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Spontaneous layer polarization and conducting domain walls in the quantum Hall
regime of bilayer graphene
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Bilayer graphene subjected to perpendicular magnetic and electric fields displays a subtle competition between
different symmetry-broken phases, resulting from an interplay between the internal spin and valley degrees of
freedom. The transition between different phases is often identified by an enhancement of the conductance. Here,
we propose that the enhanced conductance at the transition is due to the appearance of robust conducting edge
states at domain walls between the two phases. We formulate a criterion for the existence of such conducting
edge states at the domain walls. For example, for a spontaneously layer polarized state at filling factor ν = 2,
domain walls between regions of opposite polarization carry conducting edge modes. A microscopic analysis
shows that lattice-scale interactions can favor such a layer polarized state.
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I. INTRODUCTION

Bilayer graphene (BLG) is a rich playground to explore
many-body physics [1]. At zero magnetic field, the energy
bands exhibit a quadratic touching that can lead to a variety
of many-body instabilities [2–10]. Signatures of a symmetry-
broken ground state at B = 0 have been observed experimen-
tally [11–15], although the precise nature of this state is still
debated. When a magnetic field is applied perpendicular to
the system, the Landau levels are highly degenerate, including
spin, valley, and (for the zeroth Landau level) also an orbital
degree of freedom [16]. This degeneracy can be lifted by
exchange interactions[12,15,17–19], leading to different kinds
of broken-symmetry states [20–22]. Which state is favored
depends on the nature of the lattice-scale interactions between
electrons, which break the approximate SU(4) symmetry in
spin and valley space.

In BLG, an electric field perpendicular to the plane
couples to the valley degree of freedom of the Landau
levels. Upon tuning the strength of the magnetic and electric
perpendicular fields (B and E, respectively) at a fixed filling
fraction, transitions between different ordered states can be
induced [12,19,23,24]. These transitions are identified by
peaks in the conductance along lines in the (E,B) plane. The
mechanism for this enhanced conductance at the transitions
remains unexplained. These transitions are expected to be of
first order in the clean limit; they are described as a level
crossing of different ground states, without closing of the
energy gap above these two states, and hence there is no
obvious reason for an enhancement of the conductance.

In this paper, we propose that the enhanced conductance
at the transitions can result from the appearance of robust
one-dimensional conducting modes at domain walls between
different phases. The possibility of the appearance of such
(nonchiral) modes, either at the edge of the sample or at
domain walls, has been proposed in Refs. [8,25–36]. These
edge states are partially protected against backscattering by
the approximate conservation of either the spin or pseudospin
(valley) quantum numbers, and are robust in the presence of
electron-electron interactions. Evidence for such edge states
has been observed under a high in-plane magnetic field [37].

We formulate a simple criterion for robust edge states at
domain walls between two quantum Hall ferromagnetic phases
with the same filling fraction, based on their symmetry
properties and their quantum numbers.

As an example, we analyze the case of ν = 2 at E = 0.
In this case, to leading approximation, the partially filled
Landau levels have an SU(2) valley (pseudospin) degree of
freedom [38,39]. This symmetry is broken either by an applied
electric field or by lattice scale interactions. We argue that the
experimental findings of Wietz et al. [12] are consistent with a
spontaneously layer polarized phase [an easy axis ferromagnet,
in terms of the SU(2) pseudospin]. The domain walls between
regions of opposite polarization support conducting edge
modes [26,30]. At E = 0, the domain walls percolate, leading
to an enhanced conductance. We present a Hartree-Fock
analysis of a microscopic model, and demonstrate how such
a layer polarized phase can be favored over other possible
broken-symmetry states in the physically relevant regime of
parameters. Interestingly, to obtain such a phase, it is essential
to treat all the Landau levels explicitly, rather than projecting
to the partially filled zero-energy Landau levels.

II. SETUP

We consider a BLG sheet in the Bernal stacking. The low-
energy single particle effective Hamiltonian is written as [16]

H0 = − 1

2m

(
0 (πx − iτ zπy)2

(πx + iτ zπy)2 0

)
. (1)

Here, m is the effective mass of the bands near zero energy, and
πi = −i∂i − eAi (i = x,y) where �A is the vector potential. �τ
are Pauli matrices acting on the valley index, such that τ z = ±1
corresponds to the ±K point in momentum space, where
K = (−4π/3

√
3a0,0), and a0 is the inter-atomic spacing

within each layer. We set the units such that � = c = 1. The
2 × 2 Hamiltonian acts on the spinor (ψA,ψB), where ψA(B)

annihilates an electron on sublattice A (B) in the bottom (top)
layer, respectively. We define the eight-component spinor �,
that contains annihilation operators in layer μz = ±1, valley
τ z = ±1, and spin sz = ±1.
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In the presence of a uniform orbital magnetic field, the
single particle spectrum consists of a series of Landau levels
whose energies are En = ±ωc

√
n(n − 1), where ωc ≡ eB/m

and n = 0,1, . . . [16]. Each Landau level is fourfold degen-
erate, with two possible valley labels, τ z = ±1, and two spin
labels, sz = ±1 (neglecting the Zeeman splitting). In addition,
the n = 0,1 Landau levels are degenerate.

We write the full Hamiltonian as

Ĥ = Ĥ0 + ĤZ + ĤC. (2)

Here, Ĥ0 = ∫
d2r�†(r)H0�(r), ĤZ = −gμBB

∫
d2r�†sz�

is the Zeeman coupling, and ĤC is the Coulomb interaction
(to be discussed below).

When some of the zero-energy Landau levels are empty, the
system tends to form a quantum Hall ferromagnetic state which
breaks the symmetry in spin and valley space, in order to gain
Coulomb exchange energy. At the lowest Landau level, where
there is an additional orbital (n = 0,1) degeneracy, maximum
exchange is gained by filling the n = 0,1 orbitals together
with the same state in τ , s space [38,39]. We will assume that
this form of “Hund’s rule” is obeyed below, although it is not
essential for the general criterion for conducting edge states
between different phases.

