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Fermionic quantum criticality in honeycomb and π-flux Hubbard models:
Finite-size scaling of renormalization-group-invariant observables from quantum Monte Carlo
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We numerically investigate the critical behavior of the Hubbard model on the honeycomb and the π -flux lattice,
which exhibits a direct transition from a Dirac semimetal to an antiferromagnetically ordered Mott insulator.
We use projective auxiliary-field quantum Monte Carlo simulations and a careful finite-size scaling analysis
that exploits approximately improved renormalization-group-invariant observables. This approach, which is
successfully verified for the three-dimensional XY transition of the Kane-Mele-Hubbard model, allows us to
extract estimates for the critical couplings and the critical exponents. The results confirm that the critical behavior
for the semimetal to Mott insulator transition in the Hubbard model belongs to the Gross-Neveu-Heisenberg
universality class on both lattices.
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I. INTRODUCTION

Understanding quantum phase transitions in which the
order parameter couples to gapless fermions is an old and
notorious problem in condensed matter theory [1]. In spite
of recent advances (see, e.g., Refs. [2,3]), the transitions
in electronic systems with a full Fermi surface often elude
controlled theoretical approaches. It is therefore useful to study
simpler cases, in which gapless fermionic excitations would
reside near surfaces in reciprocal space with codimensions
larger than unity. Aside from providing a fundamentally
new universality class (UC) outside of the usual bosonic
φ4 paradigm, theories with gapless fermions close to, for
example, Dirac or parabolic points also describe physical
systems of great current interest, such as graphene [4],
d-wave superconductors [5], or three-dimensional gapless
semiconductors [6,7] such as gray tin, for instance. Their
detailed understanding could be the stepping stone towards
a more comprehensive picture of quantum phase transitions in
which fermions play a decisive role in the critical behavior.

The aim of this paper is to investigate in detail fermionic
criticality in lattice models where the kinetic energy provides
a regularization of the Dirac Hamiltonian. In particular, we
consider the Hubbard model on the honeycomb [8–13] and
the π -flux lattices [14,15]. In the absence of interactions,
both lattice models have the same continuum limit given
by four-component Dirac fermions per spin projection. At
half-filling, the density of states is proportional to the excitation
energy, and the semimetal is therefore stable against weak
interactions. At strong coupling, both models map onto a
Heisenberg Hamiltonian on a nonfrustrated lattice so that we
expect an antiferromagnetic insulating state. The transition
from the semimetal to the antiferromagnetic Mott insulator
has attracted considerable interest. Starting from the weak-
coupling Dirac Hamiltonian, it is natural to understand the
mass generation as the signature of broken sublattice symmetry
triggered by the antiferromagnetic order [12,13]. In this
case, the critical behavior is naturally described in terms
of Gross-Neveu-Yukawa theory where the broken symmetry

is at the origin of mass generation [16]. In fact, at the
mean-field level, mass generation can occur only as a result
of symmetry breaking [17]. Starting from strong coupling,
and since the transition occurs at intermediate values of the
Hubbard interaction, one can follow the idea that dynamically
generated higher-order ring-exchange spin processes are able
to frustrate the magnetic order without closing the charge
gap [18]. This scenario implies an intermediate, rotationally
invariant, spin-disordered, insulating phase as proposed in
Refs. [10,11,14].

Here, we show that a consistent and unbiased under-
standing of the transition is obtained by assuming a direct
transition from the semimetal to the Mott insulating phase,
as described by Gross-Neveu-Yukawa theory with Nf = 2
massless four-component Dirac fermions. In the present case,
the corresponding critical behavior belongs to the so-called
Gross-Neveu-Heisenberg UC, where the term Heisenberg
emphasizes the SU(2) symmetry group of the order-parameter
field. Within Gross-Neveu-Yukawa theory, a different number
of flavors Nf as well as other symmetry groups are possi-
ble [16]. In this context, the case of Nf = 1 with Ising Z2

symmetry has been recently investigated in Refs. [19,20] in
terms of spinless fermions on the honeycomb lattice, while
the case Nf = 2 with SU(2) symmetry has been studied in
Ref. [21] by directly simulating the field theory on a lattice.
Here and in the following, we restrict ourselves to the case
of Nf = 2, which is relevant for the physics of graphene.
From the perspective of Gross-Neveu-Yukawa theory with the
Heisenberg SU(2) symmetry, both the honeycomb and the
π -flux Hubbard lattice models are different regularizations of
the same continuum theory. Hence, both models should have
the same critical exponents. Our analysis of the transition
is based on the notion of improved renormalization-group-
(RG-) invariant quantities, defined as the ratios of magnetic
correlation lengths over the lattice size. The correlation length
is in fact not uniquely defined on a finite lattice. This ambiguity
allows for optimization so as to reduce corrections to scaling.
Using this strategy, we can unbiasedly find the value of

1098-0121/2015/91(16)/165108(18) 165108-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.165108


PARISEN TOLDIN, HOHENADLER, ASSAAD, AND HERBUT PHYSICAL REVIEW B 91, 165108 (2015)

the critical coupling Uc and obtain critical exponents. The
exponents we find for both models are consistent with the
one-loop ε-expansion [16]. Most notably, the anomalous
bosonic dimension η is large. Our results are based on
auxiliary-field quantum Monte Carlo (QMC) simulations on
lattices with up to 18 × 18 unit cells. Since these lattices sizes
are small, we verify our approach for the Mott transition of the
Kane-Mele-Hubbard model [22], which is known to be in the
UC of the three-dimensional (3D) XY model [23–25].

The organization of the paper is the following. In Sec. II,
we define the models. In Sec. III, we discuss the finite-size
scaling, and in Sec. IV we provide some details about the
QMC method. Section V contains our results, and Sec. VI
provides a summary and the conclusions. Appendix A gives
details about the definition of a correlation length in finite
systems. Appendix B contains an additional finite-size scaling
analysis of the Hubbard model on the honeycomb lattice which
corroborates the main findings.

II. MODELS

In this work, we study three different models with a Hub-
bard repulsion, namely, the Hubbard model on the honeycomb
lattice (honeycomb Hubbard model), the Hubbard model on
the π -flux lattice (π -flux Hubbard model), and the Hubbard
model on the honeycomb lattice with spin-orbit coupling
(Kane-Mele-Hubbard model). These models are subsumed by
the Hamiltonian

H =
∑
�ı, �j,σ

ĉ
†
�ı,σ T�ı, �j ĉ �j,σ

+ i λ
∑

〈〈�ı, �j 〉〉
ĉ
†
�ı (�ν�ı, �j · �σ ) ĉ �j

+U
∑

�ı

(
n�ı,↑ − 1

2

)(
n�ı,↓ − 1

2

)
, (1)

where ĉ
†
�ı,σ is the creation operator for an electron with spin

σ at site �ı and n�ı,σ ≡ ĉ
†
�ı,σ ĉ�ı,σ is the corresponding number

operator. The first term in Eq. (1) corresponds to single-
particle hopping between nearest neighbors with amplitude
−t , and across hexagons with amplitude −t ′ (see Fig. 1).
The second term couples next-to-nearest-neighbor sites and
represents the intrinsic spin-orbit interaction of amplitude
λ. For a hopping process between sites �ı and �j via site �r ,
�ν�ı, �j = (�r − �ı) × ( �j − �r)/|(�r − �ı) × ( �j − �r)| = ±�ez. The spin-
orbit term opens a mass gap and leads to a topological band
structure [26]. If the z component of spin is conserved, the

t′ t′t

FIG. 1. Illustration of the hopping term in Eq. (1). Solid lines
represent a nearest-neighbor hopping with amplitude −t , while
dashed lines represent hopping across the hexagon with amplitude
−t ′. In this work, we consider the cases t ′ = 0 (honeycomb lattice)
and t ′ = −t (π -flux lattice).

Kane-Mele model corresponds to two copies of the Haldane
model [27] with opposite Chern numbers for the up- and
down-spin sectors. The parameter U > 0 characterizes the
Hubbard onsite repulsion. We consider the model at zero
chemical potential, corresponding to half-filling.

If λ = 0 and t ′ = 0, Eq. (1) becomes the Hamiltonian
of the honeycomb Hubbard model. For λ = 0 and t ′ = −t ,
it corresponds to the π -flux Hubbard model. The π -flux
lattice emerges in the large-N limit of the Heisenberg-
Hubbard model [28,29]. Finally, for λ > 0 and t ′ = 0, Eq. (1)
corresponds to the Kane-Mele-Hubbard model.

The honeycomb and π -flux Hubbard models both have
a semimetallic ground state in the noninteracting case. In
contrast, the spin-orbit term of the Kane-Mele-Hubbard model
opens a topological band gap even for U = 0.

A. Honeycomb and π -flux Hubbard models (λ = 0)

For λ = 0 and t ′/t = 0, − 1, the first term in Eq. (1) gives
rise to a band structure of massless Dirac fermions. At t ′ = 0,
the two inequivalent cones are located at the Brillouin zone
boundaries. As a function of t ′/t , the cones meander (since
the C3 symmetry is broken), and are located at

�K = ±4 arccos

(
− (1 + t ′/t)

2

)
(�b1 + �b2/2), (2)

where �b1 = (1, − 1/
√

3) and �b2 = (0,2/
√

3). For the values
of t ′ considered here, the cones are pinned to specific �K points
due to lattice symmetries. For t ′ = 0, we have the C3 symmetry
of the honeycomb lattice, whereas for t ′/t = −1 we have the
C4 symmetry of the π -flux lattice. Expanding around �K gives
the spectrum

E( �K + �k) = ±
√

(vxkx)2 + (vyky)2 + O(k)2, �k → 0 (3)

with velocities

vx = t

√
1 − (1 + t ′/t)2

4
, vy = t

√
3|1 − t ′/t |

2
. (4)

At T = 0, both the honeycomb and the π -flux Hubbard
models are believed to describe a continuous phase transition
between a semimetallic phase that is adiabatically connected
to U = 0, and an insulating antiferromagnetic phase at large
values of U . This phase transition has prompted numerous
studies, in particular concerning the possible presence of
an intermediate spin-liquid phase [10,11]. In line with sub-
sequent studies [12,13], we show in the following that the
phase transition is described by the Gross-Neveu-Heisenberg
UC [4,16,31]. In this scenario, the two phases are separated by
a single critical point without any intermediate phase. For the
honeycomb Hubbard model, the phase diagram from QMC
simulations is shown in Fig. 2, where it corresponds to the
λ = 0 axis.

The phase transition is characterized by the O(3) antiferro-
magnetic order parameter

�φ(�x) = �S(�xA) − �S(�xB), (5)

where �x is a site of a triangular lattice that corresponds to an
elementary unit cell of the honeycomb lattice, and �xA and �xB
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FIG. 2. (Color online) Phase diagram of the Kane-Mele-Hubbard
model (λ > 0) and the honeycomb Hubbard model (λ = 0) from
QMC simulations, taken from Ref. [30]. The phases correspond to a
semimetal (SM), an antiferromagnetic Mott insulator (AFMI), and a
quantum spin-Hall insulator (QSHI).

are lattice sites (in the same unit cell) that belong to the A and
B sublattices, respectively.

