, ciσ (fiσ ) is an annihilation operator of a conducting
electron (an f electron) with spin σ (=↑ , ↓) on the ith
site, nc

iσ = c
†
iσ ciσ , and n

f

iσ = f
†
iσ fiσ . Here, t is the hopping

amplitude, V is the hybridization between the conduction and
f states, and εf is the energy level of the f state. Uf (Ucf ) is
the Coulomb interaction in the f level (between the conduction
electrons and f electrons).

The model with Ucf = 0 has been studied by means of
DMFT [9–12], where the competition between various phases
has been discussed [13–15]. In the case of εf � 0 � εf + Uf ,
there should be one electron in the f level, and the Kondo
state is realized at low temperatures. When the total number
of electrons is close to half filling, the heavy-metallic Kondo
state is realized with 〈nf 〉 ∼ 1. In the case of εf ∼ 0, the
number of f electrons is intermediate (〈nf 〉 < 1) and the
mixed-valence state is realized. It is known that the crossover
between the Kondo and mixed valence states appears by
varying εf . The introduction of the interaction Ucf enhances
valence fluctuations and leads to stabilization of the mixed
valence state [14]. At a certain critical point, the valence
susceptibility diverges and the second-order phase transition
occurs between these two states [16]. Beyond the critical
point, the valence transition is, in general, of first order, and
a jump singularity appears in the number of f electrons nf .
This transition has been discussed in the EALM on simple
lattices such as one-dimensional chain [16], hypercubic [17],
and Bethe lattices [18].

Valence fluctuations in the quasiperiodic lattice, which
should be important in the compound Au51Al34Yb15, have
not been discussed so far. To clarify this, we consider here
the EALM on the two-dimensional Penrose lattice. In the
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FIG. 1. (Color online) Penrose lattice with N = 4181.

lattice, a site is placed on each vertex of the rhombuses, as
shown in Fig. 1. Since this lattice does not have a translational
symmetry, lattice sites are distinct from each other. We note
that the coordination number Z ranges from 3 to 7, except for
edge sites. In an infinite system (N → ∞), the average and its
standard deviation are Z̄ = 4 and σ = √

10τ−2 ∼ 1.208 [19].
In the paper, we treat the Penrose lattice with fivefold
rotational symmetry, which is iteratively generated in terms
of the inflation-deflation rule [20]. In the noninteracting case
Uf = Ucf = 0, the Hamiltonian is numerically diagonalized.
The densities of states (DOS) for the f and conduction
electrons are shown in Figs. 2(a) and 2(b), respectively. A
tiny hybridization gap appears around ω = 0 and sharp peaks
in the DOS for the f electrons appear at the edges of the
gap. In contrast, DOS of the conduction electrons are widely
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FIG. 2. (Color online) DOS for the f electrons (a) and con-
duction electrons (b) in the noninteracting system with εf = 0 and
V/t = 0.5. Panel (c) represents the corresponding integrated DOS.

distributed, where the bandwidth W ∼ 8.6t . These are similar
to those for the conventional periodic Anderson model. We
also find macroscopically degenerate states at ω = ±V . These
states are regarded as the bonding and antibonding states
for the confined states discussed in the tight binding model
on the Penrose lattice [21,22]. These confined states may
have little effects on low temperature properties in our model
when we focus on the EALM with a fixed n = 1.9, where
n = ∑

iσ (nc
iσ + n

f

iσ )/N .
To discuss low temperature properties in the EALM on

the Penrose lattice, we make use of the RDMFT [11] which
takes local electron correlations into account. This treatment
is formally exact for the homogeneous lattice in infinite
dimensions, and enables us to obtain reliable results if spatially
extended correlations are negligible. In fact, the method
has successfully been applied to correlated systems such
as surface [23], interface [24], superlattice [25], ultracold
atoms [26], and topological insulating systems [27].