The filling fraction ν is defined as the number of electrons
per flux quantum, with respect to the charge neutral state. The
ν = 0 quantum Hall state is determined by two orthogonal
spinors in spin/valley space, χ1 and χ2, such that of the
eight degenerate zero-energy Landau levels, four are occupied:
|χi,n〉 with i = 1,2 and n = 0,1 [21]. Similarly, the ν = 2 state
is determined by a single spin/valley spinor χ , such that of the
E = 0 Landau level states, only the states |χ,n〉(n = 0,1) are
empty [see Fig. 1(c)]. At a given filling fraction, there is a
manifold of possible states; this degeneracy is lifted by the
Zeeman field, and applied electric field perpendicular to the
sheet (which breaks the degeneracy between the layers), and
by the short-range exchange interactions.

III. CONDITION FOR CONDUCTING MODES
AT DOMAIN WALLS

As external parameters are varied at a fixed filling fraction,
the system can undergo phase transitions between different
ordered states in spin/valley space. If disorder effects are
ignored, these transitions are generically of first order. At the
transition point, we expect a phase mixture of two phases.

Consider a domain wall between two such phases. Here, we
discuss a sufficient condition for the appearance of conducting
edge states at the domain wall. Our condition is formulated
as follows: Suppose that the two phases on either side of the
domain wall are invariant under a common U (1) symmetry
generated by an operator Ĝ in spin and/or valley space. (The
symmetry could be generated by sz, τ z, or some combination of
the two.) Define the weighted filling fraction ν̃ = ∑

j∈filled qj ,
where j runs over the filled states, and qj is the charge of the
state j under Ĝ. If ν̃ of the two phases is different, there is
necessarily a gapless edge state at the domain wall between
them. This edge state is robust in the presence of arbitrary
interactions and disorder, as long as they preserve Ĝ. For
instance, if Ĝ = τ z, the edge states will be protected as long
as we neglect lattice-scale disorder that causes intervalley

FIG. 1. (Color online) (a) The staggered flux (STF) phase. In
this phase, translational symmetry is spontaneously broken, and
there is a spontaneous staggered flux between the two graphene
sheets. The order parameter can be described as a complex hopping
amplitude between the A sublattice of the bottom layer and the B
sublattice of the top layer. (b) The fully layer polarized (FLP) phase,
which breaks inversion symmetry spontaneously. The electrons in
the n = 0,1 Landau levels with spin antiparallel to the external
magnetic field occupy a single valley (and a single layer). (c) Energies
of the Landau levels at filling factor ν = 2. Ignoring the Zeeman
splitting and electron-electron interactions, there are eight degenerate
zero-energy Landau levels, corresponding to spin, valley, and orbital
(n = 0,1) indices. The exchange interactions favor a ferromagnet in
spin and valley manifold with equal occupancy of n = 0,1 orbitals.
The Zeeman coupling picks a direction for spin and splits the spin
degeneracy. Finally, exchange interactions spontaneously split the
remaining valley degeneracy, favoring a spinor |χ̄〉 in valley space
over the orthogonal spinor |χ〉. (d) Ground-state mean-field phase
diagram for ν = 2 as a function of JH and 
V [see Eq. (3)].
The other coupling constants were fixed as follows: U = V1 = V0

and V2 = V3. The phase boundaries between the FLP and the STF
phases are shown for different dimensionless coupling strengths:
mV0/�

2 = 0.025,0.07,0.125.

scattering, and the domain wall itself is sufficiently smooth.
The conductance of the edge state is given by 
ν̃e2/2h, where

ν̃ is the difference of ν̃ between the two phases.

A simple way to understand the existence of a gapless edge
state is to define the Hall conductance related to the conserved
U (1) charge under Ĝ. We introduce a vector potential �AG

that couples to the charge under Ĝ, by substituting −i�∂ →
−i�∂ − Ĝ �AG in Ĥ0. The response of the current �jG = ∂Ĥ/∂ �AG

to an applied electric field in the plane, described by the
“Ĝ Hall conductance” σH

G , is quantized (this is analogous
to the spin Hall conductance in a quantum spin Hall state with
conserved spin [40,41]). Phases with different ν̃ correspond
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to different σH
G , and must have gapless edge states between

them. This argument is expected to hold in the presence of
arbitrary interactions and disorder, as long as the symmetry
Ĝ is preserved and the gap in the bulk of both phases is
maintained.

For example, consider the state with filling factor ν = 2,
specified by the four-component spinor χ defined above. The
Zeeman coupling favors a particular spin component, say
sz = 1. To specify the state, the spinor χ in valley space
remains to be determined. Lattice-scale exchange interactions
will select either a spontaneously layer-polarized state with
〈�τ 〉 ‖ ẑ, or an in-plane polarized phase with 〈�τ 〉 ⊥ ẑ. If the
layer-polarized state is favored, then domain walls between
the τ z = ±1 phases carry nonchiral edge states. These edge
states are robust as long as we can neglect intervalley scattering
(which requires the domain wall to be smooth on the lattice
scale; see the next section for a discussion of the characteristic
length scale of the domain walls), and remain so for arbitrary
interactions. The edge states have conductance of 2e2/h

(where the factor of 2 is due to the orbital degeneracy). The
in-plane state breaks a continuous symmetry; in this phase,
there are no sharp domain walls. If weak intervalley scattering
disorder is present, the valley polarization is locally pinned by
the disorder, and twists gradually in space.

Physically, the in-plane polarized state breaks translational
symmetry spontaneously, while the valley polarized state
breaks inversion symmetry. On the lattice scale, the former
is described as a “staggered flux” (STF) state, and the latter is
a “fully layer polarized” (FLP) state [see Figs. 1(a) and 1(b)].

IV. HARTREE-FOCK ANALYSIS FOR ν = 2

The long-range part of the Coulomb interactions is sym-
metric in spin and valley space, and therefore it does not lift
the degeneracy between the layer-polarized and the in-plane
polarized states. The degeneracy is lifted by short-range
(lattice-scale) exchange interactions. In order to analyze the
competition between these phases, we use the following form
for the short-range exchange Hamiltonian:

Ĥex =
∫

d2r

{
V0n

2 +
∑

μ

[∑
τ

Unμτ↑nμτ↓ + V1nμ,Knμ,K ′

− JH
�Sμ,K · �Sμ,K ′

]
+

∑
τ

V2n1,τ n−1,τ

+ V3

∑
μ

nμ,Kn−μ,K ′

}
. (3)

Here, nμτs = ψ
†
μτsψμτs (μ = ±1, τ = K,K ′, s = ↑,↓ are

layer, valley, and spin indices, respectively, and we have
suppressed the spatial argument �r for brevity), nμτ = ∑

s nμτs ,
n = ∑

τ,μ nτμ, and [�Sμτ ]s,s ′ = ψ
†
μτs �σss ′ψμτs ′ where �σ are

Pauli matrices. V0 is the part of the Coulomb interactions
which are isotropic in layer, valley, and spin space; U is the
strength of the interaction between two electrons in the same
layer and valley; V1 is an intervalley, same-layer coupling
constant; JH is an intervalley Hund’s rule coupling constant;
and the V2 (V3) terms describe interlayer, intra- (inter)valley

interactions, respectively. For simplicity, we have assumed
that the spatial overlap between wave functions of electrons in
different layers is small, so we can neglect interlayer exchange
interactions. On general grounds, we expect the following
relations between the interactions: V0 � U � V1 > JH > 0,
U > V2 � V3 > 0. (For more discussion of the microscopics
of the exchange interactions, see Appendix A.)