B. Kane-Mele-Hubbard model (λ �= 0)

In Fig. 2, we show the phase diagram of the Kane-Mele-
Hubbard model from QMC simulations [30]. The model
exhibits three phases, separated by second-order transition
lines. For λ = 0, the model reduces to the honeycomb
Hubbard model (see above). A nonzero λ opens a gap at
the Dirac points, and leads to the formation of a quantum
spin-Hall insulator [26,32]. At large U , the model describes
an antiferromagnetic Mott insulator with magnetic order in the
transverse spin direction [22–24,33]. The Kane-Mele-Hubbard
model has been studied in great detail to understand correlation
effects in topological insulators [34].

The spin-orbit interaction reduces the symmetry of the
Kane-Mele-Hubbard model to the O(2) group. Consequently,
the quantum phase transition between the quantum spin Hall
phase and the antiferromagnetic Mott insulator belongs to the
well-known 3D XY UC [24,25]. It is characterized by the O(2)
antiferromagnetic order parameter

�φ(�x) = (Sx(�xA),Sy(�xA)) − (Sx(�xB),Sy(�xB)). (6)

In the following, we set t = 1.

III. FINITE-SIZE SCALING

Finite-size-scaling (FSS) theory is a powerful method that
allows one to study the critical behavior of models using finite-
size data. Unlike infinite-volume methods, FSS is concerned
with analyzing the scaling behavior in a regime where the
correlation length ξ and the linear size of the system L are
of comparable size, ξ ∼ L [35–38]. To be precise, FSS theory
allows one to formulate the scaling behavior of the observables
in the so-called FSS limit, where L,ξ → ∞, at fixed ξ/L. The

FSS method has been recently discussed in the context of
quantum phase transitions in Ref. [39].

We consider the spatial two-point correlation function
C(�x − �y) of the order parameter φ(�x) at T = 0,

C(�x − �y) ≡ 〈�φ(�x) · �φ(�y)〉. (7)

Using the spatial correlations C(�x) one can define various
observables, the FSS behavior of which allows one to study
the critical properties of second-order phase transitions. We
study the zero-momentum Fourier transform of the two-point
function χ , defined as

χ (U,L) ≡
∑

�x
C(�x). (8)

Close to a second-order phase transition at U = Uc, χ exhibits
the following FSS behavior [39]:

χ (U,L) = L2−z−η[fχ (w) + L−ωgχ (w)] + B(U ), (9)

w ≡ uL1/ν, u ≡ (U − Uc)/Uc, (10)

where ν, η, and z are universal critical exponents, ω is
a generic correction-to-scaling exponent, and B(U ) is a
nonuniversal analytic background term that originates from
the nonuniversal, short-distance behavior of C(x), i.e., from
the terms in the sum of Eq. (8) for which |�x| 
 L. According
to RG theory, corrections to scaling may have several origins
(see also Ref. [39]):

(i) Irrelevant operators give rise to scaling corrections with
an exponent ω equal to their negative RG dimension.

(ii) Analytical scaling corrections originate from the so-
called nonlinear scaling fields [40], according to which the
scaling fields are replaced by a generic analytical expansion
in the Hamiltonian parameters. For instance, u in Eq. (10)
should be replaced by an expansion of the form u + cu2 +
o(u2), where c is a nonuniversal constant, resulting in a scaling
correction with exponent ω = 1/ν.

(iii) Additional scaling corrections arise from the analytic
part of the free energy. This is the case of the background term
B(U ), which can be considered as a subleading term with an
effective correction-to-scaling exponent ω = 2 − z − η.

In general, one expects several correction-to-scaling terms,
the leading one being the one with the smallest exponent ω.
Here and in the following, we consider the leading scaling
correction only.

RG-invariant quantities (also called phenomenological cou-
plings) are instrumental for investigating the critical behavior.
Here, we consider ratios of the correlation length and the lattice
size L. As explained in Appendix A, on a finite lattice there
is no unique definition of the correlation length. We defined
several correlation lengths that mimic the definition of the
second-moment correlation length of the two-point function
C(�x); all these quantitites are observables that scale as ∝ L in
the FSS limit, so that their ratio with the lattice size L is RG
invariant. We consider

R
(1)
ξ (U,L) ≡ ξ (1)(U,L)/L, (11)

R
(2)
ξ (U,L) ≡ ξ (2)(U,L)/L, (12)
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Rξ (U,L) ≡ ξ (U,L)/L, (13)

Rξ,s,κ,ρ(U,L) ≡ ξs,κ,ρ(U,L)/L, (14)

where ξ (1), ξ (2) are two finite-size correlation lengths defined
in terms of the Fourier transform of C(�x) and corresponding
to the two principal directions, ξ is a generalized f -mean
value of ξ (1)(L) and ξ (2)(L), and ξs,κ,ρ is a correlation length
defined in terms of the two-point function C(�x) in real space.
These correlation lengths are inequivalent observables in the
FSS limit; their definitions are discussed in Appendix A. The
parameters κ and ρ that enter in the definition of ξs,κ,ρ are
scale-invariant ratios that influence the amplitude of the scaling
corrections (see Appendix A 3).

As discussed in Sec. IV, our simulation data for the π -flux
Hubbard model are for lattices with L1 = L/2 unit cells in
direction 1 and L2 = L unit cells in direction 2. In view of the
anisotropy of the lattice, we use a slightly different definition
for the RG-invariant quantity R

(1)
ξ :

R
(1)
ξ (U,L) ≡ ξ (1)(U,L)/(L/2) (π -flux lattice). (15)

According to FSS theory, a generic RG-invariant observable
R(U,L) obeys the scaling ansatz

R(U,L) = fR(w) + L−ωgR(w), (16)

where the function fR(w) is universal, apart from a nonuni-
versal normalization of the scaling variable w. Aside from
depending on the UC of the phase transition, fR(w) also
depends on the boundary conditions of the system and on
the aspect ratio. In Eq. (16), we have included a correction-
to-scaling term L−ωgR(w), which decays with a correction-to-
scaling exponent ω.

As illustrated in Appendix A, the finite-size correlation
lengths ξ (1), ξ (2), ξ , and ξs,κ,ρ are computed with a ratio that
involves χ [see Eq. (8)]. Therefore, scaling corrections for
R

(1)
ξ (U,L), R

(2)
ξ (U,L), Rξ , and Rξ,s,κ,ρ are analogous to those

of χ . In particular, they are also affected by scaling corrections
that decay with an exponent ω = 2 − z − η and originate from
the analytic part of the free energy.

A popular method for extracting the critical coupling Uc

from the FSS behavior of a model is the so-called crossing
method. It is based on the observation that, neglecting scaling
corrections in Eq. (16) (i.e., taking ω → ∞), the equation

R(U,L) = R(U,L′) (17)

admits a solution for U = Uc, i.e., u = 0. If in an interval
around u = 0 the scaling function fR(w) is monotonic, then,
locally, this is the only solution to Eq. (17). This implies that
the curves R(U,L) as a function of U intersect at U = Uc for
all lattice sizes L. Typically, one observes instead a drift in the
crossings, which is due to scaling corrections. To determine
the critical coupling Uc, one usually defines a pseudocritical
coupling Uc,R(L) as the solution of Eq. (17) with L′ = αL,
where α is a fixed ratio. Here, the available lattice sizes do not
allow us to use this definition for Uc,R(L). Instead, we define
a pseudocritical coupling Uc,R(L) as the solution of Eq. (17)
with L′ = L + c, that is,

R(Uc,R(L),L) = R(Uc,R(L),L + c), (18)

where c is a fixed constant. By inserting Eq. (16) in (18),
and expanding for L → ∞, one can show that for L →
∞ Uc,R(L) → Uc according to

Uc,R(L) = Uc + AL−e, e = 1/ν + ω, (19)

where A is a nonuniversal constant. Using different RG-
invariant quantities, we can define different pseudocritical
couplings Uc,R(L) that all converge to Uc for L → ∞. This
property can be used to corroborate the result for Uc.

IV. QUANTUM MONTE CARLO METHOD

We used the projective auxiliary-field QMC algorithm
to compute the spin-spin correlations. Because a detailed
discussion of the algorithm is beyond the scope of this work,
we refer the reader to Refs. [24,41].

Ground-state expectation values of observables are calcu-
lated according to the equation

〈Ô〉0 = lim
�→∞

〈�T |e−�Ĥ Ôe−�Ĥ |�T 〉
〈�T |e−2�Ĥ |�T 〉 , (20)

where the ground-state wave function is filtered out of a
trial wave function (required to be nonorthogonal to the
ground state) by projection along the imaginary-time axis. The
QMC algorithm relies on a Trotter decomposition. We used a
symmetric version that produces a systematic error of the order
(�τ )2, where �τ is the imaginary-time step. We typically used
�τ = 0.1, and a projection parameter � = 30. The trial wave
function was taken to be the ground state of the noninteracting
Hamiltonian and chosen to be a spin singlet. The method has
two sources of systematic errors: the projection parameter and
the high-energy (or short imaginary-time) cutoff �τ . For a
given statistical precision of 0.1% for the antiferromagnetic
order parameter, we checked that the choice of the projection
parameter and trial wave function guarantees convergence to
the ground state. On the other hand, at Uc = 3.8 and for the
honeycomb lattice, the finite value of �τ leads to a systematic
error of the order of 0.5%. This high-energy cutoff may slightly
shift the critical values of U at which the transition occurs
but should not alter the universality. Finally, we used an
SU(2)-symmetric Hubbard-Stratonovich transformation [41]
to ensure that this symmetry is conserved for each field
configuration.

For the simulations on the honeycomb lattice we used
lattices spanned by the vectors �L1 = L�a1 and �L2 = L�a2,
where �a1 = (1,0) and �a2 = (1/2,

√
3/2), and with boundary

conditions c�ı+�Ln,σ
= c�ı,σ with n = 1,2. With this choice of

boundary conditions, and the values of L as multiples of 3, the
Dirac points are part of the reciprocal lattice.

For the π -flux lattice we considered lattices defined by the
vectors �L1 = L

2 �a1 and �L2 = L
2 (2�a2 − �a1), again with boundary

conditions c�ı+�Ln,σ
= c�ı,σ . This choice of boundary conditions

is equivalent to a lattice that extends over L1 = L/2 unit
cells in the �a1 direction and over L2 = L unit cells in the �a2

direction. The total number of two-site unit cells is L × L/2,
and the total number of lattice sites is L × L/2 × 2 = L × L.
This also makes the lattice equivalent to an L × L square
lattice. For L being a multiple of 4 the Dirac points are part of
the reciprocal lattice.
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FIG. 3. (Color online) RG-invariant quantity Rξ for the honey-
comb Hubbard model. Lines are guides to the eye.