In the RDMFT method, the self-energy should be site
diagonal as [�]ijσ = �iσ δij , where δij is a Kronecker’s delta
function. The lattice Green function is then given by

G−1
σ = G−1

0σ − �σ ,
(2)[

G−1
0σ

]
ij

=
[

(iωn + μ)1 −
(

0 V

V εf

)]
δij −

(
tij 0
0 0

)
,

where 1 is the identity matrix, ωn = (2n + 1)πT is the
Matsubara frequency, μ is the chemical potential, and T is the
temperature. The lattice model is mapped to effective impurity
models dynamically connected to each heat bath. The effective
imaginary-time action for the ith site is given as

S
(i)
eff = −

∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

ψ
†
iσ (τ )G(i)

0σ (τ − τ ′)−1ψ iσ (τ ′)

+
∫ β

0
dτ

(
Uf n

f

i↑(τ )nf

i↓(τ ) + Ucf

∑
σ,σ ′

nc
iσ (τ )nf

iσ ′(τ )

)
,

(3)

where ψ
†
iσ = (c†iσ f

†
iσ ) are Grassmann variables and G(i)

0 (τ )
is the Weiss effective field imposed on the self-consistency
condition. The Weiss mean -field is obtained from the Dyson
equation of the effective model,

G(i)
0σ (iωn)−1 = [Gσ (iωn)]−1

ii + �iσ . (4)

When the RDMFT is applied to the EALM on the Penrose
lattice, one solves the effective impurity models N times by
iteration. Here, we use the noncrossing approximation [28–33]
as an impurity solver. Since simple diagrams are involved, the
method may not be appropriate to discuss electron correlations
at very low temperatures. Nevertheless, it has an advantage
in treating strong correlations at finite temperatures less
expensively than the other numerical techniques such as
the continuous-time quantum Monte Carlo method [34] and
numerical renormalization group [35]. This allows us to treat
large clusters with N ∼ 103 in the framework of the RDMFT
to discuss the role of the quasiperiodic structure in strongly
correlated electron systems.

To discuss how the valences are affected by electron
correlations in the Penrose lattice, we calculate the number
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of f electrons n
f

iσ at the ith site. The valence susceptibility is
defined by

χv = −dnf

dεf

, (5)

where nf = ∑
iσ n

f

iσ /N . In this paper, it is deduced in terms
of the numerical derivative of the valence. In the following,
we fix Uf /t = 80.0 and V/t = 0.5, and the total number of
particles as n ∼ 1.9. We set t = 1 as the unit of energy.

III. RESULTS

In the section, we discuss how valence fluctuations develop
in correlated quasiperiodic systems. By performing RDMFT
with the noncrossing approximation, we obtain results for
the system with Ucf /t = 0,16 and 36 at the temperature
T/t = 0.2. We show in Fig. 3 the distribution of the number
of f electrons and valence susceptibility. When Ucf = 0, the
system is reduced to the Anderson lattice model. In the case
of εf /t < −3, the Kondo state is realized with nf ∼ 1.0.
As εf approaches 0, nf decreases and the mixed valence
state is realized. Since no singularity appears in the curve,
the crossover occurs between the Kondo and mixed-valence
states. This is roughly determined by the maximum of the
valence susceptibility. It is also found that the valence can be
represented by a single curve although lattice sites are distinct
from each other. This implies that in the case Ucf /t = 0, the
quasiperiodic structure has little effect on low-temperature
properties, at least in the case with Uf /t = 80.0,V/t = 0.5
and T/t = 0.2.

The introduction of the interaction Ucf leads to the
enhancement of valence fluctuations in the system. In fact,
the peak in the valence susceptibility becomes sharper when
Ucf increases, as shown in Fig. 3. Nevertheless, we could
not find divergence of the valence susceptibility even when
the interaction is rather large (Ucf /t = 36). The above results
are in contrast to that of the EALM on the periodic lattice,
where valence fluctuations are enhanced around εf ∼ −Ucf

and the valence transition is, at last, induced. This discrepancy
should originate from the geometry of the lattice. Namely, in
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FIG. 3. (Color online) Distribution of the number of f electrons
(a) and valence susceptibility (b) as functions of the energy of the f

level in the system with N = 1591 at temperature T/t = 0.2 when
Ucf /t = 0, 16, and 36.