We now proceed to perform a mean-field analysis on
the Hamiltonian Ĥ = Ĥ0 + ĤZ + Ĥex. Interestingly, upon
projection to the partially filled Landau level, the exchange
Hamiltonian (3) does not lift the degeneracy between the
layer-polarized and the in-plane polarized states at ν = 2. This
is because the partially filled Landau level is fully polarized
in spin and valley space; therefore, 〈Ĥex〉 = 0 independent
of the direction of polarization. In the following, we avoid
projecting to the lowest Landau level, and treat the entire
Landau spectrum. The contribution of the n > 1 Landau levels
to the susceptibility in the particle-hole channel is divergent
in the limit B → 0, due to the quadratic band touching in the
underlying dispersion. This implies that the contribution of the
higher (occupied and unoccupied) states to the energetics is
significant.

To estimate the ground-state energies of the different states,
we use a variational Hamiltonian of the form,

ĤMF = Ĥ0 + ĤZ −
∫

d2r
∑
α,β,ζ

λ
(ζ )
αβ�†ματβ 1 + ζ sz

2
�, (4)

where α,β = 0,x,y,z and ζ = ±1. The parameters λ
(ζ )
αβ are

chosen to minimize 〈Ĥ 〉MF (see Appendixes B and C for
details).

Symmetry can be used to reduce the number of variational
parameters. We assume that none of the candidate states
break spin rotational symmetry around the z axis. The fully
layer polarized (FLP) state breaks lattice inversion sym-
metry, represented by Î = μxτx × (�r → −�r), but preserves
translational symmetry and threefold rotational symmetry,
R̂2π/3 = exp(2πiμzτ z/3) × (�r → R�r), where R is a 2 × 2
rotation matrix (Appendix B 1). The only mean-field terms
that are consistent with these symmetries are {μz,τ z,μzτ z}FLP.
The staggered flux (STF) phase breaks translational sym-
metry, but preserves R̂2π/3 around a certain threefold axis
and Î . The allowed mean-field terms in this phase are
{μxτx,μyτ y,μzτ z}STF. Interestingly, the set of mean-field
terms in the FLP phase are mapped onto those of the STF phase
under a unitary transformation given by Û = exp(i π

4 μxτy),
which also leaves Ĥ0 invariant. Therefore, interactions that
are invariant under Û [e.g., the V0 term in (3), or long-range
Coulomb interactions] do not lift the degeneracy between the
FLP and STF phases.

The explicit evaluation of 〈Ĥ 〉MF and the minimization over
λ

(ζ )
αβ is tedious but straightforward, and will be deferred to

Appendixes B, C, and D. We will quote some of the results
here. The instability towards either an FLP or STF phase occurs
for any nonzero strength of the interactions, as a result of
the flatness of the Landau levels. The difference in ground-
state energy between the FLP and STF states can be found
analytically in the limit of weak interactions. In this limit, the
energy difference per unit area 
E ≡ ESTF − EFLP is given
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by


E = χ0

�4
B

[(
V0

2
+ U

4

)
JH −

(
V0

2
+ 2V3 − U

4

)

V

+ 1

8

[
2J 2

H + (U − V3)2 + 2(
V )2
]]

, (5)

where 
V = V1 − V2, �B = √
�/eB, and χ0 = m

π

∑N
n=2

ωc

En

(N = Ec/ωc, where Ec is a high-energy cutoff of the theory).
The ground state is the FLP state when 
E > 0, which occurs
when JH is larger than a critical value of the order of 
V .

Figure 1(d) shows the phase diagram as a function of
JH and 
V . We have fixed the ratios between all the other
coupling constants, and present results for different values
of the dimensionless interaction parameter mV0. For weak
interactions [where Eq. (5) applies], the FLP phase is favored
for large JH , whereas the STF phase is the ground state for
small JH and an intermediate range of 
V . As the interaction
strength increases, the region of the FLP phase expands
(A naive estimate of the realistic interaction strength gives
mV0 ∼ 1). These findings do not depend sensitively on the
precise values of the other coupling constants.

In the above analysis, we have disregarded the long-range
part of the Coulomb interaction, and treated only contact
(exchange) interactions (whose range is of the order of the
short distance cutoff, a ≡ 1/

√
mEc). As already noted, the

1/r part of the Coulomb interaction is symmetric in spin and
valley space, and does not distinguish the FLP and STF phases.
The dipole-dipole term, which falls as 1/r3, favors the STF
phase (since it opposes layer polarization). However, a simple
estimate shows that the dipolar energy per unit area, Ed ∼
e2d2/�5

B (where d is the interlayer spacing), is suppressed by
a factor of ∼d2/a�B � 1 compared to the exchange energy
difference between the two phases, Eq. (5) (taking e2a as the
typical magnitude of the exchange couplings). Therefore, the
long-range dipolar interaction is typically negligible.

Finally, we comment on the structure of the domain walls
between two oppositely polarized regions in the FLP phase.
The “easy axis” anisotropy energy is of the order of e2a per
unit area, whereas the stiffness of the valley pseudospin �τ is
∼e2/�B . Dimensional analysis gives that the domain wall has a
characteristic thickness of �DW ∼ �B

√
�B/a � a. Therefore,

we expect that intervalley scattering induced by the domain
wall is small.