V. RESULTS

A. Honeycomb Hubbard model

We simulated the honeycomb Hubbard model on lattices
with L = 6, 9, 12, 15, and 18. As discussed in Appendix A 3,
the correlation length ξs,κ,ρ is computed for κ = ρ = 1

3 only.
In Figs. 3 and 4, we show the RG-invariant quantities Rξ (U,L)
and Rξ,s,1/3,1/3(U,L) as a function of U and for lattice sizes
L = 6–18. We observe that the curves of Rξ (U,L) for different
L do not show a common intersection point, but exhibit a sys-
tematic drift of the intersection points from U ≈ 4.7 (the cross-
ing point of the curves for L = 6 and L = 9) towards smaller
values of U ; the data for Rξ (U,L) and for the two largest lattice
sizes intersect at U ≈ 3.9–4. The curves of Rξ,s,1/3,1/3(U,L)
shown in Fig. 4 exhibit instead a common intersection at
U ≈ 3.8.

These observations are confirmed by the analysis of the
pseudocritical coupling Uc,R(L). In Fig. 5, we show Uc,R(L) as
a function of 1/L, as obtained by numerically solving Eq. (18),
with R = Rξ , Rξ,s,1/3,1/3 and c = 3. For each pair of lattice
sizes L and L + 3 we fitted the data for Rξ and Rξ,s,1/3,1/3
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1/

3,
1/

3
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s,
1/
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1/

3

FIG. 4. (Color online) Same as Fig. 3 for Rξ,s,1/3,1/3. Inset:
magnification of the data close to their crossing at U ≈ 3.8.

0 0.05 0.1 0.15 0.2
1/ L

3.8

4

4.2

4.4

4.6

U
c,

R
(L

)

R=Rξ
R=Rξ,s,1/3,1/3

FIG. 5. (Color online) Pseudocritical coupling Uc,R for the hon-
eycomb Hubbard model, obtained by numerically solving Eq. (18) for
two phenomenological couplings R = Rξ and R = Rξ,s,1/3,1/3. The
plotted value of Uc,Rξ

= 3.77(4) for L → ∞ has been obtained by
fitting the data to Eq. (19). The dashed line represents the right-hand
side of Eq. (19), with central values of the fit Uc = 3.77, and e = 1.8.
The dotted lines indicate the interval in the final estimate of the critical
coupling U = 3.80(1) as reported in Eq. (27).

to a suitable Taylor expansion in U in an interval around the
crossing point. These fits provide an interpolation of the curves
for R(U,L) and R(U,L + 3) that, in turn, allows us to solve
Eq. (18). The resulting error bar of UR(L), which is determined
from the covariance matrix of the coefficients of the fits used
to interpolate R(U,L), may underestimate the uncertainty
in UR(L) because it does not take into account a possible
systematic error in the truncation of the Taylor expansion
of R(U,L). Figure 5 reveals that Uc,Rξ

(L) decreases slowly
upon increasing L, whereas Uc,Rξ,s,1/3,1/3 (L) remains stable; for
L � 9, Uc,Rξ,s,1/3,1/3 (L) is constant within error bars. In order to
extrapolate Uc from the pseudocritical coupling Uc,Rξ

(L), we
fitted the data for Uc,Rξ

(L) to the right-hand side of Eq. (19),
leaving Uc, A, and the exponent e as free parameters. The fitted
values are Uc = 3.77(4) and e = 1.8(1), with χ2/DOF = 0.02
(DOF: degrees of freedom). Within the statistical precision,
the result for Uc = 3.77(4) is in full agreement with the
pseudocritical couplings Uc,Rξ,s,1/3,1/3 (L) for all available lattice
sizes. In Fig. 5, we also show the right-hand side of Eq. (19)
(the dashed line), which illustrates the convergence of Uc,Rξ

(L)
to the critical coupling Uc for L → ∞.

The slow convergence of Uc,Rξ
(L) to Uc implies that

Rξ is affected by large scaling corrections. As discussed in
Sec. III, these can stem from various sources. As shown
in the analysis below, the critical behavior belongs to the
Gross-Neveu-Heisenberg UC. Using functional RG methods,
the leading irrelevant operator in this UC has been determined
as ω ≈ 0.9 [42]. In the present model, an additional irrelevant
operator is associated with the restoration of the Lorentz
symmetry; within the ε-expansion, its negative dimension
is ω = 4

5ε [16], where one should set ε = 1 for the two-
dimensional system considered here. Although such a simple
substitution has to be taken with some care, we have no
reason to presume the existence of an irrelevant operator with
a small ω exponent. Analytical scaling corrections arising
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from nonlinear scaling fields are also not expected to play
an important role here. Indeed, as we show in the following,
ν � 1, so that scaling corrections ∝ L−1/ν are not particularly
large. On the other hand, in the Gross-Neveu picture, the
dynamical exponent z is equal to 1, and field theoretical
methods indicate a large η exponent. Within the first-order
ε-expansion, one has η = 4

5ε [16], so that by setting ε = 1
one obtains a rather large value of the η exponent η = 0.8.
A large η exponent is also confirmed by the analysis below.
Therefore, we expect the zero-momentum Fourier transform of
the two-point function χ as well as the RG-invariant quantities
Rξ , Rξ,s to be affected by slowly-decaying scaling corrections,
with ω = 2 − z − η ≈ 0.2. However, the amplitude of such
scaling corrections is not universal and also depends on the
specific observable. The stable crossing point observed in
Fig. 4 indicates that the correction to scaling ∝ L−0.2 is in
fact suppressed in Rξ,s,1/3,1/3, i.e., Rξ,s,1/3,1/3 is effectively an
(approximately) “improved” observable.1

In view of these results, we determined the critical exponent
ν and the critical coupling Uc by exploiting the FSS behavior
of Rξ,s,1/3,1/3. Following a procedure analogous to the one
employed in Ref. [44], we fitted Rξ,s,1/3,1/3 to a Taylor
expansion of Eq. (16). We restricted the analysis to the data
where U belongs to an interval [3.6,4] centered at U = 3.8,
which is the approximate common intersection of the curves in
Fig. 4. Within this interval we can expand the scaling function
fR(w) for R = Rξ,s,1/3,1/3 in powers of w. Using Eq. (10) in
Eq. (16) and neglecting scaling corrections, we obtain

R = R∗ +
nmax∑
n=1

an(U − Uc)nLn/ν. (21)

We fitted the data for R = Rξ,s,1/3,1/3 to Eq. (21), leaving the
universal critical value R∗

ξ,s,1/3,1/3 ≡ R∗, the coefficients {ai},
Uc, and ν as free parameters. In order to monitor the role of the
neglected scaling corrections, we repeated the fits disregarding
systematically the smallest lattice sizes. Moreover, to check the
reliability of the Taylor expansion in Eq. (21), we repeated the
fit for nmax = 1, 2, and 3.

In Table I we report the fit results as a function of the min-
imum lattice size Lmin taken into account, and the expansion
order nmax. Table I reveals that χ2/DOF decreases significantly
between nmax = 1 and nmax = 2, but only marginally between
nmax = 2 and nmax = 3. This indicates that within the available
numerical precision, the range of U considered here does
not allow a linear approximation of fRξ,s,1/3,1/3 (w), whereas a
quadratic approximation appears to be adequate. Thus, we can
restrict the discussion of the results to the case nmax = 2. The
corresponding fits show a good χ2/DOF for Lmin � 9; only for
Lmin = 6 we have a large χ2/DOF, indicating sizable scaling
corrections. Moreover, the fitted parameters appear to be rather
stable upon increasing Lmin. A conservative judgment of the fit
results would give the estimates Uc = 3.793(5), ν = 0.84(4),
and R∗

ξ,s,1/3,1/3 = 0.1608(2); these values agree with the results

1We notice that the construction of improved observables, as well as
improved models, where leading scaling corrections are suppressed
requires in general a fine tuning of an irrelevant parameter (see, e.g.,
the discussion in Ref. [43]).

TABLE I. Results of the fits of R = Rξ,s,1/3,1/3 for the honeycomb
Hubbard model to Eq. (21) (first three sets) and to Eq. (26) (last three
sets), with U ∈ [3.6,4]. Lmin is the minimum lattice size taken into
account in the fits.

Lmin Uc ν R∗
ξ,s,1/3,1/3 χ 2/DOF

nmax = 1 6 3.782(1) 0.758(4) 0.16017(3) 443.2/21
9 3.7954(15) 0.816(7) 0.16077(6) 39.5/16

12 3.7975(30) 0.87(2) 0.1609(2) 17.8/11
15 3.798(9) 0.91(5) 0.1610(6) 9.5/6

nmax = 2 6 3.775(1) 0.747(4) 0.16004(3) 331.0/20
9 3.790(2) 0.812(7) 0.16063(7) 18.0/15

12 3.792(3) 0.86(2) 0.1607(2) 5.0/10
15 3.797(8) 0.87(5) 0.1610(6) 3.4/5

nmax = 3 6 3.780(1) 0.694(6) 0.16014(3) 240.0/19
9 3.791(2) 0.786(15) 0.16066(7) 14.7/14

12 3.792(4) 0.85(3) 0.1607(2) 4.9/9
15 3.797(8) 0.86(6) 0.1610(6) 3.3/4

nmax = 2 6 3.823(4) 0.755(4) 0.175(1) 167.4/19
mmax = 0 9 3.805(11) 0.813(7) 0.167(5) 16.0/14
ω = 0.15 12 3.82(5) 0.86(2) 0.18(3) 4.6/9

nmax = 2 6 3.820(4) 0.754(4) 0.1679(6) 166.5/19
mmax = 0 9 3.804(10) 0.813(7) 0.164(2) 16.01/14
ω = 0.3 12 3.82(4) 0.86(2) 0.168(14) 4.6/9

nmax = 2 6 3.816(3) 0.754(4) 0.1653(4) 165.7/19
mmax = 0 9 3.803(9) 0.813(7) 0.1629(16) 16.0/14
ω = 0.45 12 3.82(4) 0.86(2) 0.166(9) 4.6/9

for Lmin = 9, 12, including a variation of one error bar,
and with the central value of the less precise fit results for
Lmin = 15. As a further check of the reliability of these results,
we repeated the fits with a smaller interval in U where a linear
approximation of fRξ,s,1/3,1/3 (w) is reliable. In Table II, we report
the results of the fits of Rξ,s,1/3,1/3 to Eq. (21) with nmax = 1
and U ∈ [3.7,3.9]. For Lmin � 9, these results display a good
χ2/DOF and are in full agreement with the estimates of Uc, ν,
and R∗

ξ,s,1/3,1/3 given above. These estimates were obtained by
an FSS analysis that neglects scaling corrections. As discussed
in the following, the inclusion of scaling corrections results in
slightly less precise estimates for Uc and R∗

ξ,s,1/3,1/3.
The exponent η can be determined by analyzing the FSS

behavior of χ . To avoid using the values of Uc and ν determined
above, we invert Eq. (16) to obtain the scaling variable w as a
function of R. Then, Eq. (9) can be rewritten as

χ (R,L) = L2−z−ηfχ,R(R), (22)

where corrections to scaling have been neglected. Since the
previous analysis has shown that Rξ,s,1/3,1/3 is affected by

TABLE II. Same as Table I for U ∈ [3.7,3.9] and nmax = 1.