FIG. 4. (Color online) Density plot of the standard deviation for
the valence nf in the system with T/t = 0.2 and N = 1591. The
dashed line represents the crossover between the Kondo and mixed
valence regions.

the conventional periodic model, all lattice sites are equivalent.
Therefore, the valence is suddenly changed at a certain point,
where the first-order phase transition occurs between the
Kondo and the mixed valence states. By contrast, in the
Penrose lattice, each site is not equivalent, as shown in Fig. 1.
In our model, the bare onsite interactions Uf and Ucf are
uniform, but the coordination number Z depends on the site.
Furthermore, the site geometry beyond the nearest neighbor
sites is rather complex. Roughly speaking, local interactions
are effectively modified, depending on the geometry around a
certain site. This yields the site-dependent renormalization.
Figure 3(a) shows the clear valence distribution in the
crossover and mixed-valence regions. Therefore, we can say
that the distribution of the effective interaction suppresses
valence fluctuations and the crossover, instead, occurs between
the Kondo and mixed valence states.

By performing similar calculations, we determine the
crossover line, where the valence susceptibility χv has a
maximum. Figure 4 shows the phase diagram for the system
with Uf /t = 80 at temperature T/t = 0.2. When εf and Ucf

are small, the Kondo metallic state is realized with nf ∼ 1.
On the other hand, the mixed valence state is realized in
the large Ucf region. Furthermore, we calculate the standard
deviation of the valence to discuss site-dependent properties
more clearly. The results are shown as the density plot in Fig. 4.
In the Kondo regime, the valence is almost unity at each site,
and thereby this quantity is negligible. On the other hand, in
the mixed-valence regime (nf �= 1), the value is finite and
has the maximum around (εf /t,Ucf /t) ∼ (−4,8), as shown in
Fig. 4.

To discuss how site-dependent properties emerge at finite
temperatures, we show in Fig. 5(a) the temperature dependence
of the valence in the system with εf /t = −5 and Ucf /t = 10.
At high temperatures T/t > 4, the system must be governed
by the larger energy scales Uf , Ucf , and εf . In this case,
the valence depends little on the local geometry and a single
peak appears in the cross section of the valence distribution,
as shown in Fig. 5(b). Decreasing temperature (T/t = 1), the
single peak is split into five peaks, as shown in Fig. 5(c). This
suggests that local geometry around a certain site affects low
temperature properties, as discussed above. To proceed with
further analysis at lower temperatures, we employ de Bruijn’s
notation to classify the sites in the Penrose lattice [36]; eight
kinds of vertices are denoted by D, J , Q, K , S3, S4, S,
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FIG. 5. (Color online) (a) The number of f electrons as a function of the temperature T/t when εf /t = −5, Ucf /t = 10, and N = 4181.
(b) and (c) show the cross sections of the valence distribution at T/t = 10 and 1. (d) and (e) show the cross sections at low temperatures with
Z = 5 and Z = 4, respectively.

and S5, as shown in Fig. 6(a). Examining peak structures
at T/t = 1 carefully, we find that the numbers of f electrons
nf ∼ 0.22, 0.19, 0.17, 0.15, and 0.14 correspond to the vertices
S3, S4, {J,S,S5}, K , and {D,Q}, respectively. This means that
at this temperature, the valence distribution depends on the
coordination number rather than the vertex. Further decreasing
temperature, many peaks appear in the valence distribution,
and the vertex type becomes important. We find in Fig. 5(a)
that the valences for the sites with Z = 4 and 5 are divided into
some classes at lower temperatures. As for the sites with Z =
5, six kinds of peaks appear in the cross section of the valence
distribution at T/t = 0.33, as shown in Fig. 5(d). We find
that these peaks originate from the local geometry of the six
vertices, as shown in Fig. 6(b). Further decrease in temperature
increases the valence for the vertices J -S5 and S-D, while it

(a)

(b) (c)

FIG. 6. (Color online) (a) Classification of vertices in the Penrose
lattice. The number represents the coordination number for each
vertex. Detailed classification of vertices with Z = 5 (b) and
Z = 4 (c).

decreases for the vertices S5-J and J -S3. Therefore, we can
say that low temperature properties in the quasiperiodic system
strongly depend on the local geometry. It is also found that each
peak is divided into some small peaks at lower temperatures.
This means that the longer range electron correlations become
more important. Similar behavior appears for the sites with
Z = 4. Namely, three kinds of peaks in the cross section appear
at lower temperatures, as shown in Fig. 5(e). These originate
from three kinds of vertices, as shown in Fig. 6(c). Since a
difference appears in the configuration of the next-nearest-
neighbor sites in three vertices, the small splitting appears
even at lower temperatures, as shown in Fig. 5(e).

