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We study the electronic properties of strongly spin-orbit coupled electrons on the elastic pyrochlore lattice.
Akin to the Peierls transition in one-dimensional systems, the coupling of the lattice to the electronic degrees
of freedom can stabilize a spontaneous deformation of the crystal. This deformation corresponds to a breathing
mode, which breaks the inversion symmetry. We find that for intermediate values of the staggered strain, the
inversion-symmetry broken phase realizes a topological Weyl semimetal. In the temperature-elasticity phase
diagram, the Weyl semimetal shows a reentrant phase behavior: it can be reached from a symmetric phase
realized both at higher and at lower temperatures. The symmetric phase is a Dirac semimetal, which is protected
by the nonsymmorphic space group of the pyrochlore lattice. Beyond a critical value of the staggered strain, the
symmetry-broken phase is a fully gapped trivial insulator. The surface states of the Weyl semimetal form open
Fermi arcs and we observe that their connectivity depends on the termination of the crystal. In particular, for
the {111} films, the semiclassical closed electronic orbits of the surface states in a magnetic field cross the bulk
either twice, four, six, or twelve times. We demonstrate how one can tune the number of bulk crossings through a
Lifshitz-like transition of the Fermi arcs, which we call Weyl-Lifshitz transition, by applying a surface potential.
Our results offer a route to a topological Weyl semimetal in nonmagnetic materials and might be relevant for
pyrochlore oxides with heavy transition-metal ions such as alloys of iridates.
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I. INTRODUCTION

Pyrochlore oxides experience growing interest as potential
hosts of novel electronic phases. Due to the presence of both
strong spin-orbit coupling and electronic correlation effects,
pyrochlore oxides with heavy transition-metal ions have been
identified as a playground for topological phases [1]. Some of
the notable theoretical predictions include exotic spin liquids
[2,3], topological insulators [4–6], topological crystalline
insulators [7], topological semimetals [8,9], and unusual
forms of magnetism [10,11]. Besides these intrinsic three-
dimensional phases, heterostructuring of pyrochlore oxides
offers the possibility to access two-dimensional topological
phases, such as quantum spin Hall, integer, or fractional Chern
insulators [12–16].

In this work, we add an additional ingredient to the
physics of pyrochlore oxides: the coupling of the electronic
degrees of freedom to the lattice. Our starting point is
a general Hamiltonian on the pyrochlore lattice, which,
as a consequence of the nonsymmorphic space group, realizes
a Dirac semimetal with a discrete set of fourfold-degenerated
Fermi points. We find that for an intermediate stiffness of the
crystal, an inversion-symmetry breaking staggered strain can
spontaneously develop. The symmetry-broken phase realizes a
topological Weyl semimetal, whose Fermi surface consists of
a discrete set of doubly degenerated Fermi points with linearly
touching valence and conduction bands. If the staggered strain
reaches a critical value, the system turns into a fully gapped
trivial insulator. Our model shows a rich phase structure
including a reentrant Weyl semimetal, which can be reached
from the symmetric phase present at both low and high
temperatures.

Weyl semimetals were originally proposed by Wan et al.
[17] in magnetic pyrochlore iridates, such as Y2Ir2O7. They
have been the subject of several reviews [18–20]. Recent
investigations of Weyl semimetals focused on their realizations

in interacting models with broken time-reversal symmetry
[8,9,17,21] and in normal insulator-topological insulator mul-
tilayers [22–24]. Furthermore, it was proposed [25,26] that
certain noncentrosymmetric transition-metal monophosphides
are nonmagnetic Weyl semimetals. Very recent experiments
indeed seem to confirm this prediction [27,28].

The exciting properties of Weyl semimetals are diverse:
First, they host unusual surface states which form disjoint open
Fermi arcs rather than closed Fermi lines. The Fermi arcs
connect the projections of the Weyl nodes onto the surface
Brillouin zone and Fermi arcs on opposite surfaces of the
sample are linked through bulk states. These properties lead to
characteristic signatures in quantum oscillations experiments
in a magnetic field [29]. Second, also the bulk properties of
Weyl semimetals are unusual due to the chiral anomaly, which
states that the electric charge carried by electrons of a given
chirality is not conserved in the simultaneous presence of
electric and magnetic fields. In contrast, the Nielsen-Ninomiya
doubling theorem guarantees that the net current carried by
electrons of both chiralities is conserved [30]. The chiral
anomaly implies unusual transport properties, reviewed by
Hosur and Qi [19] and by Ramamurthy and Hughes [20], which
include the axion response [31], the semiquantized anomalous
Hall effect [32,33], and the (still controversial) chiral magnetic
effect [31,34,35]. A direct way to probe the chiral anomaly
in topological semimetals has also been proposed using a
nonlocal transport experiment [36].

The Weyl and Dirac semimetals arise naturally as the
intermediate phase in a topological insulator–normal insulator
phase transition [37–41]. More generally, a Weyl semimetal
can be obtained by starting with a three-dimensional Dirac
semimetal and then breaking inversion or time-reversal sym-
metry [22–24,42]. Recent investigation led to the discovery
that Na3Bi and Cd3As2 are topological Dirac semimetals
[43–48]. In these materials, the Dirac nodes arise as symmetry-
protected accidental band crossings along a rotation axis [49].
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Dirac semimetals can also appear in noninteracting models
as a symmetry-protected phase due to the nonsymmorphic
elements of the crystal space group [50]. Nonsymmorphicity
has recently been found to have further effects on the electronic
structure; for example, it prohibits band insulators at certain
integer fillings [51] or can protect novel Z2 topological
crystalline insulators [52,53].

Our paper is organized as follows. In Sec. II, we introduce
a general tight-binding model of spin-orbit coupled electrons
on an elastic pyrochlore lattice. In Sec. III we discuss how
the deformation of the crystal affects the band structure,
and we show phase diagrams in the absence and presence
of a symmetry-breaking staggered stress field. Due to the
importance of the space group in realizing these intriguing
electronic phases, we present in Sec. IV a detailed group-
theoretical discussion of the spectrum, which particularly
highlights the role of nonsymmorphicity. In Sec. V we discuss
the surface states of {111} and {111̄} oriented films. We show
that the surface states depend on the termination of the lattice
and introduce the concept of the Weyl-Lifshitz transition,
which is characterized by a change in the connectivity of the
Fermi arcs.

II. MODEL

A. Spin-orbit coupled electrons on the pyrochlore lattice

We study a system of noninteracting electrons on the
lattice of corner-sharing tetrahedra called the pyrochlore
lattice. These tetrahedra form a bipartite lattice and, thus,
can be labeled as even and odd [illustrated in bright blue
and dark orange in Fig. 1(d)] in such a way that every
even tetrahedron touches only odd ones and vice versa.

FIG. 1. (Color online) (a) Illustration of vectors xc, aij , bij , and
d ij used in Hamiltonians (1) and (9). (b) Shape of the Brillouin zone
(BZ) of a face-centred-cubic (fcc) lattice. This corresponds to both the
pyrochlore lattice and the breathing pyrochlore lattice. (c) Definition
of the high-symmetry points of the fcc lattice within one-eighth of
the Brillouin zone and the path �XWL�KX in the momentum space
used for plotting energy spectra in Fig. 2. The U point is equivalent
to the K point. (d) Pyrochlore lattice with differently colored even
(blue/bright) and odd (orange/dark) tetrahedra. (e) The I-broken
(breathing) pyrochlore lattice considered in the elastic model.

The pyrochlore lattice is a face-centred-cubic (fcc) lattice
belonging to a nonsymmorphic space group No. 227 (Fd3̄m).
Its Brillouin zone has the form of a truncated octahedron
illustrated in Fig. 1(b).