Lmin Uc ν R∗
ξ,s,1/3,1/3 χ 2/DOF

6 3.7809(15) 0.74(1) 0.16020(5) 140.0/11
9 3.792(2) 0.80(2) 0.16069(9) 8.1/8
12 3.794(5) 0.87(5) 0.1608(3) 2.6/5
15 3.80(1) 0.75(12) 0.1613(8) 1.6/2
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FIG. 6. (Color online) The two-point function at zero momentum
χ as a function of the RG-invariant observable Rξ,s,1/3,1/3. Lines are
guides to the eye.

small scaling corrections, we chose to analyze χ using R =
Rξ,s,1/3,1/3. In Fig. 6, we show χ as a function of Rξ,s,1/3,1/3.
The fact that χ slowly grows with L suggests a small value of
the exponent 2 − z − η that appears in Eq. (22).

For a quantitative analysis of the exponent η we fitted
χ (R,L) to a Taylor expansion of the right-hand side of Eq. (22),
using the QMC data for which Rξ,s,1/3,1/3 ∈ [0.151,0.171];
for the central lattice size L = 12, this interval in Rξ,s,1/3,1/3

corresponds to the range U ∈ [3.6,4] that we used in the
analysis of the ν exponent. We performed a fit of the data
for χ (U,R) to

χ (R,L) = L1−η′
nmax∑
n=0

anR
n, η′ ≡ η + z − 1 (23)

with R = Rξ,s,1/3,1/3 and leaving η′ and {an} as free parame-
ters. In Eq. (23) we have introduced for convenience the expo-
nent η′, which is defined such that η′ = η if z = 1. In Table III,

TABLE III. Results of the fit of χ for the honeycomb Hubbard
model to Eq. (23) (first three sets) and to Eq. (24) (last set), with
R = Rξ,s,1/3,1/3 and Rξ,s,1/3,1/3 ∈ [0.151,0.171]. The critical exponent
η′ is defined as η′ ≡ η + z − 1, such that η′ = η if z = 1. Lmin is the
minimum lattice size taken into account.

Lmin η′ χ 2/DOF

nmax = 1 6 0.771(2) 1759.7/23
9 0.746(4) 445.0/14

12 0.759(9) 65.4/8

nmax = 2 6 0.766(2) 1264.3/22
9 0.746(4) 66.8/13

12 0.746(9) 6.8/7

nmax = 3 6 0.765(2) 1241.7/21
9 0.746(4) 66.6/12

12 0.746(9) 6.8/6

nmax = 2 6 0.57(4) 112.7/20
mmax = 1 9 0.70(15) 6.2/11

we report the fit results as a function of nmax and the minimum
lattice size Lmin taken into account. We observe that χ2/DOF
substantially decreases upon increasing the expansion order
from nmax = 1 to nmax = 2, while no appreciable difference
is found upon further increasing nmax to nmax = 3. Clearly, a
parabolic approximation nmax = 2 is sufficient to describe our
MC data in the interval Rξ,s,1/3,1/3 ∈ [0.151,0.171]. On the
other hand, the χ2/DOF is large and acquires a small value
for Lmin = 12 only. This shows that scaling corrections give
an important contribution. Indeed, the fits indicate a value
η′ ≈ 0.7: for such a value of η′ the background contribution to
χ results in corrections to scaling with a rather small exponent
ω = 1 − η′ ≈ 0.3.

We thus consider the presence of an analytical background
and fit our data to

χ (R,L) = L1−η′
nmax∑
n=0

anR
n +

mmax∑
m=0

bmRm, η′ ≡ η + z − 1

(24)

with R = Rξ,s,1/3,1/3. In Table III, we also report the fit results
with nmax = 2 and mmax = 1 for different Lmin. While the fit
done using all the available lattices shows a large χ2/DOF,
indicating the presence of additional scaling corrections
beyond those taken into account in Eq. (24), a good χ2/DOF is
found for Lmin = 9. The fitted value of η′ is in full agreement
with the results of the fits to Eq. (23) given in Table III (above);
its error bar, which is significantly larger than the one of the
values obtained by the fits to Eq. (23) gives a measure of
the influence of the slowly-decaying scaling corrections due
to the background contribution that is neglected in the fits to
Eq. (23). Moreover, the fitted value of η′ for Lmin = 9 agrees
with the corresponding result for Lmin = 6. Accordingly, we
can regard the fit results for Lmin = 9 with its uncertainty as a
safe determination of the η′ exponent. We thus quote as a final
result

η′ = η + z − 1 = 0.70(15),
(25)

η = 0.70(15) (if z = 1).

The estimate of Eq. (25) implies that the analytical part
of the free energy gives rise to slowly-decaying scaling
corrections with an effective correction-to-scaling exponent
ω = 2 − z − η = 0.30(15). In view of the relatively small
available lattice sizes, we repeated the FSS analysis of
Rξ,s,1/3,1/3, this time including scaling corrections, with the
aim of checking the reliability of the estimates for Uc, ν, and
R∗

ξ,s,1/3,1/3 obtained above by neglecting scaling corrections.
Indeed, even if the RG-invariant observable Rξ,s,1/3,1/3 appears
to show small scaling corrections, such a small value of ω may
give rise to a drift in the estimates of the critical parameters
that is larger than the statistical error bar. We fitted Rξ,s,1/3,1/3

to a Taylor expansion of Eq. (16):

R = R∗ +
nmax∑
n=1

an(U − Uc)nLn/ν

+L−ω

m=mmax∑
m=0

bm(U − Uc)mLm/ν. (26)

In Table I, we also report the fit results obtained for fixed
ω = 0.15, 0.3, 0.45, which reveal that the fitted value of ν is
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stable and in perfect agreement with the estimate obtained by
neglecting scaling corrections. However, we observe that Uc

and R∗
ξ,s,1/3,1/3 exhibit a deviation with respect to the previ-

ously obtained values Uc = 3.793(5), R∗
ξ,s,1/3,1/3 = 0.1608(2).

The variation in Uc is rather small, but larger than the error
bars, whereas the critical-point value R∗

ξ,s,1/3,1/3 exhibits a
larger variation. Indeed, residual scaling corrections affect
in a statistically significant way the fitted values of Uc and
R∗

ξ,s,1/3,1/3. Therefore, we choose more conservative error bars
for Uc and R∗

ξ,s,1/3,1/3, which take into account the results of
Table I, with and without considering corrections to scaling.
We obtain the estimates

Uc = 3.80(1), (27)

ν = 0.84(4), (28)

R∗
ξ,s,1/3,1/3 = 0.166(5). (29)

The final estimate for Uc is also in full agreement with the less
precise estimate obtained by extrapolating the pseudocritical
coupling Uc,Rξ

(L) (see Fig. 5).
As a further check of the results presented in this section,

we performed an additional FSS analysis of χ as a function
of U and L, as done for the RG-invariant quantity Rξ,s,1/3,1/3.
The corresponding results are presented in Appendix B and
corroborate the reliability of the obtained estimates.

B. Kane-Mele-Hubbard model

We simulated the Kane-Mele-Hubbard model for lattice
sizes L = 6, 9, 12, 15, and 18, setting the spin-orbit coupling
λ = 0.2. In Fig. 7 (Fig. 8) we show the RG-invariant quantity
Rξ (U,L) [Rξ,s,1/3,1/3(U,L)] as a function of U and for different
lattice sizes L. We observe that the curves of Rξ (U,L)
for L � 9 show a common intersection point at U ≈ 5.71,
whereas the data for Rξ,s,1/3,1/3(U,L) exhibit a systematic drift
of the intersection point from U ≈ 5.5 (the crossing point of
the curves for L = 6 and L = 9) towards larger values of

  5.5 5.6 5.7 5.8 5.9 6
U

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
ξ

L=6
L=9
L=12
L=15
L=18

5.65 5.7 5.75
U

0.2

0.25

0.3

R
ξ

FIG. 7. (Color online) RG-invariant quantity Rξ for the Kane-
Mele-Hubbard model. Lines are guides to the eye. Inset: magnifica-
tion of the data close to their crossing at U ≈ 5.7.
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FIG. 8. (Color online) Same as Fig. 7 for Rξ,s,1/3,1/3.

U . In Fig. 9, we show the pseudocritical couplings Uc,R(L)
as a function of the inverse lattice size L, computed with
the method mentioned in Sec. V A. Consistent with Figs. 7
and 8, Uc,Rξ

(L) is constant within error bars for L � 9,
while Uc,Rξ,s,1/3,1/3 (L) increases with L. A fit of the results for
Uc,Rξ,s,1/3,1/3 (L) to Eq. (19) gives Uc = 5.73(1), with a large
χ2/DOF = 22.5. This suggests the presence of competing
scaling corrections in Rξ,s,1/3,1/3(U,L), which are not captured
by Eq. (19). For this reason, the precision on the resulting
value of Uc = 5.73(1) has to be taken with caution, as it can
be affected by a systematic error. The limited lattice sizes
available do not allow us to further investigate the reliability
of this result. Our final estimate of Uc is based on the FSS
analysis of Rξ (see following). In Fig. 9, we also show the
right-hand side of Eq. (19), as fitted using the data for Uc,R(L)
with R = Rξ,s,1/3,1/3. In line with the considerations on the
presence of a superposition of corrections to scaling, some
data points show a significant deviation from the fitted curve.
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R
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FIG. 9. (Color online) Same as Fig. 5 for the Kane-Mele-
Hubbard model. The plotted value of Uc,Rξ,s,1/3,1/3 = 5.73(1) for
L → ∞ has been obtained by fitting the data to Eq. (19). The dashed
line represents the right-hand side of Eq. (19), with central values of
the fit Uc = 5.73. The dotted lines indicate the interval in the final
estimate of the critical coupling U = 5.71(1) as reported in Eq. (30).
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TABLE IV. Results of the fits of R = Rξ to Eq. (21) (first three
sets) and to Eq. (26) (last two sets) for the Kane-Mele-Hubbard model,
with U ∈ [5.625,5.75]. Lmin is the minimum lattice size taken into
account in the fits.