To confirm that all vertices shown in Fig. 6 contribute the
corresponding peaks, we independently count the number of
vertices with Z = 5 [19] and Z = 4 in the Penrose lattice
with N → ∞, as shown in Tables I and II. The obtained
probabilities are shown as the open circles in Figs. 5(d)
and 5(e). We find that these are consistent with the numerical
results for the finite system N = 4181. This implies that the
site-dependent renormalization characteristic of the Penrose
lattice indeed occurs.

We would like to comment on the distribution of the
valence. Figure 5(a) shows that the valences for the S3 and
S4 vertices rapidly increase, while for the D and Q vertices
they monotonically decrease with decreasing temperature. We
note that the valence for the S3 vertices becomes much larger
than the others and approaches unity, suggesting the formation
of the local Kondo state. Therefore, we can say that at low
temperatures the mixed-valence sites with n

f

i < 1 coexist
with the local Kondo sites with n

f

i ∼ 1. To clarify how the
above site-dependent properties affect the diffraction pattern,

TABLE I. The probabilities p of vertices with Z = 5.

Vertex S-D S5-J J -S3 J -S4-α J -S4-β J -S5
p 1/

√
5τ 5 1/

√
5τ 7 1/τ 6 2/τ 7 1/τ 7

√
5/τ 7
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TABLE II. The probabilities p of vertices with Z = 4.

Vertex S3-K-S3 S3-K-S4 S4-K-S4
p 2/τ 8 2/τ 9 1/τ 8

we calculate the quantity Ik = |nf

k |2, where

n
f

k = 1

N

∑
i

n
f

i eik·ri . (6)

The results for the system with Ucf /t = 10 at T/t = 0.2 and
1.0 are shown in Fig. 7.

When T/t = 1.0, the valence distribution is almost uniform
and thereby Ik is reflected by the Penrose lattice. On the
other hand, at the low temperature T/t = 0.2, an electric
reconstruction is realized, where a rather large valence appears
in the S3 vertices, as discussed above. This yields additional
peak structures in Ik , as shown in Fig. 7. Although this
obtained pattern is characteristic of our model, the electric
reconstruction originating from electron correlations and local
geometry is common in quasiperiodic systems. Therefore,
we believe that such valence crossover should be ob-
served experimentally in quasicrystals with strongly correlated
electrons.

In the paper, we have studied the EALM on the two-
dimensional Penrose lattice. Since the intersite self-energy is
neglected in the RDMFT method, spatial correlations could
not be taken into account correctly. However, in the EALM,
valence fluctuations are mainly affected by onsite correlations
rather than intersite correlations [16,17]. Therefore, we believe
that qualitative behavior in the EALM on the Penrose lattice is
well described in our treatment. It has then been clarified that
the valence transition does not occur, but the crossover occurs
with electric reconstructions. Since we neglect various specific
features for the compound Au51Al34Yb15 such as the Tsai-type
clusters and three-dimensional quasiperiodic structure, we
could not explain the nature of the quantum critical behavior.
It is an interesting problem to clarify which effect stabilizes
quantum critical phenomena in the quasicrystal and to clarify
how the presence or absence of the periodic structure for
Tsai-type clusters affects low-temperature properties, which
is now under consideration.

FIG. 7. (Color online) Profiles of the quantity log10 Ik in the
system (N = 4181) with εf /t = −5 and Ucf /t = 10 when T/t =
0.2 (left panel) and T/t = 1.0 (right panel).

IV. CONCLUSIONS

We have studied the extended Anderson lattice model
to discuss how valence fluctuations are affected in strongly
correlated electron systems on the two-dimensional Penrose
lattice, combining the RDMFT with the noncrossing approx-
imation. We have revealed that the valence transition does
not occur in the vertex-type Penrose model even when the
interaction between the conduction and f electrons is large.
It has been clarified that the crossover between the Kondo
and mixed-valence states is always realized. We have also
found the existence of the electric reconstruction close to
the crossover, where the mixed-valence state coexists with
local Kondo states. Examining the local geometry carefully,
we have clarified that a longer-range spatial geometry become
more important upon decrease in temperature, and a nontrivial
valence distribution is induced.
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