We consider the following Hamiltonian to describe the
dynamics of the electrons on the pyrochlore lattice [9],

H0 =
∑
〈i,j〉

c
†
i (t1 + it2dij · τ )cj

+
∑
〈〈i,j〉〉

c
†
i [t ′1 + i(t ′2Rij + t ′3Dij ) · τ ]cj . (1)

The electron annihilation operator at site i is given by
ci = (ci↑,ci↓)T , where α = ↑,↓ refers to a (pseudo-)spin-1/2
degree of freedom. The meaning of the symbols is as follows:
The first sum runs over the nearest-neighbor (NN) and the
second sum over the next-nearest-neighbor (NNN) bonds.
The Pauli matrices τ = (τ x,τ y,τ z) describe a global basis in
spin space, and the terms containing them represent spin-orbit
coupling. The real-space vectors appearing in the NN part of
H0 are defined via

dij = 2aij × bij , (2a)

aij = 1
2 (bi + bj ) − xc, (2b)

bij = bj − bi , (2c)

xc = 1
2 (b1 + b2 + b3 + b4), (2d)

and those in the NNN part are defined as

Rij = bik × bkj , (3a)

Dij = dik × dkj , (3b)

where k is the common NN of the NNN sites i and j . We
further use position vectors bi pointing to the site i of the
tetrahedron

b1 = a(0,0,0), (4a)

b2 = a(0,1,1), (4b)

b3 = a(1,0,1), (4c)

b4 = a(1,1,0), (4d)

and position vector xc pointing to the center of the tetrahedron

xc = 1

4

4∑
i=1

bi . (5)

Examples of bij , aij , and dij are illustrated in Fig. 1(a). We
denote the length of the cube circumscribed to the tetrahedra
[Fig. 1(a)] as a so that |bij | = a

√
2. The edge length of the fcc

unit cell is 4a.
Hamiltonian (1) is the most general single-orbital Hamilto-

nian with spin-orbit coupling and up to NNN terms respecting
the full symmetry of the pyrochlore lattice [6,9]. Such a
situation arises for the five 5d electrons coming from each
Ir4+ site of the pyrochlore oxides. The crystal field of the
neighboring atoms splits the 5d orbitals into the six t2g

states and the four eg states, the latter being higher in
energy. The on-site spin-orbit coupling further splits the six
degenerate t2g states into an effective pseudospin jeff = 1/2
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FIG. 2. (Color online) The spectrum of Hamiltonian (12) for
parameters (13) and (a) δ = 0, which corresponds to the Dirac
semimetal (DSM), (b) δ = 0.08, which corresponds to the Weyl
semimetal (WSM) with 12 distinct Weyl nodes, and (c) δ = 0.13,
which corresponds to a trivial band insulator (INS). Left panels show
the spectra in the three cases along the path in the BZ indicated in
Fig. 1(c); right panels show the spectra over the square face of the
BZ. The arrows indicate position of one of the Weyl nodes for the
WSM phase, and the place where the Weyl nodes have annihilated
for the INS phase.

doublet and an effective jeff = 3/2 quadruplet, the latter being
lower in energy. The five 5d electrons of Ir4+ sites fill the
jeff = 3/2 quadruplet and half-fill the jeff = 1/2 doublet [3].
Hamiltonian (1) can then be viewed as an effective model for
electrons residing in the jeff = 1/2 orbitals. In this way one
can relate the parameters t1,2 and t ′1,2,3 to particular orbital
overlaps as is thoroughly explained in Ref. [9].

A generic spectrum of Hamiltonian (1) is plotted in
Fig. 2(a). Note that the site fillings n = 1/4 and n = 3/4
correspond to a semimetallic phase. In pyrochlore iridates,
such a commensurate filling may be realized by considering
alloys of the form A2−xBxIr2O7 where A and B are nonmagnetic
but have different oxidation states [54–56]. For example, we
expect that Y1.5Ca0.5Ir2O7 [54] realizes the site filling n = 1/4
and the (hypothetical) compound Bi1.5Se0.5Ir2O7 site filling
n = 3/4 in our model. To be concrete, we will consider

n = 3/4 (6)

throughout the paper.

B. Elastic lattice

Electron-phonon coupling can lead to softening of certain
phonon modes and to distortion of the lattice akin to the Peierls
transition. This is also similar to certain valence bond solids

arising due to interactions [57]. The leading instabilities can
be found by investigating the Lindhard function. We argue that
the leading lattice instability of model (1) occurs at momentum
q = 0. To illustrate this, we ignore the two occupied bands far
from the chemical potential and consider only the conduction
and the valence bands. Defining ξα,k = εα,k − μ where α

stands for the band index, Fig. 2(a) indicates approximate
electron-hole symmetry

(ξcon,k − μ) ≈ −(ξval,k − μ). (7)

In the case of a perfect electron-hole symmetry ξcon,k =
−ξval,k, the static (ω = 0) Lindhard function at zero tempera-
ture satisfies

0 < −χ (q) = − 1




∑
k∈BZ

∑
α,α′

f (ξα,k−q) − f (ξα′,k)

ξα,k−q − ξα′,k

= 1




∑
k∈BZ

2

ξk−q + ξk

� 1




∑
k∈BZ

(
1

2ξk−q
+ 1

2ξk

)
= −χ (0), (8)

where we used the arithmetic-harmonic mean inequality. The
equality sign applies only if q = 0 or if both bands are perfectly
flat. The result means that the Lindhard function has a peak
at q = 0 which corresponds to the leading instability. We
expect this peak to be preserved for Hamiltonian (1) where
the electron-hole symmetry is approximately valid.

Inspired by this observation, we consider the most symmet-
ric q = 0 phonon mode which corresponds to the simultaneous
expansion of the even and shrinking of the odd tetrahedra as
illustrated in Fig. 1(e). We call it the breathing mode of the
pyrochlore lattice. A similar breathing pyrochlore lattice has
been observed in certain A-site ordered spinel oxides [58,59].

We treat the breathing mode classically and refer to its
amplitude as staggered strain δ. We model its effect on the
electron Hamiltonian by multiplying the NN terms by a factor
[1 + (−)δ] for the short (long) bonds. We ignore the higher
order influence on both the NN and the NNN terms as these
are assumed to have a quantitative but not qualitative effect
on the phase diagram of the model. The elastic energy of the
lattice deformation is set to be proportional to the square of
the amplitude δ. The complete Hamiltonian then reads

Hδ = 1

2
Y
δ2 +

∑
〈i,j〉

(1 ± δ)c†i (t1 + it2dij · τ )cj

+
∑
〈〈i,j〉〉

c
†
i [t ′1 + i(t ′2Rij + t ′3Dij ) · τ ]cj , (9)

where Y is elasticity of the lattice analogous to the Young
modulus, and 
 is the volume of the sample. The equilibrium
value of δ is determined by minimizing the energy of the
electron-lattice system which, by the Hellmann-Feynman
theorem, corresponds to solving the self-consistency equation

δ = 1

Y


∑
〈i,j〉

〈�δ| ∓ c
†
i (t1 + it2dij · τ )cj |�δ〉, (10)

where |�δ〉 is the ground state of the electron Hamiltonian for
a staggered strain amplitude δ.
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Hamiltonians (1) and (9) have many free parameters. To
simplify the situation, we reduce the parameter space by setting

R := t2

t1
= t ′2

t ′1
= t ′3

t ′1
(11a)

for the relative strength of the spin orbit coupling and

p := t ′1
t1

= t ′2
t2

(11b)

for the relative strength of the NNN terms. We further define
a variable

s = sgn(t1) = ±1. (11c)

These substitutions modify Hamiltonian (9) to

Hδ = 1

2
Y
δ2 + s

⎧⎨
⎩

∑
〈i,j〉

(1 ± δ)c†i (1 + iRdij · τ )cj

+ p
∑
〈〈i,j〉〉

c
†
i [1 + iR(Rij + Dij ) · τ ]cj

⎫⎬
⎭ , (12)

where all energies are now in units of |t1|. We will work with

R = −0.4, (13a)

p = −0.1, (13b)

s = +1, (13c)

unless otherwise stated. This choice approximately corre-
sponds to the parameters used in Ref. [9].

It may happen that the energy of the Hamiltonian (12)
is minimized for a nonzero value of δ. This means that the
cost of the deformation is compensated for by the electron
energies, thus making the lattice deformation energetically
favorable. Such a transition decreases the symmetry of the
lattice. In particular, it breaks the inversion symmetryI. TheI-
broken lattice still has the fcc Bravais lattice and an unchanged
Brillouin zone but it belongs to a symmorphic No. 216 (F 4̄3m)
space group.