Lmin Uc ν R∗
ξ χ 2/DOF

nmax = 1 6 5.7524(4) 0.727(3) 0.26101(8) 4280.6/16
9 5.7104(5) 0.716(5) 0.2516(2) 264.4/12

12 5.711(1) 0.77(1) 0.2517(6) 217.5/8
15 5.713(3) 0.84(4) 0.254(2) 195.3/4

nmax = 2 6 5.7335(3) 0.587(3) 0.26097(6) 2555.9/15
9 5.7155(5) 0.657(5) 0.2526(2) 16.5/11

12 5.7157(9) 0.68(1) 0.2528(5) 6.1/7
15 5.716(2) 0.714(29) 0.253(2) 2.9/3

nmax = 3 6 5.7315(4) 0.615(3) 0.26072(7) 2471.3/14
9 5.7147(6) 0.647(6) 0.2525(2) 9.8/10

12 5.7155(9) 0.672(15) 0.2528(5) 5.4/6
15 5.716(2) 0.715(35) 0.253(2) 2.9/2

nmax = 2 6 5.6982(9) 0.665(3) 0.2258(7) 140.0/14
mmax = 0 9 5.715(2) 0.659(6) 0.251(3) 16.4/10
ω = 0.785 12 5.711(8) 0.69(2) 0.244(16) 5.8/6

nmax = 3 6 5.6976(9) 0.649(4) 0.2261(7) 107.8/13
mmax = 0 9 5.715(2) 0.646(7) 0.253(3) 9.7/9
ω = 0.785 12 5.712(8) 0.68(2) 0.246(17) 5.2/5

In order to determine the critical exponent ν and the critical
coupling Uc, we analyzed the FSS behavior of Rξ which, in
this case, appears to have reduced scaling corrections. We
restrict the analysis to the interval U ∈ [5.625,5.75], around
the expected critical point Uc ≈ 5.7, as inferred from the
analysis of the pseudocritical couplings. In Table IV, we report
the results of the fits of Rξ to Eq. (21). We observe that χ2/DOF
decreases significantly when we increase nmax from nmax = 1
to nmax = 2, and only marginally when nmax is set to nmax =
3. Thus, a quadratic approximation should be adequate to
describe the data for Rξ in the interval U ∈ [5.625,5.75]. The
fits with nmax = 2 show large values of χ2/DOF for Lmin = 6,
indicating important scaling corrections, and still a somewhat
large value of χ2/DOF for Lmin = 9, suggesting the presence
of residual scaling corrections for L = 9. The χ2/DOF ratio
is good for Lmin � 12. The fitted values of Uc, ν, and R∗

ξ are
essentially stable for Lmin � 9. Upon conservatively judging
the variation of the fit results for ν as obtained by these fits,
one can extract an estimate ν = 0.68(3). This value agrees with
that of the 3D XY UC, ν = 0.6717(1) [45] (see the discussion
in Sec. II). In view of value of χ2/DOF for Lmin = 9, we
repeated the analysis by including scaling corrections. Our data
do not allow an independent determination of the ω exponent.
Nevertheless, since we expect that the critical behavior belongs
to the 3D XY UC and since our fits to Eq. (21) are consistent
with this picture, we fitted Rξ to Eq. (26), fixing ω to the
value of the leading irrelevant operator for the 3D XY UC,
ω = 0.785(20) [45]. The corresponding fit results are given in
Table IV where, for completeness, we also report the results
of fits to Eq. (26) with nmax = 3. The results of the fits do not
change significantly upon varying ω = 0.785(20) within one
error bar. For this reason, we report the fit results obtained by
fixing ω to its central value ω = 0.785.

The inclusion of a correction-to-scaling term in the fits
results in a large reduction of the χ2/DOF ratio for the fits
with Lmin = 6, whose corresponding results align to those
obtained with Lmin � 9. However, the χ2/DOF ratio for
Lmin = 6 is still large, indicating the presence of subleading
scaling corrections. For Lmin � 9, the fits to Eq. (26) exhibit
χ2/DOF ratios that are comparable to those obtained without
scaling corrections. In particular, for nmax = 2 and Lmin = 9
the fits to Eq. (26) still show a somewhat large χ2/DOF ratio,
suggesting either the presence of residual scaling corrections
that are not taken into account by the present analysis, or
that the Taylor expansion with nmax = 2 does not describe the
data for U ∈ [5.625,5.75] and L � 9 in a fully reliable way.
Nevertheless, the fitted values of Uc, ν, and R∗

ξ are essentially
stable for Lmin � 9 and upon including a correction-to-scaling
term in the FSS analysis. By conservatively judging the fit
results, we obtain the estimates

Uc = 5.71(1), (30)

ν = 0.68(3), (31)

R∗
ξ = 0.250(6). (32)

The estimates for Uc and ν have been chosen so to agree
with the results of Table IV for nmax � 2 and Lmin = 9, 12,
including a variation of one error bar, with and without taking
into account scaling corrections. They are also in agreement
with the fit results for Lmin = 15. The estimate for R∗

ξ has been
chosen such that it agrees with the results of the fits that neglect
scaling corrections for nmax � 2 and Lmin = 9, 12, and with the
results of the fits that consider scaling corrections for nmax � 2
and Lmin = 9, including a variation of one error bar. The quoted
value of R∗

ξ is also in agreement with the central value of
the fits for nmax � 2, mmax = 0, and Lmin = 12, and with the
fits done without taking into account corrections to scaling,
for Lmin � 15. The final estimate of Uc is only in marginal
agreement with the estimate obtained by a extrapolating the
pseudocritical coupling Uc,Rξ,s,1/3,1/3 (L). Such a difference does
not contradict the precision of our final result for Uc because,
as discussed above, the extrapolation of Uc,Rξ,s,1/3,1/3 (L) may be
affected by a systematic error.

In Table V, we report the results of the fits of χ to Eq. (23)
for R = Rξ . We restrict the analysis to the interval Rξ ∈
[0.197,0.287], which for lattice sizes L = 9–15 corresponds to
the interval U ∈ [5.625,5.75] that we used to analyze the FSS
behavior of Rξ . We observe a small decrease of the χ2/DOF
ratio when we increase the expansion order from nmax = 1
to nmax = 2, while no appreciable difference is found upon
further increasing nmax to nmax = 3. The fits for Lmin � 9
exhibit a good χ2/DOF ratio, and the fitted value of η′ is stable
upon increasing Lmin and nmax. As done for the FSS analysis
of Rξ , in order to monitor the role of the corrections to scaling,
we repeated the fits including a correction-to-scaling term. We
fitted the data of χ to

χ (R,L) = L1−η′
(

nmax∑
n=0

anR
n + L−ω

mmax∑
m=0

bmRm

)
,

η′ ≡ η + z − 1 (33)
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TABLE V. Results of the fit of χ for the Kane-Mele-Hubbard
model to Eq. (23) (first three sets) and to Eq. (33) (last set), with
R = Rξ and Rξ ∈ [0.197,0.287]. Lmin is the minimum lattice size
taken into account.

Lmin η′ χ 2/DOF

nmax = 1 6 0.003(1) 305.5/17
9 0.059(4) 10.1/12

12 0.071(9) 5.5/8

nmax = 2 6 0.003(1) 305.2/16
9 0.068(5) 2.9/11

12 0.08(1) 0.22/7

nmax = 3 6 0.003(1) 299.8/15
9 0.068(5) 2.9/10

12 0.08(1) 0.17/6

nmax = 2 6 0.087(8) 194.9/15
mmax = 0 9 0.076(21) 2.7/10
ω = 0.785

using ω = 0.785. By conservatively judging the variation of
the results in Table V, we estimate

η′ = η + z − 1 = 0.075(20),
(34)

η = 0.075(20) (if z = 1),

where the error bar essentially includes the estimates of all
the fits. This value differs from the expected η exponent of
the 3D XY UC, η = 0.0381(2) [45]. Although the difference
is within two error bars, it suggests the presence of residual
scaling corrections that are not fully taken into account by the
present analysis.

C. π -flux Hubbard model

We carried out QMC simulations of the π -flux Hubbard
model for lattice sizes L = 8, 12, 16, 20, 24, and 28. In
Figs. 10–13 we show the RG-invariant quantities R

(1)
ξ , R

(2)
ξ ,

Rξ,s,1/2,1/2, and Rξ,s,1/2,1/4, respectively, as a function of U and
for different lattice sizes L. Inspection of Figs. 10–13 reveals

5 5.2 5.4 5.6 5.8 6 6.2
U

0.1

0.15

0.2

0.25

R
ξ(1

)

L=8
L=12
L=16
L=20
L=24
L=28

FIG. 10. (Color online) RG-invariant quantity R
(1)
ξ for the π -flux

Hubbard model. Lines are guides to the eye.
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ξ(2

)
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L=20
L=24
L=28

FIG. 11. (Color online) Same as Fig. 10 for R
(2)
ξ .

that R
(1)
ξ , R

(2)
ξ , Rξ,s,1/2,1/2 are affected by significant scaling

corrections, while reduced corrections to scaling are observed
for the RG-invariant observable Rξ,s,1/2,1/4. This observation
is confirmed by the analysis of the pseudocritical couplings. In
Fig. 14, we show Uc,R(L) as a function of 1/L, as obtained by
numerically solving Eq. (18), with R = R

(1)
ξ , R

(2)
ξ , Rξ,s,1/2,1/2,

Rξ,s,1/2,1/4 and setting c = 4. For the RG-invariant quantities
R = R

(1)
ξ , R

(2)
ξ , Rξ,s,1/2,1/2, which exhibit significant scaling

corrections, we fitted the resulting pseudocritical couplings
Uc,R(L) for L = 12, 16, 20, and 24 to Eq. (19), leaving
Uc, A, and e as free parameters. The fit results reported in
Table VI reveal a significant scatter in the extrapolated Uc.
Moreover, the χ2/DOF is in most cases large, suggesting that
these RG-invariant quantities are affected by a superposition
of competing scaling corrections that are not captured by
Eq. (19) where only the leading scaling correction has been
taken into account. Moreover, for some of the RG-invariant
observables considered here, the crossing between the lattice
sizes L = 12 and L = 16 lies outside the range of the available
MC data. In this case, the pseudocritical coupling has been
obtained by extrapolating the values of R; such a procedure
may introduce a bias, which can contribute to the observed
spread in the extrapolated critical coupling Uc. The lack of

5 5.2 5.4 5.6 5.8 6 6.2
U

0.08

0.1

0.12

0.14

R
ξ,

s,
1/

2,
1/

2

L=8
L=12
L=16
L=20
L=24
L=28

FIG. 12. (Color online) Same as Fig. 10 for Rξ,s,1/2,1/2.
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0.16
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1/

4

L=8
L=12
L=16
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L=24
L=28

5.4 5.6
U

0.13
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R
ξ,
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1/
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1/

4

FIG. 13. (Color online) Same as Fig. 10 for Rξ,s,1/2,1/4. Inset:
magnification of the data close to their crossing at U ≈ 5.5.

larger lattice sizes does not allow us to further investigate these
issues. On the other hand, the pseudocritical couplings Uc,R(L)
for R = Rξ,s,1/2,1/4 appear to converge fast to Uc. Indeed,
for L � 16, Uc,R(L) is stable within error bars, suggesting
Uc � 5.5.