V. DISCUSSION AND RELATION TO EXPERIMENTS

Experimentally, an enhanced conductance was found along
a line in the (E,B) plane for filling factor ν = 0 [12], and
at E = 0 for filling factor ν = 2 [12,19]. We interpret this
enhancement of the conductance as arising from gapless edge
modes at domain walls between two phases at the transition
point. If these phases satisfy the criterion described above,
then they are topologically distinct as long as the common
U (1) symmetry G is preserved; therefore, there is a sharp
phase transition between the two phases, even in the presence
of interactions and disorder. The transport near the transition
is then described in terms of percolation of the domain walls
between the two phases [42–45].

For ν = 2, as we have shown here, the enhanced con-
ductance is readily explained if the E = 0 ground state
is spontaneously layer polarized. Our microscopic analysis
shows how such a state can arise from short-range exchange
interactions. Such spontaneous layer polarization can be
detected directly by capacitance measurements [46].

At ν = 0, the existence of an enhanced conductance at the
finite E transition allows us to put constraints on the nature of
the states on either side of the transition. We assume that the
E = 0 ground state is a canted antiferromagnet [21]. Then,
according to our criterion, a domain wall with a partially
layer polarized state [21], in which a coherent superposition
of the two valley states is occupied, does not carry a protected
edge mode, because the two phases do not have a common
U (1) symmetry. An edge state with a fully layer polarized
state, however, does have a conducting edge state, since the
two phases have a common valley symmetry, and valley Hall
conductance jumps across the domain wall.
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APPENDIX A: LOCAL INTERACTION HAMILTONIAN

To write the interaction Hamiltonian, we start from a tight
binding model with the lattice structure of bilayer graphene.
We are interested in the local part of the low-energy effective
interactions, which are anisotropic in valley and layer space.
We will assume weak coupling (small e2/v), for which we can
simply project the microscopic (Coulomb) interactions

Hint =
∑
s,s ′

∫
d3�r d3 �r ′ V (�r − �r ′)ϕ†

s (�r)ϕs(�r)ϕ†
s ′ (�r ′)ϕs ′ (�r ′),

(A1)

onto the low-energy subspace. Here, ϕs(�r) annihilates an
electron at position �r with spin s, and V (�r − �r ′) = e2/|�r − �r ′|.
We choose a basis of states whose support in momentum space
is in the regions |�k − �K| < � and |�k − �K ′| < �, where � is
a momentum cutoff. In real space, these wave functions are
localized within a region of size a ∼ 2π/�. We assume a to
be of the order of a few lattice constants.

Let us denote the basis functions by �μτ (�r − �R), where �R
is the center of mass of this orbital, �r is a continuous space
variable, and μ,τ are the layer and valley indices. ψμτs is
an operator that annihilates an electron in orbital �μτ (�r − �R)
with spin s.

The low-energy part of the field operators is given by

ϕs(r) =
∑
R,μ,τ

�μτ (�r − �R)ψμτs( �R). (A2)
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The interaction Hamiltonian takes the form,

Hint =
∑

s,s ′,1,2,3,4

[∫
drdr ′V (r − r ′)�∗

1(�r − �R1)�2(�r − �R2)

× �∗
3(�r − �R3)�4(�r − �R4)

]
ψ

†
1s( �R1)ψ2s( �R2)ψ†

3s ′ ( �R3)

×ψ4s ′ ( �R4). (A3)

Here, we have used the short-hand notation 1 for
{μ1,τ1,R1}, etc. The object within the square bracket
is the coupling constant of the particular operator
ψ

†
1s( �R1)ψ2s( �R2)ψ†

3s ′ ( �R3)ψ4s ′ ( �R4).
Calculating the values of the microscopic coupling con-

stants from first principles is very difficult, because these
coupling constants are strongly renormalized with respect to
their bare values [47]. We will mostly treat them as phe-
nomenological parameters. Below, we make some physically
motivated simplifying assumptions, in order to reduce the
number of independent parameters.

1. Simplifying assumptions and explicit form of Hint

(1) We assume that �R1 = · · · = �R4. This assumption is
justified if the orbitals �(�r − �R) are sufficiently localized
around �R.

(2) We consider two types of terms: intralayer and inter-
layer. We assume that the overlap between orbitals localized
in the two layers is negligible; therefore, we will not consider
terms that hop a pair from one layer to the other. Moreover,
the interlayer interaction terms are spin independent.

Within these assumptions, we get the following form for
Hint:

Hint = Hintra + Hinter + V0(ψ†ψ)2, (A4)

Hintra =
∑

μ

(U (nμK↑nμK↓ + nμK ′↑nμK ′↓)

+V1nμKnμK ′ − JH
�SμK · �SμK ′), (A5)

Hinter = V2(n1,Kn−1,K + n1,K ′n−1,K ′ )

+
∑

μ

V3nμ,Kn−μ,K ′ , (A6)

with six parameters, V0,U,V1,JH ,V2,V3. On general grounds,
we expect the following inequalities to hold:

V0 � U � V1 > JH , V1 > V2 � V3. (A7)

In addition to these local interactions, there are also long-range
Coulomb (monopole-monopole and dipole-dipole) interac-
tions.

APPENDIX B: MEAN-FIELD THEORY WITH LOCAL
INTERACTIONS: GENERAL FORMULATION

Consider the following Hamiltonian:

H = H0 + Hint − μ(ψ†ψ − n0), (B1)

where H0 is the single-particle Hamiltonian of BLG, and
Hint is a local exchange interaction [(Eq. (A4)]. The chemical
potential μ is chosen such that the density is 〈ψ†ψ〉 = n0.