III. PHASE DIAGRAMS

A. Evolution of the band structure

We start by describing the evolution of the spectrum of
Hamiltonian (12) as we tune the staggered strain amplitude
δ. The following observations are based on a direct numerical
diagonalization of the Hamiltonian and are summarized in
Fig. 2. In Sec. IV, we will present detailed group-theoretical
arguments.

In the absence of a staggered strain, δ = 0 [Fig. 2(a)], we
find that all bands are doubly degenerate as a consequence of
the simultaneous presence of time-reversal T and inversion
symmetry I. At each X point [see Fig. 1(c) for the definition
of the high-symmetry points], we find two energetically
separated Dirac nodes where four bands reach the same energy
and disperse linearly in all directions. This is similar to
the spectrum of graphene but in three rather than just two
dimensions. Since the inequivalent X points are related by
crystal symmetries, all higher (and all lower) Dirac nodes are
realized at the same energy. It is therefore possible to tune the

chemical potential to this value, which corresponds to a site
filling of n = 3/4 (six electrons per unit cell) for the upper
and n = 1/4 (two electrons per unit cell) for the lower Dirac
nodes. Such a system has a Fermi surface consisting of a set
of k points and is usually referred to as a Dirac semimetal
(DSM) [37,43,45–48,50].

A nonvanishing staggered strain, δ �= 0 [Fig. 2(b)], leads
to a splitting of each Dirac node into four Weyl nodes. These
are points where only two rather than four bands touch each
other, and they disperse linearly in all directions around this
point. As we increase the value of δ, the Weyl nodes move
along the XW lines. The upper 12 Weyl nodes of the model
are mutually related by crystal symmetries and time reversal.
As a consequence, they are all realized at the same energy and
the chemical potential resumes being tuned to them if either
n = 1/4 or n = 3/4. Such a phase is called the Weyl semimetal
(WSM) [17–20].

In the vicinity of each Weyl node, we can approximate the
electron Hamiltonian as

H(k) = (E0 + uiki)1 + vij kiσj , (14)

where σ = (σx,σy,σz) are the Pauli matrices, det[vij ] �= 0,
and vector u describes the tilt of the dispersion cone. The
quantity sgn(det[v]) = ±1 associated with each Weyl node
is called chirality. It gives rise to the topological nature of
the WSM, which manifests itself, e.g., by the appearance of
the Fermi arcs in the surface Brillouin zone [17] and by the
chiral anomaly [19]. The robustness of the WSM against all
local perturbations follows from the fact that all Pauli matrices
are used in the effective low-energy Hamiltonian (14) [17].
Gapping the spectrum requires enlarging of the effective low-
energy Hilbert space and can be achieved either by scattering
between different Weyl nodes (which breaks translational
symmetry) or by forming a superconducting state [which
requires breaking the global U (1) symmetry] [19].

Time-reversal symmetry implies that if there is a Weyl
node at momentum k, then there is a Weyl node of the same
chirality at −k. On the other hand, Weyl points at momenta
related by mirror symmetry carry opposite chiralities. These
requirements allow us to characterize all twelve Weyl nodes.
We find 6 Weyl nodes with positive and six with negative
chirality, in accordance with the Nielsen-Ninomiya doubling
theorem [30].

At a critical value of the staggered strain δ = δc, pairs of
Weyl nodes with opposite chirality meet at the W points where
they annihilate. The spectrum disperses quadratically along the
XW lines, which correspond to the direction of motion of the
Weyl nodes [38]. Such a quadratic band touching point does
not carry chirality [41]. Finally, for δ > δc, we find a gapped
phase, which is a topologically trivial band insulator (INS). For
the chosen parameters (13) and filling factor (6), the critical
staggered strain is

δc ≈ 0.1112. (15)

B. Phase diagrams for elastic lattices

To find the phase diagrams at filling n = 3/4, we numer-
ically solve the self-consistency equation (10) for varying
hopping parameters and elasticities of the lattice. In general,
we expect that the deformation of a stiff lattice (i.e., with a
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FIG. 3. (Color online) Phase diagrams of Hamiltonian (12) for
p = −0.1 and s = +1 in the R-Y plane for (a) T = 0 and (b) T = 0.5.
The red (vertical) arrow in diagram (b) corresponds to the same set
of parameters as the (horizontal) red arrow in Fig. 4(a). At T = 0
(T = 0.5), the transition from the DSM phase to the WSM phase is
first (second) order for the shown parameters.

large value of Y ) is energetically too costly, so that the system
will remain in the I-preserving DSM phase. Decreasing the
elasticity should allow for a transition to an I-broken state that
can be either a WSM or an INS.

We first study the role of the relative spin-orbit coupling R;
see Figs. 3(a) and 3(b). Throughout this subsection, we fix p =
−0.1 and s = +1 and we vary R in the range (−0.774,+0.364)
for which the undistorted system realizes a DSM phase. For
values of R outside of this interval, the valence bands at � rise
above the Dirac nodes at X, leading to a metallic state with
a hole-like Fermi pocket at the � point and three electron-
like Fermi pockets at the inequivalent X points. The value
R = 0 corresponds to no spin-orbit coupling and hence spin-
independent hopping amplitudes. In this case, the spectrum
does not exhibit Dirac nodes but line nodes along the XW
lines. This line degeneracy is gapped out by any δ �= 0. The

transition from R < 0 to R > 0 also changes the degeneracies
at the � point (bottom to top) from 2-4-2 to 4-2-2.

At zero temperatures, see Fig. 3(a), the transition from
δ = 0 to δ �= 0 is always first order. Furthermore, if R ∈
(−0.35,0.28)\{0}, a narrow WSM phase is found by varying
the elasticity. (Our numerical accuracy does not allow a definite
conclusion on the presence of the WSM phase for |R| � 0.02.)
For values of R outside of the mentioned interval, we find
a direct first-order transition between the DSM and the INS
phase; i.e., the staggered strain directly jumps to a value δ > δc.

In an equivalent calculation at T = 0.5, the transition is
found to be second order for all values of R. By reducing Y , δ

smoothly increases from 0 in the DSM to a value δ > δc in the
INS, leading to a larger WSM region than at zero temperature.

We further study the phase diagram in the Y − T plane for
fixed R = −0.4 [Fig. 4(a)]. The diagram demonstrates that
the WSM phase is indeed most robust at intermediate temper-
atures. We further observe a reentrant phase behavior: Starting
in the symmetric Dirac semimetal at high temperatures, the
system spontaneously breaks the inversion symmetry upon
cooling. But upon further cooling, it returns to the symmetric
phase. For the chosen parameters, we observe this behavior in
the range Ya3 ∈ (0.513,0.594). The reentrance can be traced
back to the peculiar form of the density of states (DOS) in the
symmetric DSM, which has a local minimum with a vanishing
DOS at the Fermi energy. Thermal broadening then enhances
the effective DOS at the chemical potential, rendering the
system more susceptible to a symmetry-breaking transition
at elevated temperatures than at low temperatures. A similar
reentrant phase behavior has also been observed in models for
metallic metamagnetic systems [60].

At low temperatures, the transition between the symmetric
and the symmetry-broken phase is first order. The first-order
transition line obeys the Clausius-Clapeyron relation, and
has to approach zero temperature perpendicularly. The first-
order transition might also lead to a hysteretic behavior with
temperature. Slightly below the tip of the belly-shaped WSM
phase, there is a tricritical point (TP). For temperatures above
the tricritical point, the transition between the symmetric and
the symmetry-broken phase is second order.