Since the RG-invariant quantity Rξ,s,1/2,1/4 appears to have
reduced scaling corrections, we analyzed its FSS behavior to
determine the critical coupling Uc and the exponent ν. Similar
to the analysis in Secs. V A and V B, we considered the QMC
data in the interval U ∈ [5.25,6] around the observed common
crossing of Rξ,s,1/2,1/4 at U � 5.5 for L � 16. For this data set,
we fitted Rξ,s,1/2,1/4 to Eq. (21). In Table VII, we report the
fit results for different expansion orders nmax and minimum
lattice sizes Lmin.

The ratio χ2/DOF decreases significantly upon increasing
nmax from nmax = 1 to nmax = 2, and only marginally between

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
1/ L

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

U
c,

R
(L

)

R=Rξ
(1)

R=Rξ
(2)

R=R
s,ξ,1/2,1/2

R=R
s,ξ,1/2,1/4

FIG. 14. (Color online) Pseudocritical coupling Uc,R for the π -
flux Hubbard model and RG-invariant quantities R = R

(1)
ξ , R

(2)
ξ ,

Rξ,s,1/2,1/2, and Rξ,s,1/2,1/4. The dashed lines represent the right-hand
side of Eq. (19), with the central values of the parameters as obtained
by a fit to the right-hand side of Eq. (19) and reported in Table VI.
For R = R

(1)
ξ , R

(2)
ξ , Rξ,s,1/2,1/2, we also plot the extrapolated value of

Uc,R(L) for L → ∞. The dotted lines indicate the interval in the final
estimate of the critical coupling U = 5.50(3) as reported in Eq. (35).

TABLE VI. Results of fits of the pseudocritical couplings
Uc,R(L) to Eq. (19) for the RG-invariant observables R = R

(1)
ξ , R

(2)
ξ ,

Rξ,s,1/2,1/2.

R Uc e χ 2/DOF

R
(1)
ξ 5.36(15) 2.1(6) 1.8

R
(2)
ξ 5.21(16) 1.4(3) 0.05

Rξ,s,1/2,1/2 5.63(12) 2.9(1.8) 3.01

nmax = 2 and nmax = 3. This suggests that the Taylor expan-
sion with nmax = 2 should be adequate in this interval of U .
We find that χ2/DOF decreases upon increasing Lmin, but
remains large even for the largest Lmin used. This implies that,
within the available numerical precision, scaling corrections
are important. The limited number of data points does not allow
for a more precise analysis, e.g., by including corrections to
scaling as done in Sec. V A (only four points are available
for each L in the chosen interval). Nevertheless, Table VII
reveals that for nmax � 2, the fitted value of Uc appears to be
stable for Lmin � 16, and the fitted exponent ν is essentially
in agreement with the estimate for the honeycomb Hubbard
model ν = 0.84(4) [Eq. (28)]. Similar results are found by
analyzing the data in a smaller interval U ∈ [5.25,5.75] and
setting nmax = 1. The corresponding fit results are reported
in Table VIII. Given the difficulty in studying the FSS of
Rξ,s,1/2,1/4, we determined Uc on the basis of the pseudo-
critical couplings Uc,R(L) as computed for R = Rξ,s,1/2,1/4.
As mentioned above, Uc,R(L) for R = Rξ,s,1/2,1/4 is stable
within error bars for L � 16: we find Uc,R(L = 16) = 5.50(2),
Uc,R(L = 20) = 5.50(3), Uc,R(L = 24) = 5.51(2). Based on
these values, we arrive at the estimate

Uc = 5.50(3) , (35)

where the error bar is chosen so that Uc agrees with Uc,R(L)
for R = Rξ,s,1/2,1/4 and L � 16, including a variation of one
standard variation.

To further strengthen the hypothesis that the critical behav-
ior belongs to the same UC as for the honeycomb Hubbard
model, we produced a scaling collapse for Rξ,s,1/2,1/4. Using
the value of Uc given in Eq. (35) and the estimate of ν given

TABLE VII. Same as Table I for R = Rξ,s,1/2,1/4 and the π -flux
Hubbard model, with U ∈ [5.25,6].

Lmin Uc ν R∗
ξ,s,1/2,1/4 χ 2/DOF

nmax = 1 8 5.601(2) 0.777(4) 0.13899(3) 976.5/20
12 5.561(3) 0.836(7) 0.13796(6) 438.4/16
16 5.507(5) 0.93(2) 0.1363(1) 117.2/12
20 5.50(1) 0.91(3) 0.1361(4) 88.9/11

nmax = 2 8 5.592(2) 0.768(4) 0.13892(3) 914.2/19
12 5.554(3) 0.819(7) 0.13792(6) 383.0/15
16 5.495(5) 0.888(14) 0.1361(1) 22.7/11
20 5.49(1) 0.90(3) 0.1359(4) 21.4/7

nmax = 3 8 5.594(2) 0.724(6) 0.13890(3) 842.0/18
12 5.556(3) 0.782(9) 0.13791(6) 360.4/14
16 5.498(4) 0.85(2) 0.1361(1) 16.7/10
20 5.49(1) 0.85(4) 0.1357(4) 16.1/6
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TABLE VIII. Same as Table VII for U ∈ [5.25,5.75] and nmax = 1.

Lmin Uc ν R∗
ξ,s χ 2/DOF

8 5.596(2) 0.765(6) 0.13898(3) 867.4/14
12 5.556(3) 0.806(9) 0.13792(7) 356.3/11
16 5.503(4) 0.87(2) 0.1362(1) 20.7/8
20 5.49(1) 0.85(4) 0.1356(4) 14.7/5

in Eq. (28), we plot in Fig. 15 Rξ,s,1/2,1/4 as a function of
the scaling variable w defined in Eq. (10). Within the error
bars, the data show a collapse, consistent with the idea that
the critical behavior belongs to the Gross-Neveu-Heisenberg
UC; the largest contribution to the error bars on w is due to
the uncertainty on the exponent ν, which is responsible for the
large error bars of the largest lattice sizes.

In Table IX, we report the results of fits of χ to Eq. (23)
for R = Rξ,s,1/2,1/4, in the interval Rξ,s,1/2,1/4 ∈ [0.123,0.15]
corresponding to U ∈ [5.25,5.75] for L � 20, to U ∈ [5,6]
for L = 16, and to U ∈ [5,6.25] for L � 12. We observe that
χ2/DOF decreases significantly between nmax = 1 and nmax =
2, while a much smaller change is found between nmax = 2 and
nmax = 3. The value of χ2/DOF decreases upon disregarding
the smallest lattice size, but remains large even for Lmin = 20,
signaling the importance of scaling corrections. Indeed, the
fitted value of η′ is large, η′ ∼ 0.7, which, analogous to the
honeycomb Hubbard model, implies the presence of slowly-
decaying scaling corrections (compare with Table III). As for
the honeycomb Hubbard model, we attempted to take into
account these scaling corrections by including a background
term. The results of a fit of Rξ,s,1/2,1/4 to Eq. (24) using nmax =
2 and mmax = 1 are given in Table IX. The fitted values of η′
do not exhibit stability, and a small value of χ2/DOF is found
for Lmin = 16 only; in this case the fitted value of η′ agrees
within error bars with the estimate for the honeycomb Hubbard
model [Eq. (25)]. The available data points do not allow for a
more detailed analysis. Nevertheless, there is little doubt that

-6 -4 -2 0 2 4 6 8

w=(U-U
c
)/U

c
L

1/ν
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FIG. 15. (Color online) Scaling collapse for the RG-invariant
quantity Rξ,s,1/2,1/4 for the π -flux Hubbard model. Lines are guides
to the eye. The scaling variable w is computed using Uc as given in
Eq. (35) and ν as reported in Eq. (28).

TABLE IX. Same as Table III for the π -flux Hubbard model for
R = Rξ,s,1/2,1/4, with Rξ,s,1/2,1/4 ∈ [0.123,0.15].

Lmin η′ χ 2/DOF

nmax = 1 8 0.649(2) 4373.9/23
12 0.681(3) 2312.2/17
16 0.711(7) 692.1/11
20 0.71(2) 80.3/6

nmax = 2 8 0.679(2) 768.4/22
12 0.670(3) 239.5/16
16 0.696(7) 43.0/10
20 0.70(2) 2.1/5

nmax = 3 8 0.679(2) 765.9/21
12 0.668(4) 236.6/15
16 0.697(7) 30.3/9
20 0.71(2) 0.23/4

nmax = 2 8 0.92(2) 104.9/20
mmax = 1 12 1.14(7) 32.6/14

16 0.99(20) 7.7/8

η′ (and hence η, assuming z = 1) is large, consistent with the
Gross-Neveu-Heisenberg UC.

VI. SUMMARY

We investigated the critical behavior of the honeycomb and
the π -flux Hubbard models, as well as the Kane-Mele-Hubbard
model. Our main findings are as follows.

(i) By means of a FSS analysis that exploits RG-invariant
observables, we determined the value of the critical coupling
[Eq. (27)] and an estimate of the critical exponents ν

[Eq. (28)] and η [Eq. (25)] for the Hubbard model on the
honeycomb lattice (see Sec. V A). The critical exponents are
consistent with Gross-Neveu-Yukawa theory, in particular with
a summation of the ε-expansion to the first loop that gives
ν = 97/110 � 0.88, η = 0.8. This justifies a posteriori the
use of these critical exponents to obtain a scaling collapse in a
previous QMC study of the honeycomb Hubbard model [13],
and of the Kane-Mele-Coulomb model [30] for which the
long-range Coulomb repulsion is expected to be marginally
irrelevant [46]. On the other hand, our determination of the
critical exponents is not compatible with recent functional RG
results [42]. Our Uc is in line with the value Uc � 3.78 reported
in Ref. [13].

(ii) Most notably, the critical behavior of the Hubbard
model on the honeycomb lattice is characterized by a large
value of the η exponent. As a consequence, the singular part of
the two-point function of the order parameter decays fast as a
function of the distance, so that the short-distance nonuniversal
behavior gives a significantly large contribution to the spatial
correlations. This results in slowly decaying corrections to
scaling that originate from the analytic part of the free energy
and are characterized by a small effective correction-to-scaling
exponent ω = 0.30(15) [see the discussion after Eq. (25)]. For
comparison, for 3D classical O(N ) models η � 0.04, so that
the leading scaling correction is due to the leading irrelevant
operator, with ω ≈ 0.8 [38]. Examples of classical models
affected by slowly decaying scaling corrections are the 3D
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site-dilute and bond-dilute Ising models, where ω =
0.33(3) [43]; for this UC the currently most precise critical ex-
ponents were obtained by simulating a classical 3D spin model
with a lattice size up to L = 192 [43]. The presence of slowly
decaying scaling corrections in the Gross-Neveu-Heisenberg
UC hinders a precise determination of the exponent η.