We use a variational mean-field Hamiltonian:

HMF = H0 −
15∑

a=1

λa,sψ
†
s Oaψs − μ0sψ

†
s ψs. (B2)

Oa are the following matrices in valley and layer space:

Oa=0,..,15 = {1,μzτ z,μx,μyτ z, μz,μyτ y,μyτ x,τ z,

×μxτx,μxτ y,μxτ z,μy,τ x,τ y,μzτ x,μzτ y}.
(B3)

These form a complete basis of Hermitian matrices in the
layer and valley space. They satisfy

TrOaOa′ = δa,a′ . (B4)

The mean-field energy is

E({λa},μ0) = 〈H 〉

= 〈HMF〉 +
15∑

a=1

λas〈ψ†
s Oaψs〉 + μ0s〈ψ†

s ψs〉

+ 〈Hint〉 − μ(〈ψ†ψ〉 − n0). (B5)

A general spin diagonal quartic interaction term in 〈Hint〉
can be written as

〈(ψ†Oaψ)(ψ†Obψ)〉
= 〈ψ†Oaψ〉〈ψ†Obψ〉

−
∑

s

〈ψ†
αsψβ ′s〉〈ψ†

βsψα′s〉Oαα′
a O

ββ ′
b . (B6)

Summation over repeated indices is implied. Let us write
G

αβ
s ≡ 〈ψ†

αsψβs〉 = ∑
a φasO

αβ
a , where φas = 1

4 TrOaGs =
〈ψ†

s Oaψs〉. Then

〈ψ†
αsψβ ′s〉〈ψ†

βsψα′s〉Oαα′
a O

ββ ′
b

= 1

16

∑
c,d

φcsφdsO
αα′
a O

ββ ′
b Oαβ ′

c O
βα′
d

= 1

16

∑
c,d

φcsφdsTr[OaO
∗
c ObO

∗
d ]. (B7)

For the general local Hint we will have a = b which gives
c = d. Then Tr[OaO

∗
c OaO

∗
c ] = ±4 and

〈(ψ†Oaψ)2〉 = 〈ψ†Oaψ〉2 − 1

4

∑
c,s

φ2
c,sSgn[OaOc]. (B8)

Here Sgn[OaOc] = +1 if Oa, Oc commute and −1 if they
anticommute. We can then collect and write all the terms in a
compact way as

〈Hint〉 = −1

2

∑
a

φT
a Maφa, (B9)

165107-5



KUSUM DHOCHAK, EFRAT SHIMSHONI, AND EREZ BERG PHYSICAL REVIEW B 91, 165107 (2015)

where Ma’s are 2 × 2 matrices in spin label for each φa . The
energy functional then becomes

E({λa},μ0s) = 〈HMF〉 +
15∑

a=1

λa〈ψ†Oaψ〉 + μ0s〈ψ†
s ψs〉

− 1

2

15∑
a=0

φT
a Maφa − μ(〈ψ†ψ〉 − n0)

= 〈HMF〉 +
15∑

a=1

λaφa + μ0s〈ψ†
s ψs〉

− 1

2

15∑
a=0

φT
a Maφa − μ(〈ψ†ψ〉 − n0). (B10)

The saddle point equations are

∂E({λa},μ0s)

∂λa′s ′
=

15∑
a=1

(
λT

a − φT
a Ma

) ∂φa

∂λa′s ′
− φT

0 M0
∂φ0

∂μ0s ′

+ (μ0s − μ)
∂〈ψ†

s ψs〉
∂λa′s ′

= 0, (B11)

∂E({λa},μ0s)

∂μ0s ′
=

15∑
a=1

(
λT

a − φT
a Ma

) ∂φa

∂μ0s ′
− φT

0 M0
∂φ0

∂μ0s ′

+ (μ0s − μ)
∂〈ψ†

s ψs〉
∂μ0s ′

= 0, (B12)

∂E({λa},μ0)

∂μ
= 〈ψ†ψ〉 − n0 = 0. (B13)

This gives the following mean-field equations:

λa = Maφa, n0 = 〈ψ†ψ〉, (B14)

μ0s = μ + M0φ0. (B15)

Substituting φa = M−1
a λa and 〈ψ†ψ〉 = n0 back into the

expression for the energy, we get

Ẽ({λa},μ0) = 〈HMF〉 + 1
2λT

a M−1
a λa + μn0

+ 1
2 (μ0s − μ)(M−1

0 )s,s ′ (μ0s ′ − μ). (B16)

Note that this energy functional coincides with the original
one at the saddle point, and its variation with respect to λa and
μ0 gives the correct mean-field equations.

1. Symmetries of the BLG Hamiltonian

The noninteracting Hamiltonian of BLG in the absence
of the external magnetic field has the following symmetries.
Below we describe the behavior of our wave functions
|ψτz=K/K ′,μz=±1,σz=A/B(�q)〉 under the symmetry operations. τ ,
μ, σ represent Pauli matrices acting in valley, layer, and sublat-
tice space, respectively, and �K = (− 4π

3
√

3a0
,0) where a0 is the

interatomic spacing in each layer. Other definitions as shown
in the figure are �R1 = (0, − a0), �R2 = a0(−

√
3

2 , 1
2 ), �R3 =

a0(
√

3
2 , 1

2 ); �G1 = 2π
a0

( −1√
3
, 1

3 ), �G2 = 2π
a0

( 1√
3
, 1

3 ).

A
R

RR

1

2 3

ri

b
B

t

2n1
n

K’K

G

−G

1

1

(a) (b)

FIG. 2. (Color online) (a) Schematic of bilayer graphene with
top/bottom layer labeled by t/b (with colors blue/pink). Thin black
hexagon defines the effective hexagonal lattice. (b) Brilluion zone for
the effective hopping Hamiltonian.

(1) Time-reversal symmetry (TRS): (�q → −�q)isyτxK (K
represents complex conjugation).

(2) Rotation by 2π/3 around the A sublattice of the top
layer (the stacking point):

J2π/3 exp

[
2πi

3
τz

(
1 + μz

2

1 + σz

2

)

− 2πi

3
τz

(
1 − μz

2

1 − σz

2

)]

= J2π/3 exp

[
2πi

3
τz

(
σz + μz

2

)]
.

(Under J2π/3, qx → qx cos(2π/3) − qy sin(2π/3), qy →
qx sin(2π/3) + qy cos(2π/3))

(3) Translation by �R = l1�n1 + l2�n2 :
exp[iτz

4π

3
√

3a0
Rx] exp[−i �q · �R]. �n1 and �n2 are primitive

vectors of the hexagonal lattice (see Fig. 2).
(4) Inversion symmetry: (�q → −�q)τxμxσx , with inversion

center at midpoint of the stacking bond between the two layers.
(5) Mirror x → −x: (qx → −qx)τx.

Details of the symmetry transformations

Rotation by 2π/3 for |ψK,A(�q)〉:

〈�ri |ψK,A(�q)〉 ∼ exp[i( �K + �q) · �ri,A],

〈�ri |J 2π
3
|ψK,A(�q)〉 ∼ exp[iJ 2π

3
( �K + �q) · �ri,A]

= exp[i( �K − �G1 + J 2π
3

�q) · (�ri + �R2)]

= exp[−i �G1 · �R2]〈�ri |ψK,A(J 2π
3

�q)〉
= exp(i2π/3)〈�ri |ψK,A(J 2π

3
�q)〉.