C. Phase diagram in a symmetry-breaking field

To further explore the interesting structure of the phase
diagram, we study the effect of a symmetry-breaking field,
which is conjugate to the staggered strain (i.e., a staggered
stress). We incorporate the symmetry-breaking field in the
elastic lattice model (12) by modifying the elastic energy term
as follows:

1
2Y
δ2 �→ 1

2Y
(δ − δ0)2, (16)

where Yδ0 parametrizes the staggered stress. The resulting
three-dimensional phase diagram in the (Y,δ0,T ) space is
shown in Fig. 4(b). Due to the complexity of the three-
dimensional diagram in Fig. 4(b), we show in Figs. 4(c)–4(f)
several slices at either a fixed temperature or a fixed staggered
stress.

A nonvanishing δ0 explicitly breaks the inversion symmetry.
Therefore, the DSM changes into a WSM phase with a
small separation of the Weyl nodes proportional to δ0. This
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FIG. 4. (Color online) (a) Phase diagram of Hamiltonian (12) for R = −0.4, p = −0.1, s = +1 in the R-T plane. The WSM phase is most
robust at intermediate temperatures. The thick (green) line indicates the first-order transition between the symmetric DSM and the symmetry-
broken WSM and INS phases and ends at a tricritical point TP. At higher temperatures, the transition is always second order. The horizontal
(red) arrow corresponds to the same set of parameters as the vertical (red) arrow in Fig. 3(b). The blue rectangle corresponds to the range of
temperatures and elasticities that are used in the three-dimensional diagram. (b) Phase diagram for the same parameters with included coupling
to a symmetry-breaking staggered stress Yδ0. In the presence of such a field, the distinction between the DSM and the WSM phases ceases to
have a meaning. Only the structural first-order transition (the dark green sheet in the back) and the transition between the WSM and INS phases
(the pale blue sheet in the front) are therefore present. Where the two transitions occur at the same parameters, the dark red sheet is plotted. (c),
(d) Horizontal cuts of the three-dimensional phase diagram in (b) corresponding to fixed temperature, and (e), (f) vertical cuts corresponding
to a fixed staggered stress. In these four diagrams, the dotted green lines correspond to the first-order structural transition, the dashed blue lines
to the WSM-to-INS transition, and the solid red lines are drawn where the two transitions coincide.

means that the second-order transition line separating DSM
from WSM at δ0 = 0 ceases to exist in the presence of
a staggered stress. However, the first-order line below the
tricritical point survives also for δ0 > 0, forming a sheet
of first-order transitions (a so-called Griffiths wing), which
extends up to a finite value of δ0. The Griffiths wing either
signals a structural transition within the WSM phase [dark
green sheet in Fig. 4(b) in the online version] or between the
WSM and the INS phases [dark red sheet in Fig. 4(b) in the
online version]. Note that the Griffiths wing takes an unusual
form with a “belly” at finite temperatures: the end point at
T = 0.1 occurs at δ0 ≈ 0.0030 while at T = 0 it occurs at
δ0 ≈ 0.0016; see Figs. 4(c) and 4(d). Finally, we note that the
boundary between the WSM phase and the INS phase remains
well defined for all values of δ0 and T [light blue sheet in
Fig. 4(b) in the online version].

IV. GROUP THEORETICAL ANALYSIS

A. The general strategy

In this section, we will demonstrate how the symmetry of
the pyrochlore lattice inevitably leads to the Dirac node at the X
point of the Brillouin zone, and why this Dirac node has to split
into four Weyl nodes upon breaking the inversion symmetry.
The pyrochlore lattice belongs to the same space group as the
diamond lattice (No. 227, Fd3̄m) so the same reasoning as
that of Ref. [50] applies. Further structures belonging to this
space group are β-cristobalite and spinel oxides.

Our main tool in determining the spectrum degeneracies at a
given k point is the following relation between representations
of point-symmetry operations in the vector space spanned by
the Bloch wave functions at k:

Dk(Ri)Dk(Rj ) = exp (−igi · tj )Dk(Ri ◦ Rj ). (17)

Here, Ri is a point-symmetry operation that maps the
considered k-point onto itself modulo a reciprocal lattice
vector gi = (R−1

i k) − k, and t i is the nonsymmorphic shift
associated with the point operation Ri . The set of all such

k-preserving operations Ri forms a group G
k

called the little
co-group of k. The function

θ (Ri,Rj ) = exp (−igi · tj ) (18)

is called the factor system of the representation and it is
completely fixed by the lattice symmetries. A derivation of
Eq. (17) can be found, e.g., in Ref. [61]. We offer a condensed
review of the derivation in Appendix A.

In many situations, the factor system Eq. (18) is trivial. This
is the case, especially,

(i) for symmorphic lattices because all tj are zero,
(ii) for momenta k inside the Brillouin zone because all gi

are zero.
In these situations, the definition (17) reduces to that

of an “ordinary” representation. On the other hand, if the
factor system is nontrivial, Eq. (17) defines a projective
representation. This situation arises for k points on the surface
of the Brillouin zone of nonsymmorphic lattices. Interestingly,
irreducible projective representations of a group can be higher-
dimensional than their ordinary counterparts.

This section is structured in the following way. In Sec. IV B
we explain how the symmetries of the space group of the
symmetric pyrochlore lattice (No. 227) protect a fourfold
degeneracy at the X point of the Brillouin zone and why
the spectrum disperses linearly around it, leading to a Dirac
node. In Sec. IV C we show how breaking inversion symmetry
splits the fourfold degeneracy into two linearly dispersing
twofold degeneracies at different energies. The lower band of
the upper representation crosses the upper band of the lower
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representation along a 2D sheet in momentum space. In
Sec. IV D we explain why this crossing gaps out everywhere
except for four points where it is protected by lattice symme-
tries. These four points are the Weyl nodes of the WSM phase
in our model.

B. The X point in the symmetric pyrochlore lattice

1. Summary

We will now analyze in more detail how the symmetries
of the nonsymmorphic pyrochlore lattice protect the Dirac
nodes at the X point, where the nontrivial application of
Eq. (17) arises. Taking the spin-orbit coupling into account,

the little co-group G
X

contains 32 elements and is iso-
morphic to the double-valued D4h. According to the tables
in Ref. [61], the only irreducible projective representation
compatible with the factor system is four-dimensional. This
already points to the fourfold degeneracy observed in Fig. 2(a).
It also implies that at a commensurate filling with 2 + 4n

(n ∈ N0) electrons per unit cell, a band insulator is not possible.
This result complements a similar result found in Ref. [51] for
the case of a vanishing spin-orbit coupling but with arbitrary
electron-electron interaction.

By considering the generators of G
X

, it is possible to
find the factor system and a symmetry-adapted basis that
spans the 4DIR. This is achieved in Eq. (21). We further con-
struct the effective low-energy Hamiltonian, given by Eq. (26),
which demonstrates that the spectrum indeed disperses linearly
around the 4DIR.

2. The factor system

To be specific, we consider in the following the X point

with coordinates X = π
2a

(1,0,0). The little co-group G
X

is
generated by point operations I, C+

2z, and C+
4x where C+

ni is an
n-fold rotation around axis i in the positive (counterclockwise)
direction and the center of symmetry is the center of any (but
fixed) tetrahedron. Of these generators,

(i) I and C+
4x are associated with a non-Bravais lattice shift

t0 = −a(1,1,1),
(ii) I and C+

2z transform the X point to an equivalent point
displaced by g = −π

a
(1,0,0).

With this information and knowing that exp (−ig · t0) = −1,
it is easy to find the factor system between the group generators
listed in Table I.

An important consequence of the nontrivial factor system in
Table I is that certain commuting point-symmetry operations
are represented by anticommuting operators and vice versa.

TABLE I. Factor system of the generators of the little co-group

G
X

. The vector indicated next to each point operation in the column
is the non-Bravais lattice shift associated with it. The vector indicated
next to it in the row gives the reciprocal lattice shift of the X point
under the point operation.