(iii) We analyzed the critical behavior of the Kane-
Mele-Hubbard model with spin-orbit coupling λ = 0.2 (see
Sec. V B), including a determination of the critical coupling
[Eq. (30)] and the critical exponents ν [Eq. (31)] and η

[Eq. (34)]. The analysis confirms that the critical behavior
belongs to the 3D XY UC, whose critical exponents are ν =
0.6717(1), η = 0.0381(2) [45]. For this UC, the leading correc-
tions to scaling are due to the leading irrelevant operator, whose
negative RG dimension is ω = 0.785(20) [45]. Assuming that
the realization of the 3D XY UC by the Kane-Mele-Hubbard
model does not generate additional irrelevant operators with
a smaller negative RG dimension, ω = 0.785(20) [45] should
characterize the leading scaling corrections [cf. the Hubbard
model, where ω = 0.30(15), see discussion after Eq. (25)]. Our
analysis of the η exponent shows a small deviation, less than
two error bars, from the precise determination for the 3D XY
UC η = 0.0381(2) [45], suggesting the presence of residual
scaling corrections that are not fully taken into account by the
present analysis.

(iv) We analyzed the critical behavior of the π -flux
Hubbard model (see Sec. V C). Although the available MC data
do not allow for an independent determination of the critical
exponents, we provided evidence that the critical behavior is
consistent with the Gross-Neveu-Heisenberg UC.

(v) Using the notion of a pseudocritical coupling (cf.
discussion at the end of Sec. III) we determined the value
of the critical coupling Uc [Eq. (35)] for the π -flux Hubbard
model. A comparison with the corresponding value for the
Hubbard model shows an interesting relation between the two
critical couplings. By rescaling the values of Uc [Eqs. (27)
and (35)] with the geometric average of the velocities at the
Dirac cones [Eq. (4)], we obtain

Uc√
vxvy

� 4.4 (honeycomb Hubbard model),

Uc√
vxvy

� 4.2 (π -flux Hubbard model). (36)

These results suggest that the velocities at the Dirac cones are
the main contribution to the renormalization of Uc. Note that
the bandwidth W is similar (but not equal) in the two models:
W = 6 for the honeycomb Hubbard model, and W = 4

√
2 �

5.6 for the π -flux Hubbard model [15]. The residual difference
in the ratios in Eq. (36) may originate from the ratio of the two
bandwidths.

(vi) In this work, we studied the critical behavior of
the magnetic order parameter only. Recent studies of the
honeycomb Hubbard model [13] and of the π -flux Hubbard
model [15] provided evidence that the opening of the single
particle gap coincides with the onset of antiferromagnetic
order. Together with these results, our analysis supports the
validity of the Gross-Neveu-Yukawa theory, which predicts
that the fermionic and bosonic degrees of freedom become

critical at the same value of Uc, resulting in a direct transition
between a semimetallic phase and an antiferromagnetic state.

(vii) Our FSS analysis exploited RG-invariant observables
defined as ratios ξ/L of the finite-size correlation length ξ

and the system size L. In a finite system, there is no unique
definition of ξ , and we defined several correlation lengths
that are inequivalent in the FSS limit (see Appendix A). This
freedom in the definition of ξ leads us to several RG-invariant
observables, some of them approximately improved, i.e.,
showing significantly reduced scaling corrections. Improved
observables and improved models are instrumental in high-
precision studies of critical phenomena [38].
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APPENDIX A: FINITE-SIZE CORRELATION LENGTH

1. Regular lattices

On an infinite lattice with dimension d, the second-moment
correlation length ξ is defined as

ξ 2 ≡ 1

2d

∑
�x |�x|2C(�x)∑

�x C(�x)
, (A1)

where the sum is over the points �x on the lattice, C(�x) is
the two-point function of the order parameter, and |�x| is the
Euclidean length of the vector �x. Here, we assume that the
order parameter is a local quantity defined in terms of the
observables on a single lattice site �x. Equation (A1) can be
written as

ξ 2 = − 1

2dC̃( �p = 0)

∑
i

∂2C̃( �p)

∂pi∂pi

∣∣∣∣
�p=0

, (A2)

where C̃( �p) is the Fourier transform of C(�r),

C̃( �p) ≡
∑

�r
ei �p�rC(�r), (A3)

and the derivatives of C̃( �p) in Eq. (A2) are taken with respect
to the Euclidean basis, or with respect to another orthonormal
basis. In the following, we specialize the discussion to the
case d = 2, i.e., of a two-dimensional lattice. An extension to
higher-dimensional lattices is straightforward.

In a finite lattice with size L, there is not a unique definition
of ξ , but, in the presence of periodic boundary conditions
one can substitute the derivative in Eq. (A2) with a finite
incremental ratio calculated on the smallest momentum of the
lattice pmin ∼ 1/L. To this end, we first analyze the properties
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of the Taylor expansion of C̃( �p) for �p → 0,2

C̃( �p) = C̃(0) + gxpx + gypy + gxxp
2
x

+ gxypxpy + gyyp
2
y + O(p4), (A4)

where px , py are the components of �p in the Euclidean basis
(in general not coinciding with the reciprocal lattice basis).
The symmetries of the lattice constrain the coefficients gi , gij

in Eq. (A4). In fact, the invariance under a rotation by an angle
θ , described by(

px

py

)
→

(
cos θ − sin θ

sin θ cos θ

)(
px

py

)
(A5)

with θ �= 0, π requires the coefficients to satisfy

gx = gy = gxy = 0, gxx = gyy ≡ A, (A6)

so that Eq. (A4) can be simplified to

C̃( �p) = C̃(0) + A
(
p2

x + p2
y

) + O(p4). (A7)

Equation (A7) holds, in particular, for the square lattice (θ =
π/2) and for the triangular lattice (θ = 2π/3). By inserting
Eq. (A7) in (A2), we find (d = 2)

ξ 2 = − A

C̃(0)
, (A8)

so that the expansion of Eq. (A7) can be expressed as

C̃( �p) = C̃(0)
[
1 − ξ 2

(
p2

x + p2
y

)] + O(p4). (A9)

Then, for any function �( �p) that has a Taylor expansion of the
form

�( �p) = p2
x + p2

y + O(p4), (A10)

we find that

1

�( �p)

[
C̃(0)

C̃( �p)
− 1

]
= ξ 2 + O(p2), �p → 0. (A11)

This result suggests to define, on a finite lattice with size L,
the correlation length ξ (L)2 as

ξ (L)2 ≡ 1

�( �pmin)

[
C̃(0)

C̃( �pmin)
− 1

]
, (A12)

where �pmin is the minimum momentum on a lattice of size
L. In a two-dimensional lattice, there are two such minimum
momenta where, by virtue of the lattice symmetry, C̃( �p) takes
the same value. For simplicity, in Eq. (A12), we neglected a
possible dependence of ξ (L) on additional parameters of the
model, such as the Hubbard coupling U or the temperature.
A comparison of Eq. (A11) with Eq. (A2) shows that for
L → ∞, the finite-size correlation length ξ (L) coincides with
the second-moment correlation length ξ up to corrections of
order ∼ p2

min ∼ 1/L2.

2Even if the Fourier transform C̃( �p) is not analytic, we can still
regard the expansion of Eq. (A4) as describing the small-momentum
behavior of a system with a large but finite size L, where the smallest
momentum of the lattice pmin ∼ 1/L. In fact, all we need for the FSS
analysis is to provide a definition of ξ such that the ratio ξ/L is RG
invariant and the finite-size correlation length ξ (L) is analytic in an
interval around the critical point.

The choice of �( �p) to be used in Eq. (A12) is usually
dictated by the solution of a Gaussian model on the same
lattice. For such a model, the Fourier transform of the two-point
function can be determined as

C̃( �p) = C̃(0)

1 + ξ 2�( �p)
, (A13)

where the function �( �p) depends on the lattice, its normaliza-
tion is fixed by Eq. (A10) and, in agreement with Eq. (A9), the
coefficient in front of �( �p) is equal to the second-moment
correlation length. Inverting Eq. (A13), we find that for a
Gaussian model ξ is exactly given by

ξ 2 = 1

�( �p)

[
C̃(0)

C̃( �p)
− 1

]
. (A14)

For an interacting model on a finite regular lattice, we can
use the definition of Eq. (A12) for the finite-size correlation
length ξ (L) and replace �( �p) with the function obtained for
the Gaussian model on the same lattice. With this choice,
the definition of Eq. (A12) gives exactly the second-moment
correlation length in the case of a Gaussian model. A different
choice of �( �p), with the same normalization of Eq. (A10),
would give rise to different corrections ∝ 1/L2, which are in
any case negligible compared to the leading scaling correction.

For a square lattice, the function �( �p) is

�( �p) = 4

[
sin

(
px

2

)2

+ sin

(
py

2

)2
]

. (A15)

The direct lattice basis {�a1,�a2} and the reciprocal one {�b1,�b2}
of the square lattice are

�a1 =
(

1
0

)
, �a2 =

(
0
1

)
, �b1 =

(
0
1

)
, �b2 =

(
1
0

)
, (A16)

where the lattice constant has been set to 1 and the basis has
been normalized such that

�ai · �bj = δij . (A17)

On a finite lattice with size L, the two minimum momenta
are �pmin = (2π/L)�b1 = (2π/L,0) and �pmin = (2π/L)�b2 =
(0,2π/L). For these momenta, �( �p) takes the value

�( �pmin) = 4 sin(π/L)2. (A18)

For a triangular lattice, the function �( �p) is reported in
Appendix A of Ref. [47]:

�( �p) = 4

{
1 − 1

3

[
cos(px) + 2 cos

(
px

2

)
cos

(√
3py

2

)]}
.

(A19)
The direct and reciprocal bases of the triangular lattice are

�a1 =
(

1
0

)
, �a2 =

( 1
2√
3

2

)
, �b1 =

(
1

− 1√
3

)
, �b2 =

(
0
2√
3

)
,

(A20)
with the same normalization as in Eq. (A17). On a finite
lattice with size L, the two minimum momenta are �pmin =
(2π/L)�b1 = (2π/L, − 2π/

√
3/L) and �pmin = (2π/L)�b2 =

(0,4π/
√

3/L). For these momenta, �( �p) takes the value

�( �pmin) = 16
3 sin(π/L)2. (A21)
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The fact that �( �p) takes the same value for the two minimum
momenta for both lattices considered here is a direct conse-
quence of the invariance under the symmetry of Eq. (A5) with
θ = π/2 for the square lattice, and θ = 2π/3 for the triangular
lattice.

2. Honeycomb lattice

Since the honeycomb lattice can be considered as a
triangular lattice where the elementary cell has two sites, the
two-point function C(�x) of a local order parameter constructed
on a single elementary unit cell can be defined so that its
domain is a triangular lattice, i.e., �x = n1�a1 + n2�a2, with the
lattice basis {�a1,�a2} given in Eq. (A20). However, different
than in the case of a triangular lattice, the two-point function
C(�x) may not be invariant under the rotation of Eq. (A5) with
θ = 2π/3. In fact, such a symmetry holds for some choices of
the order parameter only. If the local order parameter φ(�x) in
the unit cell �x is defined in terms of observables at lattice site
�xA (�xB) that belongs to the A (B) sublattice, then effectively
the two-point function C(�x) is invariant under the rotation
group of the triangular lattice, i.e., the rotation of Eq. (A5)
with θ = 2π/3. For instance, this is the case when the order
parameter is the A or B sublattice magnetization. In this work,
we have considered the antiferromagnetic order parameters
given in Eqs. (5) and (6). For these local order parameters,
which involve a combination of the A and B sublattice
magnetization, the two-point function C(�x) is not invariant
under a rotation by θ = 2π/3. The reason lies in the ambiguity
in defining the elementary unit cell of the honeycomb lattice.
As illustrated in Fig. 16, there are three possible choices for
defining the elementary unit cell; a rotation by θ = 2π/3 maps
one possible unit cell to another.