Similarly at B sublattice,

〈�ri |J 2π
3
|ψK,B(�q)〉 ∼ exp[iJ 2π

3
( �K + �q) · �ri,B]

= exp[i �K − �G1 + J 2π
3

�q) · (�ri − �R3)]

= exp[i �G1 · �R3]〈�ri |ψK,A(J 2π
3

�q)〉
= exp (−i2π/3) 〈�ri |ψK,A(J 2π

3
�q)〉.
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At K ′, we get �K ′ → �K ′ + �G1 and the signs are reversed
for A and B sublattices. Thus we get the above expression for
the symmetry operation.

Translation by a lattice translation �R:

〈�ri |T �R ψK,A/B(�q)〉 = 〈T− �R�ri | ψK,A/B (�q)〉
∼ exp[i( �K + �q) · (�ri,A/B − �R)]

= exp[−i( �K + �q) · �R]〈�ri |ψK,A/B (�q)〉

= exp

[
i

4π

3
√

3a0

Rx

]

× exp[−i �q · �R]〈�ri |ψK,A/B(�q)〉.
Similarly at �K ′(= − �K); 〈�ri |TR ψK ′,A/B(�q)〉 =

exp[−i 4π

3
√

3a0
Rx] exp[−i �q · �R]〈�ri |ψK ′,A/B(�q)〉.

2. Most general interaction Hamiltonian

For BLG, we can write all possible symmetry-allowed local
interactions making an analysis similar to that of Vafek et.
al. [5]. There are nine symmetry-allowed spin diagonal terms.
We write them in the following particular form.

I1 = (ψ†ψ)2,

I2 = (ψ†μzτ zψ)2,

I3 = (ψ†μxψ)2 + (ψ†μyτ zψ)2,

I4 = (ψ†μzψ)2 + (ψ†μyτyψ)2 + (ψ†μyτxψ)2,

I5 = (ψ†τ zψ)2 + (ψ†μxτxψ)2 + (ψ†μxτyψ)2,

I6 = (ψ†μxτ zψ)2 + (ψ†μyψ)2 + (ψ†τ xψ)2 + (ψ†τ yψ)2

+ (ψ†μzτxψ)2 + (ψ†μzτyψ)2,

I7 = (ψ†μzψ)2 − (ψ†μyτyψ)2 − (ψ†μyτxψ)2,

I8 = (ψ†τ zψ)2 − (ψ†μxτxψ)2 − (ψ†μxτyψ)2,

I9 = (ψ†μxτ zψ)2 + (ψ†μyψ)2 − (ψ†τ xψ)2 − (ψ†τ yψ)2

− (ψ†μzτxψ)2 − (ψ†μzτyψ)2. (B17)

These combinations of different terms are made such that
the first six interaction terms above commute with the unitary
the transformation Û = exp(i π

4 μxτy), which maps the FLP
state order parameter to STF state. Thus, having only first
six terms will not lift the degeneracy between FLP and STF
ground states.

In addition, for a spin symmetric interaction, the
allowed spin-dependent terms are I1s = (ψ†�sψ)2, I2s =
(ψ†μzτ z�sψ)2, . . . I9s .

We can use Fierz identities to find the number of inde-
pendent interaction terms out of the above 18 terms. These
identities can be written in terms of the 32 individual quartic
terms appearing in I1, . . . I9 and I1s , . . . I9s as

(ψ†Oaψ)2 = −1

8

∑
b

Sgn[OaOb] ((ψ†Obψ)2

+ (ψ†Ob�sψ)2),

(ψ†Oa�sψ)2 = −1

8

∑
b

Sgn[OaOb] (3(ψ†Obψ)2

− (ψ†Ob�sψ)2),

Oa = {1,μzτ z,μx,μyτ z, μz,μyτ y,μyτ x,τ z,μxτ x,μxτ y,

×μxτ z,μy,τ x,τ y,μzτ x,μzτ y}.

Out of these 18 equations, only nine are independent
and therefore we can express (ψ†Oa�sψ)2 terms in terms
of (ψ†Oaψ)2. Then I1s ,I2s ..I9s can be rewritten in terms of
I1,I2..I9 as Iis = ∑

�ij Ij , where

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3
2 − 1

2 − 1
2 − 1

2 − 1
2 − 1

2 0 0 0

− 1
2 − 3

2
1
2 − 1

2 − 1
2

1
2 0 0 0

−1 1 −1 1 −1 0 0 0 0

− 3
2 − 3

2
3
2 − 1

2
1
2 − 1

2 0 0 0

− 3
2 − 3

2 − 3
2

1
2 − 1

2
1
2 0 0 0

−3 3 0 −1 1 −1 0 0 0
1
2

1
2 − 1

2 − 1
2 − 1

2
1
2 −2 −1 1

1
2

1
2

1
2 − 1

2 − 1
2 − 1

2 −1 −2 −1

1 −1 0 1 −1 0 2 −2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B18)

The most general local interaction Hamiltonian for BLG
can now be written as

Hint =
9∑

i=1

giIi . (B19)

APPENDIX C: MEAN-FIELD ANALYSIS FOR ν = 2 BLG

For filling fraction ν = 2, we consider two symmetry-
broken states and compare their ground-state energies to find
the favored state at zero electric field. Below we discuss the
mean-field analysis for both of them.

1. Layer polarized state

We first consider a state in which inversion symmetry
is broken, but translational and rotational symmetries are
preserved. In such a state, the following mean-field terms are
allowed:

Oa={1,2,3} = {μz,τ z,μzτ z}. (C1)

Note that, since we have assumed a uniform state and these
are local terms, they must be diagonal in the LL index n. We
therefore write the mean-field Hamiltonian as follows:

HMF = H0 −
∑

ζ=±1,a=1,2,3

λaζψ
† 1 + ζ sz

2
Oaψ − hψ†szψ

−μ0ψ
†ψ, (C2)

where h is a Zeeman field. The Hamiltonian can be diagonal-
ized and the spectrum is

En,s,τ

=
{−hs − μ0 − (λ1s + λ2s)τ − λ3s , n � 1
−hs − μ0 − λ2sτ ± √

(λ1s + τλ3s)2 + E2
n, n > 1.