I C+
2z C+

4x

(t0) (0) (t0)

I (g) −1 +1 −1
C+

2z (g) −1 +1 −1
C+

4x (0) +1 +1 +1

FIG. 5. (Color online) The action of {I | t0}, where I is the
inversion around the center of symmetry indicated by the star, and
t0 is a non-Bravais vector shift indicated by the blue arrow in the
upper left tetrahedron. This symmetry operation maps the primed
sites to the nonprimed ones and is equivalent to the space inversion
around site 1. Note that sites 1 and 2 do not change their x coordinate
under the transformation while sites 3 and 4 are shifted by −2a. This
means that {I | t0} preserves the amplitude of Bloch wave functions
with k = X = π

2a
(1,0,0) on sites 1,2, but it changes the amplitude on

sites 3,4 by a factor exp (i π

2a
2a) = −1. The nonuniformity of these

factors is a consequence of the nonsymmorphicity of the symmetry
operation.

We illustrate this fact with the relation between space inversion
I and the twofold rotation C+

2z. These symmetry operations
commute; i.e.,

I ◦ C+
2z = C+

2z ◦ I. (19a)

However, from Table I it follows that their (projective)
representations anticommute:

DX(I)DX(C+
2z) = −DX(C+

2z)DX(I). (19b)

The origin of Eq. (19b) can be traced back to the nonsymmor-
phicity of the pyrochlore lattice. As shown in Fig. 5, inversion
{I,t0} maps three out of four sites to neighboring unit cells.
As a result, when inversion acts on Bloch wave functions
at X, nonuniform exponential factors exp (iX · r) have to be
taken into account. Indeed, in the convention of Fig. 5, the
amplitudes at sites 1,2 are unchanged while the amplitudes at
sites 3,4 acquire a factor

exp (iX · 2b13) = −1 = exp (iX · 2b14). (20)

The operation C+
2z exchanges sites 1,2 with sites 3,4, i.e., those

that change sign under DX(I) with those that do not. This is
just the statement of Eq. (19b).

3. Construction of a symmetry-adapted basis

We can use our formalism to deduce the existence of the
fourfold degeneracy at the X point by constructing a symmetry-
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TABLE II. Eigenvalues of the states (21) under DX(I) and
DX(C+

2x). A and B can both assume values ±i.

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉
DX(I) +A −A −A +A

DX(C+
2x) +B −B +B −B

adapted basis. Note that the representation DX(C+
2x) =

DX(C+
4x)2 commutes with the representation DX(I) and that

they both commute withH(X). Hence, a basis can be found that
diagonalizes these three operators simultaneously. Because
DX(I)2 = DX(C+

2x)2 = −1 (see Table I), both DX(I) and
DX(C+

2x) have eigenvalues ±i. Let

|ψ1〉 (21a)

be an eigenvector of H(X) with eigenvalue A = ±i under
DX(I) and eigenvalue B = ±i under DX(C+

2x). Then, the
states

|ψ2〉 = DX(C+
2z)|ψ1〉, (21b)

|ψ3〉 = DX(C+
4x)|ψ1〉, (21c)

|ψ4〉 = DX(C+
2z)DX(C+

4x)|ψ1〉 (21d)

are eigenvectors at the same energy with distinct eigenvalues
under DX(I) and DX(C+

2x), as indicated in Table II. Hence,
the four states (21) are mutually orthogonal and span the
(projective) 4DIR at the X point. We also see that the 4DIR
splits, if any of the symmetry elements {I | t0}, {C+

4x | t0}, and
{C+

2z | 0} is removed from the space group. This agrees with
findings of Ref. [49] that a rotation symmetry is an essential
ingredient to obtain a protected Dirac node at a time-reversal
invariant momentum. Note that the presence of time reversal
T is not relevant for the existence of the 4DIR.

4. Linear dispersion

We further derive the linear dispersion of the spectrum
around the X point. A formal group-theoretical argument, also
given in Ref. [50], is expounded in Appendix B. Here, we
instead present a reasoning that explicitly shows the role of
symmetries.

Insight can be gained by expanding the Hamiltonian
perturbatively in the momentum p around the X point. The
first-order term is

[
HX

pert( p)
]
ij

= 〈ψi |
(

∂H(k)

∂k

∣∣∣∣
X

· p
)

|ψj 〉

≈ 〈ψi |[H(X + p) − H(X)]|ψj 〉. (22)

If there is a direction of p for which some of the matrix
elements are nonzero, the spectrum might disperse linearly
in that direction. Otherwise, the spectrum disperses at least
quadratically in any direction.

Symmetries pose constraints on the matrix elements of
Eq. (22). To find them, we use the transformation laws of the
Bloch functions (21) deduced from Tables I and II together
with the fact that the perturbation Hamiltonian transforms

TABLE III. The two terms in parentheses indicate the eigenvalues
of the states under DX(I) and DX(C+

2x), respectively. The crossed
“��pi” terms indicate matrix elements (22) that vanish due to I and the
back-crossed terms “��pi” indicate those that vanish due C+

2x symmetry.
Since all px , py and pz remain uncrossed for some pair of states, the
spectrum disperses linearly in all directions around the X point.

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉
(+A,+B) (−A,−B) (−A,+B) (+A,−B)

〈ψ1| (−A,−B) ��px,����py,����pz ��px,py,pz px,��py,��pz ����px,��py,��pz

〈ψ2| (+A,+B) ��px,py,pz ��px,����py,����pz ��px,����py,��pz px,��py,��pz

〈ψ3| (+A,−B) px,��py,��pz ����px,��py,��pz ��px,����py,����pz ��px,py,pz

〈ψ4| (−A,+B) ����px,��py,��pz px,��py,��pz ��px,py,pz ��px,����py,����pz

according to a vector representation,

R :

(
∂H(k)

∂k

∣∣∣∣
X

· p
)

�→
(

∂H(k)

∂k

∣∣∣∣
X

· (R p)

)
, (23)

under a point operation R ∈ G
X

. Equation (23) follows from
R : H(X + p) �→ H(RX + R p) = H(X + R p).

We start by considering I, which flips the sign of all
components of the vector p. If the Bloch functions 〈ψi | and
|ψj 〉 have opposite eigenvalues of DX(I), +A and −A, the
corresponding matrix element (22) is transformed to minus
itself under I and hence must be zero. This reasoning forces
the matrix elements indicated in Table III by the crossed font
“��pi” to vanish.

We further consider the operation C+
2x which flips the sign of

py and pz and preserves the sign of px . If the Bloch functions
〈ψi | and |ψj 〉 have the same eigenvalue ±B under C+

2x , they
produce a factor (±B)2 = −1 under that transformation. This
means that the corresponding px matrix element maps to minus
itself and must vanish. On the other hand, if the two Bloch
functions have opposite eigenvalues, they produce a factor
of +1 and the corresponding py and pz matrix elements are
forced to be zero. Both of these constraints are indicated by
the back-crossed terms “��pi” in Table III.

The remaining generators of the little co-group do not force
any of the remaining matrix elements to be zero. Since there
are px , py , and pz terms uncrossed for some pair of wave
functions in Table III, the spectrum disperses linearly in all
directions.

5. Effective Dirac Hamiltonian

To deduce the form of the effective Hamiltonian, we
also analyze how symmetries relate the nonvanishing matrix
elements in Eq. (22). First, the rotation C+

2z leads to[
HX

pert(px)
]

13 = −[
HX

pert(px)
]

24, (24a)[
HX

pert(py)
]

12 = +[
HX

pert(py)
]

21, (24b)[
HX

pert(pz)
]

12 = −[
HX

pert(pz)
]

21, (24c)

and the same relations with (1,2,3,4) ↔ (3,4,1,2). Second,
the remaining little co-group generator C+

4x , which maps
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(px,py,pz) to (px,−pz,py), leads to[
HX

pert(py)
]

12 = (−B)
[
HX

pert(pz)
]

34, (25a)[
HX

pert(pz)
]

12 = (+B)
[
HX

pert(py)
]

34, (25b)[
HX

pert(px)
]

13 = (+B)
[
HX

pert(px)
]

31, (25c)

and opposite sign relations with (1,2,3,4) ↔ (4,3,2,1). Com-
bining these results with Hermiticity and time reversal leads
to an effective Dirac Hamiltonian

HX
Dirac( p) = ε(X)1 + apx�1 + b(py�2 + pz�3) (26)

with a,b ∈ R. The Dirac matrices �i in our basis are given by

�1 = 1√
2

(σx + iBσy) ⊗ σz, (27a)

�2 = 1 ⊗ σx, (27b)

�3 = iB 1 ⊗ σy, (27c)

�4 = σz ⊗ σz, (27d)

and fulfill the anticommutation relation

{�i,�j } = 2δij . (28)

The first set of the Pauli matrices in Eq. (27) operates
on the 2 × 2 blocks of the matrix Hamiltonian (26), and
the second set acts within these blocks. Diagonalizing the
Dirac Hamiltonian (26) leads to a spectrum with two doubly
degenerate linearly dispersing bands

ε(X + p) = ε(X) ±
√

(apx)2 + b2
(
p2

y + p2
z

)
. (29)

C. The X point in the breathing pyrochlore lattice

Breaking of the inversion symmetry decreases the allowed
degeneracy at the X point from 4 to 2; i.e., the 4DIR splits
into two 2DIRs with the chemical potential in between. The
dispersion around each of these nodes is linear within the
square face of the BZ and quadratic in the perpendicular
direction. As discussed in Sec. IV D, the Weyl nodes appear
as symmetry-protected crossings of the up-dispersing band of
the lower 2DIR with the down-dispersing band of the upper
2DIR.