The absence of the lattice rotational symmetry for C(�x)
requires a generalization of the arguments given in Ap-
pendix A 1. To this end, let us consider in full generality a
finite lattice that extends over L1 (L2) lattice unit cells in the
direction parallel to �a1(�a2). For such a lattice, there are two
minimum momenta

�p(1)
min = 2π

L1

�b1 =
(

2π

L1
, − 2π√

3L1

)
, (A22)

�p(2)
min = 2π

L2

�b2 =
(

0,
4π√
3L2

)
. (A23)

FIG. 16. A portion of a honeycomb lattice, which can be
considered as a triangular lattice with a unit cell of two sites. The filled
(empty) circles are sites on the A (B) sublattice. The ellipses indicate
three possible choices for the unit cell. Rotations by θ = 2π/3 map
the possible choices for the unit cell onto each other.

A straightforward generalization of Eq. (A12) consists in
defining a finite-size correlation length ξ (i)(L) for each
principal direction i = 1,2 as

ξ (i)(L)2 ≡ 1

�
( �p(i)

min
) [

C̃(0)

C̃
( �p(i)

min
) − 1

]
, i = 1,2 (A24)

where �( �p) is given in Eq. (A19). Even if, due to the lack of
the lattice rotational symmetry, C̃( �p(1)

min) �= C̃( �p(2)
min), for L1 =

L2 = L it is possible to define an averaged correlation length
by taking the mean value of C̃( �p) over the two minimum
momenta:

ξ (L)2 ≡ 1

�( �pmin)

[
C̃(0)

(
C̃

( �p(1)
min

) + C̃
( �p(2)

min
))

/2
− 1

]
. (A25)

For L1 = L2 = L, �( �p) takes the same value given in
Eq. (A21) at the two minimum momenta �p(1)

min and �p(2)
min (see

the discussion at end of Appendix A 1). The definition of ξ (L)
given in Eq. (A25) corresponds to a generalized f -mean value
of ξ (1)(L) and ξ (2)(L),

ξ (L) = f −1

(
f (ξ (1)(L)) + f (ξ (2)(L))

2

)
, (A26)

where f (x) is a monotonic positive function

f (x) = 1

1 + x2�( �pmin)
. (A27)

Moreover, if ξ (i)/L are RG-invariant quantities, then ξ/L is
also an RG-invariant observable.

3. Correlation length from real-space correlations

An alternative definition of the finite-size correlation length
can be obtained by directly considering Eq. (A1) and extending
the sum over the (finite) set of lattice sites. With periodic
boundary conditions, such a prescription does not uniquely
fix the definition of ξ . To be specific, as in Appendix A 2,
we consider a finite lattice that extends over Li lattice sites
in the direction parallel to �ai , with i = 1,2. With periodic
boundary conditions, the two-point function satisfies C(�x) =
C(�x + nL1�a1 + mL2�a2) for arbitrary integers n and m. How-
ever, the Euclidean length |�x| in Eq. (A1) is not invariant
under translations. This leaves us the freedom to define the
correlation length as a sum over �x = n1�a1 + n2�a1, where ni

runs over −(Li − 1) + li , − (Li − 1) + li + 1, . . . ,li − 1,li ,
with arbitrary li . In order to have a nontrivial FSS limit, the
maximum value of the index li must be proportional to Li .

These considerations lead us to define a finite-size correla-
tion length ξs,κ,ρ(L) as

ξs,κ,ρ(L)2

≡

∑
(−1 + κ)L1 + 1 � n1 � κL1
(−1 + ρ)L2 + 1 � n2 � ρL2

|n1�a1+n2�a2|2C(n1�a1+n2�a2)∑
0 � n1 � L1 − 1
0 � n2 � L2 − 1

C(n1�a1 + n2�a2)
.

(A28)

We note that, by virtue of the aforementioned translational
invariance, in the denominator of Eq. (A28) a shift of the
sum as done for the numerator does not change the result. In
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Eq. (A28), the choice of κ = ρ = 1
2 corresponds to defining

the distance |�x| as the minimum one.
Although in the infinite-volume limit L1,L2 → ∞ at fixed

U the correlation lengths as defined in Eqs. (A28) and (A12)
converge to the same observable, in the FSS limit these
definitions of ξ , as well as those given in Eqs. (A24) and (A25),
correspond to different observables. As a consequence, the cor-
responding ratios ξ/L constructed with the various definitions
of ξ [see Eqs. (11)–(15)] correspond to different RG-invariant
quantities. This in particular affects the corrections to scaling
which, as shown in Sec. V, can be significantly different. In
particular, setting κ = ρ = 0 in Eq. (A28) gives rise to a large
contribution of the numerator when |�x| ≈ L1,L2 because, for
such values of �x and due to the periodic boundary conditions,
C(�x) ≈ C(0). This results in a large background term due to
the nonuniversal short-distance part of the correlation function
that gives rise to large corrections to scaling.

Finally, we observe that Eq. (A28) is correctly defined only
when κL1 and ρL2 are integer numbers. In order to be able to
extrapolate to the FSS limit, this property must hold for every
lattice size. Such limitations on the values of κ and ρ, together
with the limitations on the lattice sizes that can be simulated
(see Sec. IV), further limit the applicability of Eq. (A28) for
generic values of κ and ρ. For the honeycomb Hubbard and
the Kane-Mele-Hubbard models, we simulated lattices with
L1 = L2 = L, with L being a multiple of 3. For this reason,
we employed the definition in Eq. (A28) with κ = ρ = 1

3 . In
the case of the π -flux Hubbard model, we simulated lattices
with L1 = L/2 and L2 = L, with L being a multiple of 4. This
leads us to either choose κ = ρ = 1

2 or κ = 1
2 and ρ = 1

4 , the
latter giving rise to smaller scaling corrections (see Sec. V C).

APPENDIX B: FINITE-SIZE SCALING ANALYSIS OF χ AT
FIXED U FOR THE HONEYCOMB HUBBARD MODEL

In order to further assess the reliability of the results of
Sec. V A and the overall consistency of the estimates of the
critical exponents for the honeycomb Hubbard model, we
analyzed the FSS behavior of χ as a function of U and L,
as we did for the RG-invariant quantity Rξ,s,1/3,1/3. To this
end, we consider a Taylor expansion of the right-hand side of
Eq. (9). Neglecting scaling corrections, we fit our data for χ to

χ (U,L) = L1−η′
nmax∑
n=0

an(U − Uc)nLn/ν, (B1)

leaving η′, {an} as free parameters, and using the values of
Uc and ν as given by Eqs. (27) and (28). We repeat the fit by
varying Uc and ν within one error bar as quoted in Eqs. (27)
and (28). As in the FSS analysis of Rξ,s,1/3,1/3, we restrict the
analysis to values U ∈ [3.6,4] and systematically disregard the
smallest lattice sizes. The fit results are reported in Table X.
Inspection of the results reveals a significant decrease of
the χ2/DOF ratio when we increase nmax from nmax = 1 to
nmax = 2, and a smaller decrease in χ2/DOF when nmax is
further increased to nmax = 3. Such a decrease in the χ2/DOF
ratio is even less statistically relevant if we take into account the
oscillations in the value of χ2/DOF due to the uncertainty in Uc

and ν. Moreover, the fitted values for nmax = 2 and nmax = 3
are in agreement with each other, suggesting that within the sta-

TABLE X. Results of the fit of χ for the honeycomb Hubbard
model to Eq. (B1) (first three sets) and to Eq. (B2) (last two sets), for
U ∈ [3.6,4]. The critical exponent η′ is defined as η′ ≡ η + z − 1,
with η′ = η if z = 1. Lmin is the minimum lattice size taken into
account in the fits. In the quoted error bars for η′, the first number
reports the statistical precision as obtained from the fit, while the
second number gives the sum of the maximum variation in the results
upon varying Uc and upon varying ν within one error bar, as quoted
in Eqs. (27) and (28). The corresponding maximum oscillation of χ2

is reported between parentheses after its central value.

Lmin η′ χ 2/DOF

6 0.7154(8+79) 2832(985)/22
nmax = 1 9 0.696(1+11) 1902(481)/17

12 0.671(3+14) 894(107)/12

6 0.7359(9+94) 644(519)/21
nmax = 2 9 0.735(2+12) 383(271)/16

12 0.731(4+13) 110(67)/11

6 0.7324(9+85) 213(167)/20
nmax = 3 9 0.731(2+11) 129(77)/15

12 0.734(4+15) 45(20)/10

nmax = 2 6 0.887(7+72) 142(87)/20
mmax = 0 9 0.93(1+8) 24.2(10.3)/15

nmax = 2 6 0.78(1+6) 84(29)/19
mmax = 1 9 0.83(5+7) 19(6)/14

nmax = 2 6 0.79(2+5) 80(31)/18
mmax = 2 9 0.79(5+6) 17.3(3.4)/13

tistical accuracy a Taylor expansion with nmax = 2 is sufficient
to describe the data. We also observe that the main contribution
to the error bars is due to the uncertainty in Uc and ν.

In line with the findings of Table III, even considering the
maximum oscillation of χ2/DOF upon variation of Uc and ν

within one error bar as quoted in Eqs. (27) and (28), all of
the fits have a large χ2/DOF. This confirms the importance
of scaling corrections. To monitor their role, we repeat the fits
including a scaling correction in the form of a background
term [see Eq. (24)]. To this end, we use

χ (U,L) = L1−η′
nmax∑
n=0

an(U − Uc)nLn/ν

+
mmax∑
m=0

bm(U − Uc)m. (B2)

Fit results for nmax = 2 and three values of mmax are shown in
Table X. Upon increasing mmax from mmax = 0 to mmax = 1,
we observe a decrease in the χ2/DOF ratio that is, however,
less significant if we consider the oscillation in the value of
χ2/DOF due to the uncertainty in Uc and ν. A further increase
of mmax to mmax = 2 does not significantly change the χ2/DOF
ratio. Accordingly, the expansion with nmax = 2, mmax = 1
should adequately describe the data. The corresponding fits
exhibit a small χ2/DOF for Lmin = 9, and the resulting value
of η′ = 0.83(12) is in agreement with the estimate of Eq. (25).
Moreover, this value agrees with the fit for Lmin = 6, and also
with the fits obtained by setting nmax = mmax = 2.
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