(C3)
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Filling all the Landau levels up to ν = 2, the total energy is

EMF =
∑
τ=±1

(E0,↑,τ + E1,↑,τ ) + E0,↓,τ=1 + E1,↓,τ=1

+
∞∑

n=2

∑
τ,s=±1

En,s,τ

= 2[−h − 2λ3↑ − λ1↓ − λ2↓ − λ3↓]

−
∞∑

n=2

∑
τ,s=±1

√
(λ1s + τλ3s)2 + E2

n. (C4)

We first consider the weak interaction limit such that λ �
�ωc and we can expand to second order in the λ’s. We get
(ignoring the chemical potential terms)

EMF ≈ 2[−h − 2λ3↑ − λ1↓ − λ2↓ − λ3↓]

− χ0�
2
B

2

∑
s=±1

(
λ2

1s + λ2
3s

) − E0, (C5)

where χ0 ≡ ∑∞
n=2

2
En�

2
B

= m
π

∑∞
n=2

1√
n(n−1)

and E0 =
−4

∑∞
n=2 En. (Note that these sums actually diverge, and a

cutoff needs to be introduced). EMF above is the energy per
�2

B area of the system while 〈Hint〉 terms are energy per unit
area. Thus, collecting the different terms in Eq. (B16) and
matching the dimensions, we get (dropping constants)

Ẽ(λγ ,μ0) = 1

�2
B

(−4λ3↑ − 2λ1↓ − 2λ2↓ − 2λ3↓)

+ 1

2
λT

1

(
M−1

1 − χ0
)
λ1 + 1

2
λT

2 M−1
2 λ2

+ 1

2
λT

3

(
M−1

3 − χ0
)
λ3.

(C6)

This is conveniently written as

Ẽ(λγ ,μ0) = − 1

�2
B

QT λ + 1

2
λT M̃−1λ, (C7)

where λT = (λ1↑,λ1↓, . . . ,λ3↓). Minimizing the energy over λ

gives

Emin = − 1

2�4
B

QT M̃Q. (C8)

We can now calculate 〈Hint〉FLP, using the general interac-
tion Hamiltonian in Eq. (B19). In FLP, three φ’s corresponding
to the above Oa’s are nonzero. Calculating 〈Hint〉FLP, we get
the following Mi matrices in Eq. (C6) for the FLP phase:

M1 =
(

K1
2 − 2g4 − 2g7 −2g4 − 2g7

−2g4 − 2g7
K1
2 − 2g4 − 2g7

)
, (C9)

M2 =
(

K2
2 − 2g5 − 2g8 −2g5 − 2g8

−2g5 − 2g8
K2
2 − 2g5 − 2g8

)
, (C10)

M3 =
(

K3
2 − 2g2 −2g2

−2g2
K3
2 − 2g2

)
, (C11)

where
K1 = g1 + g2 − 2g3 − g4 − g5 + 2g6 + 3g7 + 3g8 − 6g9,
K2 = g1 + g2 + 2g3 − g4 − g5 − 2g6 + 3g7 + 3g8 + 6g9,
K3 = g1 + g2 − 2g3 + 3g4 + 3g5 − 6g6 − g7 − g8 + 2g9.

2. Staggered flux state

The second natural possibility for an ordered state (that
lifts the degeneracy of the lowest Landau level) is a staggered
flux (STF) state with a wave vector that connects K to
K ′. This state preserves the threefold rotational symmetry
R̂2π/3 = exp(2πiμzτ z/3) around the aligned sites and the
inversion symmetry, but breaks translational symmetry. The
allowed mean fields in this state are

Oa={1,2,3} = {μxτx,μyτ y,μzτ z}. (C12)

Now,

HMF = H0 −
∑

ζ=±1,a=1,2,3

λaζψ
† 1 + ζ sz

2
Oaψ

−hψ†szψ − μ0ψ
†ψ, (C13)

which has the spectrum,

En,s,τ

=
{−hs − μ0 + (λ1s − λ2s)τ − λ3s , n � 1,

−hs − μ0 + λ1sτ ± √
(λ2s + τλ3s)2 + E2

n, n > 1.

(C14)

Filling all the Landau levels up to ν = 2, the total energy is

EMF =
∑
τ=±1

(E0,↑,τ + E1,↑,τ ) + E0,↓,τ=1 + E1,↓,τ=1

+
∞∑

n=2

∑
τ,s=±1

En,s,τ

= 2[−h − |λ1↓ − λ2↓| − 2λ3↑ − λ3↓]

−
∞∑

n=2

∑
τ,s=±1

√
(λ2s + τλ3s)2 + E2

n. (C15)

Again considering the weak interaction limit and expanding
to second order in the λ’s, we get

EMF ≈ 2[−h − |λ1↓ − λ2↓| − 2λ3↑ − λ3↓]

− χ0�
2
B

2

∑
s=±1

(
λ2

2s + λ2
3s

) − E0. (C16)

Taking 〈Hint〉STF, we get the following Mi matrices corre-
sponding to the STF order parameters above

M1S =
(

K1S

2 − 2g5 + 2g8 −2g5 + 2g8

−2g5 + 2g8
K1S

2 − 2g5 + 2g8

)
, (C17)

M2S =
(

K2S

2 − 2g4 + 2g7 −2g4 + 2g7

−2g4 + 2g7
K2S

2 − 2g4 + 2g7

)
, (C18)

M3S =
(

K3S

2 − 2g2 −2g2

−2g2
K3S

2 − 2g2

)
, (C19)
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where

K1S = g1 + g2 + 2g3 − g4 − g5 − 2g6 − g7 − g8 − 2g9,

K2S = g1 + g2 − 2g3 − g4 − g5 + 2g6 − g7 − g8 + 2g9,

K3S = g1 + g2 − 2g3 + 3g4 + 3g5 − 6g6 − g7 − g8 + 2g9,

Ẽ(λγ ,μ0) = 2

�2
B

[−h − (λ1↓ − λ2↓) − 2λ3↑ − λ3↓]

+ 1

2
λT

1 M−1
1S λ1 + 1

2
λT

2

(
M−1

2S − χ0
)
λ2

+ 1

2
λT

3

(
M−1

3S − χ0
)
λ3

= − 1

�2
B

QT
S λ + 1

2
λT M̃S

−1
λ. (C20)