More specifically, the little co-group at the X point of the
I-broken pyrochlore lattice is isomorphic to the double-valued
D2d crystallographic point group. It is generated by the rotation
C+

2z and the improper rotation

S−
4x = I ◦ C+

4x : (x,y,z) �→ (−x,z,−y), (30)

that satisfies (S−
4x)2 = C+

2x . Note that the I-broken pyrochlore
lattice is symmorphic, so the factor system is trivial and the
degeneracy is given by the “ordinary” IRs. According to [61],
all IRs that produce a minus sign under a 2π rotation are
two-dimensional.

Let us now construct the states that span the 2DIR. Note that
it is possible to simultaneously diagonalize the Hamiltonian
H(X), and operators DX(S−

4x) and DX(C+
2x). Let

|φ±
1 〉 (31a)

be an eigenstate of H(X) with energy ε(X) ± �/2 and an
eigenstate of DX(C+

2x) with eigenvalue B = ±i. It follows that

|φ±
2 〉 = DX(C+

2z)|φ1〉 (31b)

has the same energy as |φ1〉 but the opposite eigenvalue of
DX(C+

2x). This implies that the two states are orthogonal and
span the 2DIR at the X point. If an appropriate phase of |ψ1〉
in (21a) is adopted, then

|φ±
1,2〉 = 1√

2
(|ψ1,2〉 ± i

√
B|ψ3,4〉), (32)

where the + (−) sign refers to the upper (lower) 2DIR,
assuming that � > 0, and the branch cut of the square root
is along the negative real axis. As a consequence, in linear
order in � and p, the Dirac Hamiltonian (26) acquires an
additional term due to the inversion-symmetry breaking,

HX
Dirac( p) �→ HX

Dirac( p) + �

2
�14, (33)

where �ij = − i
2 [�i,�j ]. The effect of such a term on the Dirac

Hamiltonian has been discussed in Refs. [23,42] and agrees
with our observations, e.g., in Fig. 2(b) and Eq. (36) below.

In analogy with the previous subsection, we can also
investigate the dispersion of the 2DIRs around the X point
using the symmetries. They again lead to certain constraints on
the matrix elements between |φ1〉 and |φ2〉: If 〈φi | and |φj 〉 have
the same eigenvalue ±B under DX(Cx

2z), the corresponding px

matrix element must vanish. If their eigenvalues are opposite,
the py and pz elements are forced to be zero. These matrix
elements are indicated in Table IV by the crossed “��pi” terms.
On the other hand, the improper rotation S−

4x flips the sign of
px ; hence the matrix elements 〈φi |px |φi〉 are mapped to minus
themselves under the transformation and have to vanish. They
are indicated in Table IV by the back-crossed “��pi” terms.

The remaining matrix elements are nonzero. The improper
rotation S−

4x relates[
HX,±

pert (py)
]

12 = (−B)
[
HX,±

pert (pz)
]

12, (34a)[
HX,±

pert (py)
]

21 = (+B)
[
HX,±

pert (pz)
]

21, (34b)

and the rotation C+
2z further leads to[

HX,±
pert (py)

]
12 = +[

HX,±
pert (py)

]
21, (35a)[

HX,±
pert (pz)

]
12 = −[

HX,±
pert (pz)

]
21. (35b)

TABLE IV. The ±B terms indicate the eigenvalue of the state
under a C+

2x rotation, which is the square of the eigenvalue under
the improper S−

4x rotation. The crossed “��pi” terms indicate matrix
elements (22) that vanish due to C+

2x and the back-crossed “��pi” terms
indicate those that vanish due to S−

4x . The uncrossed terms are allowed
by symmetry. The absence of px implies that the spectrum disperses
quadratically in this direction.

|φ1〉 |φ2〉
(+B) (−B)

〈φ1| (−B) ��px,��py,��pz ��px,py,pz

〈φ2| (+B) ��px,py,pz ��px,��py,��pz
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Time reversal does not lead to further constraints. After
considering the Hermiticity, the perturbation Hamiltonian can
be written as

HX,±
eff ( p) =

[
ε(X) ± �

2

]
1 + b(pyσx + iBpzσy), (36)

with c ∈ R. The two bands disperse linearly along the py and
pz directions and quadratically along the px direction. This is
in agreement with analysis of Eq. (33) in Ref. [42].

D. Appearance of the Weyl nodes

The breaking of the inversion symmetry splits the linearly
dispersing 4DIR discussed in Sec. IV B into the two 2DIRs
discussed in Sec. IV C that disperse linearly only within the
square face of the Brillouin zone and quadratically along the
�X direction. The up-dispersing band of the lower 2DIR
crosses the down-dispersing band of the upper 2DIR on a
2D sheet that locally looks like a one-sheet hyperboloid with
the X point in the center. At a general k point, this crossing
gaps out because there is no symmetry to protect it. Potential
exceptions are k points with higher symmetry and we therefore
discuss the XU and the XW lines in more detail.

1. The XU line

Upon breaking the inversion symmetry, the four bands
originating from the 4DIR at the X point disperse as indicated
in Fig. 6(a). The question is whether the band crossing is
protected or gapped.

The little co-group G
XU

is cyclic; the only generator is a
mirror symmetry σd1. The possible eigenvalues of DXU(σd1)
are ±i and correspond to two different 1DIRs. Two bands
with the same eigenvalue can hybridize and their crossings
generally gap out. On the other hand, two bands with opposite
eigenvalues cannot hybridize and hence their crossings are
protected. To ascribe the appropriate 1DIR to each of the four
bands illustrated in Fig. 6(a), we devise the following two
arguments.

First, if we restore the inversion symmetry, then T ◦ I
enters the little co-group, and the bands 1 and 2 in Fig. 6(a)

FIG. 6. (Color online) (a) A schematic sketch of the four bands
along the XU lines, originating from the 4DIR at the X points.
There are only two 1DIRs along this line. Bands belonging to one of
them are indicated by dashed red lines; those belonging to the other
representation are shown in solid blue. The bands that cross belong to
the same representation; hence the crossing gaps out. (b) Analogous
analysis along the XW line reveals that the crossing bands belong to
different representations. Such a crossing is protected by symmetry
and yields a Weyl node that can be gapped out only by annihilation
with another Weyl node.

become degenerate. This element commutes with σd1. Fur-
thermore, both T ◦ I and σd1 are associated with zero shift
g = 0 in momentum space, leading to a trivial factor system;
therefore

[DXU(T ◦ I),DXU(σd1)] = 0. (37)

Note that DXU(T ◦ I) is antiunitary because of the time
reversal. Now, if state |ψ1〉 from band 1 is the eigenvector
of DXU(σd1) with eigenvalue B = ±i, then the state |ψ2〉 =
DXU(T ◦ I)|ψ1〉 from band 2 has eigenvalue B∗ = −B under
DXU(σd1) and hence belongs to the other representation. A
similar conclusion can be found for bands 3 and 4.

Second, if we keep inversion symmetry broken and move
along the XU line to the X point, a perpendicular mirror
symmetry σd2 enters the little co-group that fulfils σd1 ◦ σd2 =
E ◦ σd2 ◦ σd1, where E is a 2π rotation. Therefore

{DX(σd1),DX(σd2)} = 0. (38)

The state |ψ3〉 = DX(σd2)|ψ1〉 from band 3 has the same
energy as |ψ1〉 but has eigenvalue −B under DX(σd1). This
means that bands 1 and 3 belong to different 1DIRs. The same
conclusion can be found for bands 2 and 4.

Our conclusions are summarized in Fig. 6(a). Bands with
eigenvalue +B are indicated by dashed red lines, while those
with eigenvalue −B by solid blue lines. We see that the
two crossing bands belong to the same representation, so the
crossing will in general be gapped out by hybridization.

2. The XW line

We finally investigate the crossing along the XW line. For
concreteness, we consider the line parallel with the z axis. The

little co-group G
XW

is generated by a twofold rotation C+
2z.

Possible eigenvalues of DXW(C+
2z) are ±i and correspond to

two different 1DIRs. We want to assign a representation to
each of the bands sketched in Fig. 6(b). The argumentation
proceeds again in two steps.

First, if we restore the inversion symmetry I, then T ◦ I
and mirror symmetries σx and σy appear in the little co-group,
and bands 1 and 2 become degenerate. Furthermore, the system
is again nonsymmorphic and the factor system is nontrivial.
A careful calculation reveals that representations DXW(C+

2z),
DXW(σx), and DXW(σy) mutually commute, so a basis can be
found that diagonalizes all of them simultaneously.

Let |ψ1〉 be an element of such a basis with eigenvectors
B = ±i,Ax = ±1,Ay = ±i, respectively. Since

DXW(σx)DXW(σy) = −DXW(C+
2z) (39)

the eigenvalues are constrained by AxAy = −B. It turns out
that the state |ψ2〉 = DXW(T ◦ I)|ψ1〉 from band 2 has the
same energy and eigenvalues B,−Ax,−Ay , respectively. The
unchanged sign of the eigenvalue of DXW(C+

2z) means that
bands 1 and 2 belong to the same representation. Analogous
statement can be made about bands 3 and 4.

Second, if we move towards the X point, then C+
2y enters the

little co-group and bands 1 and 3 become degenerate. Since
C+

2x ◦ C+
2y = E ◦ C+

2y ◦ C+
2x , we find that

{DX(C+
2x),DX(C+

2y)} = 0. (40)
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This means that the state |ψ3〉 = DX(C+
2y) from band 3 is

an eigenstate at X with the same energy and eigenvalue −B

under DX(C+
2z). This implies that bands 1 and 3 in Fig. 6(b)

belong to different representations. Analogous conclusion can
be derived for bands 2 and 4.

Note that the bands crossing along the XW line belong
to different representations. This means that the crossing is
protected. It corresponds to one of the Weyl nodes of the Weyl
semimetal phase in our model. The other Weyl points are
related by crystal symmetries.

V. {111} AND {111̄} SURFACE STATES

A. Terminations of a (111) slab

The topological nature of the WSM phase is manifest in
the exotic surface states that have the form of Fermi arcs
and that are robust against all local perturbations [17,19]. The
end points of the Fermi arcs are given by projections of the
bulk Weyl nodes onto the surface Brillouin zone (SBZ). In
the following, we focus on the {111} and {111̄} surfaces as
these are the natural cleavage planes of the pyrochlore oxides.
Besides the topological surface states exhibited by the WSM
of model (12), we also identify nontopological surface states
in the DSM and the INS phase for certain terminations of the
pyrochlore lattice.

Along the {111} directions, the pyrochlore lattice can be
viewed as a stack of alternating layers of triangular and kagome
lattices. Hence, the two simplest open boundary conditions
correspond to terminating the crystal at sites making up either
the kagome lattice (K) or the triangular lattice (T). Note that the
kagome termination cuts the outermost tetrahedra. Because of
the inequivalent bonds in the I-broken state, we further have
to specify whether the bonds connecting the outermost layer
of sites to the next layer are strong (S) or weak (W). This gives
four possible terminations illustrated in Fig. 7. For the DSM
phase the labels S and W are redundant and can be dropped. A
suitable geometry for experimental studies is a thin slab with
large lateral dimensions [29]. If we set the (111) surface on
the top and we limit our attention to δ > 0, then only KS and

FIG. 7. (Color online) Illustration of the four crystal termination
in the {111} and {111̄} directions considered in Sec. V. The crystal can
terminate either at the triangular (T) or the kagome (K) lattice, and for
δ �= 0 we further have to specify whether the bonds connecting the
outermost layer of sites to the next one are strong (S) or weak (W).
Only TW and KS terminations are possible on the top, and only TS
and KW are possible on the bottom of a sample in the slab geometry.

FIG. 8. (Color online) (a) Construction of the surface Brillouin
zone (SBZ) along the {111} directions. The time-reversal invariant
momenta (TRIMs) of the SBZ are given by projections of the bulk
TRIMs. The projections of the Weyl nodes of the two possible
chiralities are also indicated. (b) Definition of the high-symmetry
points �, M, and K in the SBZ. The three inequivalent M points
and the � point are TRIMs. The solid red and dashed green lines
indicate the trajectory of the projections of the Weyl nodes of opposite
chiralities upon increasing the value of δ. The crosses indicate where
the Weyl points annihilate for the critical δc. (c) and (d) The DSM
phase gets gapped for finite thickness of the system. The Z2 invariant
of the insulating phase depends on the number of TRIMs encircled
by the surface Fermi lines. Situation (c) corresponds to a normal and
(d) to a topological insulator.

TW can be realized on the top, and only KW and TS on the
bottom surface, as shown in Fig. 7.

The SBZ has the shape of a regular hexagon and its
construction is indicated in Fig. 8(a). Since the twelve Weyl
nodes project onto separate points, six distinct Fermi arcs
are expected. Upon increasing the staggered strain δ, the
projections of the Weyl nodes move to the inside of the SBZ
along the trajectories shown in Fig. 8(b). A summary of the
surface states for the four different terminations shown in Fig. 7
and varying values of δ [the remaining parameters are fixed as
in Eq. (13)] is provided in Fig. 9, where we show density plots
of the the surface spectral function.

B. Strain-dependent surface states

1. Surface states of the Dirac semimetal

The column δ = 0 in Fig. 9 corresponds to the DSM phase.
We find no surface states for the triangular termination. For
the kagome termination, we find a single nondegenerate Fermi
line connecting the M points of the hexagonal SBZ, which are
the projections of the bulk Dirac nodes.

Since the surface breaks symmetries that protect the bulk
Dirac nodes, a small gap, which shrinks with increasing system
width, opens in the (111) film. As a consequence, the surface
states for the kagome termination of the DSM phase do not
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FIG. 9. (Color online) Surface spectral function within the SBZ defined in Fig. 8(a), plotted for varying value of δ and varying surface
terminations illustrated in Fig. 7. The blue circles in the DSM column represent projections of the bulk Dirac nodes into the SBZ. In the same
way, the red square and the green triangle markers in the WSM columns represent the Weyl nodes of the two opposite chiralities, and the pale
crosses in the WSM-to-INS column represent the k points where pairs of Weyl nodes annihilate. In the INS phase, the chemical potential is set
to the middle of the bulk gap.

exactly pass through the M points but slightly avoid them.
In general, for band insulators, the Fermi line has to encircle
an even or odd number of time-reversal invariant momenta
(TRIMs) of the SBZ, depending on the strong Z2 invariant of
the band structure [62,63]. We therefore expect that either the
situation shown in Fig. 8(c) (normal insulator) or in Fig. 8(d)
(topological insulator) is realized. We numerically find that
the first possibility (normal insulator) is realized, which is
consistent with the fact that there are no surface states for the
triangular termination.