And after minimizing over λ,

Emin = − 1

2�4
B

QT
S M̃SQS. (C21)

Using Eqs. (C8) and (C21), we can calculate the ground-
state energies of the two phases (EFLP and ESTF) and compare
which phase has lower energy. We get


E = EFLP − ESTF

= 4χ0

�4
B

(
g1g7 + g2g7 − 2g3g7 − 13g4g7 − g5g7 + 2g6g7

+ g2
7 − g1g8 − g2g8 + 2g3g8 + 5g4g8 + g5g8

− 2g6g8 − g2
8 + 2g1g9 + 2g2g9 − 4g3g9

− 10g4g9 − 2g5g9 + 4g6g9 + 4g8g9 − 4g2
9

)
. (C22)

3. Large interactions

For the case when the interactions are large and the above
approximation doesn’t work, we numerically minimize the
energy functionals E({λa},μ0) with respect to λa . In Eq. (B10),
we use the MF equation φas = −∂EMF /∂λas and find the
minimum of the resulting energy functional.

APPENDIX D: CHANGE OF VARIABLES FROM V0,U,V1,2,3

AND JH to g1 . . . g9 IN THE COULOMB HAMILTONIAN

We have found the ground-state energies for the most
general interactions in the weak coupling limit. We can now
use our interaction Hamiltonian in Eq. (A4) and read off
the interaction parameters g1,..g9. Then we can obtain the
difference in ground-state energies of FLP and STF phases
from Eq. (C22) to determine which state is favored.

To write the U term, we use the identity,(
n↑ − 1

2

)(
n↓ − 1

2

) = 1
4 − 1

6 (ψ†�sψ)2, (D1)

that holds for a single orbital.

Up to a chemical potential term this gives∑
μ

nμK↑nμK↓ + nμK ′↑nμK ′↓

= −1

6

[(
ψ† 1 + μz

2

1 + τ z

2
�sψ

)
·
(

ψ† 1 + μz

2

1 + τ z

2
�sψ

)

+
(

ψ† 1 + μz

2

1 − τ z

2
�sψ

)
·
(

ψ† 1 + μz

2

1 − τ z

2
�sψ

)]
+ (μ → −μ)

= −1

6

[
1

4
(ψ†�sψ) · (ψ†�sψ) + 1

4
(ψ†μz�sψ) · (ψ†μz�sψ) + 1

4
(ψ†τ z�sψ) · (ψ†τ z�sψ) + 1

4
(ψ†μzτ z�sψ) · (ψ†μzτ z�sψ)

]

= − 1

24

(
I1s + I2s + I4s + I7s

2
+ I5s + I8s

2

)
. (D2)

Using the relations between Iis and Is in Eq. (B18), we get

nμK↑nμK↓ + nμK ′↑nμK ′↓ = 1

8

(
I1 + I2 + I4 + I7

2
+ I5 + I8

2

)
. (D3)

V1 term:

V1

∑
μ

nμKnμK ′ = V1

(
ψ† 1 + μz

2

1 + τ z

2
ψ

)(
ψ† 1 + μz

2

1 − τ z

2
ψ

)
+ (μ → −μ)

= V1

8
[(ψ†ψ)(ψ†ψ) + (ψ†μzψ)(ψ†μzψ) − (ψ†τ zψ)(ψ†τ zψ) − (ψ†μzτ zψ)(ψ†μzτ zψ)]

= V1

8

(
I1 − I2 + I4 + I7

2
− I5 + I8

2

)
. (D4)

V2 term:

V2(n−1Kn1K + n−1K ′n1K ′ )

= V2

[(
ψ† 1 + μz

2

1 + τ z

2
ψ

)(
ψ† 1 − μz

2

1 + τ z

2
ψ

)
+

(
ψ† 1 + μz

2

1 − τ z

2
ψ

) (
ψ† 1 − μz

2

1 − τ z

2
ψ

)]
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= V2

8
[(ψ†ψ)(ψ†ψ) − (ψ†μzψ)(ψ†μzψ) + (ψ†τ zψ)(ψ†τ zψ) − (ψ†μzτ zψ)(ψ†μzτ zψ)]

= V2

8

(
I1 − I2 − I4 + I7

2
+ I5 + I8

2

)
. (D5)

V3 term:

V3(n−1Kn1K ′ + n−1K ′n1K )

= V3

[(
ψ† 1 + μz

2

1 + τ z

2
ψ

)(
ψ† 1 − μz

2

1 − τ z

2
ψ

)
+

(
ψ† 1 + μz

2

1 − τ z

2
ψ

) (
ψ† 1 − μz

2

1 + τ z

2
ψ

)]

= V3

8
[(ψ†ψ)(ψ†ψ) − (ψ†μzψ)(ψ†μzψ) − (ψ†τ zψ)(ψ†τ zψ) + (ψ†μzτ zψ)(ψ†μzτ zψ)]

= V3

8

(
I1 + I2 − I4 + I7

2
− I5 + I8

2

)
. (D6)

JH term:

− JH

∑
μ

�sμK · �sμK ′ = −JH

[(
ψ† 1 + μz

2

1 + τ z

2
�sψ

)
·
(

ψ† 1 + μz

2

1 − τ z

2
�sψ

)
+ (μ → −μ)

]

= −JH

8
[(ψ†�sψ)2 + (ψ†μz�sψ)2 − (ψ†τ z�sψ)2 − (ψ†μzτ z�sψ)2]

= −JH

8

(
I1s − I2s + I4s + I7s

2
− I5s + I8s

2

)

= −JH

8

(
−I1 + I2 − I4 + I7

2
+ I5 + I8

2
− I6 + I9

)
. (D7)

These give the following values of the interaction parameters.

g1 = V0 + 1

8
(U + V1 + V2 + V3 + JH ),

g2 = 1

8
(U − V1 − V2 + V3 − JH ),

g3 = 0,

g4 = 1

16
(U + V1 − V2 − V3 + JH ),

g5 = 1

16
(U − V1 + V2 − V3 − JH ),

g6 = JH

8
,

g7 = 1

16
(U + V1 − V2 − V3 + JH ),

g8 = 1

16
(U − V1 + V2 − V3 − JH ),

g9 = −1

8
JH . (D8)

Plugging these into Eq. (C22), we get the difference in mean-field ground-state energies of FLP and STF phases for the weak
interaction limit where we can expand the Mean -field energies to second order in λa .
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