2. Surface states of the Weyl semimetal

In the WSM phase, the surface states form Fermi arcs
connecting the projections of the Weyl nodes. Interestingly,
the connectivity of the Fermi arcs, i.e., the way the Weyl nodes
of opposite chirality are paired into the arcs, depends on the
termination of the sample. In Ref. [64], a similar dependence
appears naturally in a toy model consisting of a stack of
alternating electron and hole Fermi surfaces. Here, we directly
observe this phenomena in a microscopic model.

For the TW termination, we observe six Fermi arcs
developing between the projections of the Weyl points in
neighboring SBZs as δ increases from zero. At the critical δc,
three Fermi arcs at the time form a closed Fermi line enclosing
K and K′, respectively. For even larger values of δ, all surface
bands are shifted away from the bulk chemical potential.

For the KS termination, the very opposite happens. The
closed Fermi lines present in the DSM phase splits into six
distinct Fermi arcs upon breaking the inversion symmetry.
Increasing the staggered strain δ leads to a shrinking of the
Fermi arcs and to a complete disappearance of the surface
states at δc.

For the TS termination and δ � 0.04, the same pairs of
Weyl nodes as for the KS termination are connected but with
opposite curvature. They also disappear at δc. In Sec. V C,
we separately discuss the interesting parameter range 0 < δ �
0.04.

Finally, for the KW termination, additional Fermi arcs
appear very close to the Fermi lines present in the DSM phase.
This fact makes their observation obscured in Fig. 9. For the
INS phase we find a pair of closed Fermi lines encircling the
� point.

3. Surface states of the insulator

In the INS phase, we observe no surface states for the TS,
TW, and KS terminations. However, for the KW termination,
there are two surface bands crossing the bulk chemical
potential that encircle the � point. These observations are in
accordance with the trivial Z2 invariant of the INS phase.

One possibility to understand the “nontopological” surface
states of the KW termination is to consider the (unphysical)
limit δ → 1 and p → 0 which corresponds to a lattice of
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isolated tetrahedra. A lattice of isolated tetrahedra exhibits
only flat bands. The boundary consists of

(i) isolated tetrahedra for the TS and KS terminations,
(ii) isolated triangles for the KW termination,
(iii) isolated points for the TW termination.

In the situation (i), the bulk and the surface have identical
spectra so the chemical potential lies in the gap of both.
For sufficiently weak coupling between the tetrahedra, this
observation has to remain valid and we do not expect surface
states for the TS and KS terminations.

For the other two situations, we need to know the eigenen-
ergies of the corresponding boundary objects. Focusing on
s = +1, the states of an isolated tetrahedron with spin-orbit
coupling parametrized by R lie at energies

ε
(4)
1 = 6, ε

(4)
2 = −2(1 − 4R), ε

(4)
3,4 = −2(1 + 2R). (41)

Due to time-reversal symmetry, all levels are doubly degener-
ate. It follows that for R = −0.4 (as in Fig. 9), the chemical
potential satisfies ε

(4)
3,4 < μ < ε

(4)
1 . On the other hand, the

energy levels of an isolated triangle appearing at the KW
termination are

ε
(3)
± = 1 + 2R ±

√
3[3 + 4(R − 1)R], (42)

ε
(3)
3 = −2(1 + 2R). (43)

Hence, the highest energy level ε
(3)
+ also satisfies ε

(4)
3,4 < ε

(3)
+ <

ε
(4)
1 which pins μ at ε(3)

+ for T = 0 in the charge neutral system.
The eigenenergy of an isolated point appearing at the TW
termination is simply

ε
(1)
1 = 0, (44)

which too lies between ε
(4)
3,4 and ε

(4)
1 for R = −0.4. We

therefore expect that there are surface states in the bulk
gap both for the KW and the TW termination, even if we
reintroduce the coupling between the tetrahedra. We indeed
do observe this. In Fig. 9, we fixed the chemical potential in
the INS phase at the bulk value. For the KW termination, the
surface states cross the bulk chemical potential; for the TW
termination they lie below it.

C. Weyl-Lifshitz transitions

As illustrated in Fig. 9, the connectivity and shape of the
Fermi arcs in the WSM phase depend on the termination of
the sample. For the studied surfaces of our model, there are
three possible connectivities that respect the symmetries of the
system and that do not contain Fermi arc crossings (which are
expected to be gapped out) [Figs. 10(a)–10(c)]. Interestingly,
it is possible to continuously move from one connectivity to
another one, giving rise to a Lifshitz transition of the Fermi
arcs that we dub the Weyl-Lifshitz transition. More precisely,
the Weyl-Lifshitz transition is characterized by a topological
change of the closed Fermi lines formed by the Fermi arcs
of the top and bottom surfaces. A similar transition was also
observed and discussed in Ref. [65].

We have observed such a transition for the TS termination
for varying staggered strain: For small δ, the connectivity of the
Fermi arcs is identical to that of the TW termination; see Fig. 9.
At δ ≈ 0.015, a part of the topological surface band crosses

FIG. 10. (Color online) (a), (b), (c) Three connectivities of the
Fermi arcs that preserve the symmetry of the system. The dark
red and pale green points correspond to the projections of the bulk
Weyl nodes of opposite chiralities. The arrows indicate direction
of motion of the electrons in the quantum oscillations experiment
proposed in [29] when a magnetic field is applied perpendicular to
the surface. (d) The oriented vertical lines correspond to the chiral
Landau levels emanating from the Weyl nodes, and act as “conveyor
belts” transporting the electrons between the top and bottom surfaces
of the slab. If the indicated connectivity of the Fermi arcs is realized
on the bottom surface, the electron orbits traverse the bulk 2, 6, and
12 times, respectively, if connectivities (a),(b), and (c) are realized
on the top surface. Realizing situations (b) on the top and (c) on the
bottom leads to electron orbits traversing the bulk four times.

the chemical potential from below at the two K points. The
corresponding Fermi lines grow and at δ ≈ 0.04 they touch
the original Fermi arcs. A reconnection of the Fermi arcs from
the situation in Fig. 10(b) to that of Fig. 10(a) occurs.

Another possibility is to tune the shape and connectivity
of the Fermi arcs by applying a surface gate potential. We
model such an experiment in a simplified manner by adding
an on-site potential V to the outermost layer of atoms. This
effectively shifts the energy of the surface states and those that
were originally away from the Fermi level can be tuned to
cross it. The surface states are then allowed to hybridize with
the Fermi arcs, leading to a reconnection of the Weyl nodes.
Figure 11(a) shows the transition between the connectivity
shown in Fig. 10(a) and the one shown in Fig. 10(b) by applying
a positive surface potential to the KS termination. Similarly,
we observe a transition from the situation shown in Fig. 10(a)
to the one shown in Fig. 10(c) if we apply a negative surface
potential.

A fascinating aspect of the Weyl-Lifshitz transition is that
it changes the number of times an electron crosses the bulk
in order to complete its semiclassical orbit in an external
magnetic field. For example, if we assume the TS termination
on the bottom and the KS termination on the top surfaces,
the transitions shown in Fig. 11 change the number of bulk
crossings from 2 to 6 in (a) and from 2 to 12 in (b).

Such a dramatic change might be observable in quantum
oscillation experiments in very clean samples for which the
mean-free path l exceeds the system width L. In fact, according
to Ref. [29], the surface-state response shows periodic-in-1/B

oscillations for fixed μ in the resistivity (Shubnikov–de Hass
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FIG. 11. (Color online) Weyl-Lifshitz transitions at δ = 0.08 re-
alized by tuning the on-site potential on the outermost layer of atoms
for the KS termination. Assuming the TS termination on the opposite
surface according to Fig. 10(d), we find that (a) the transition at
positive V = 0.93 changes the number of times the electron orbits
cross the bulk from 2 to 6, and (b) the transition at negative V = −0.82
changes the same number from 2 to 12.

effect) or magnetization (de Haas–van Alphen effect), which
results from energy levels periodically crossing the chemical
potential μ. In the semiclassical approximation, this happens
for the nth energy level if

1

Bn

= eπv(n + γ )

k0μ
| cos φ| + ecL

�k0
. (45)

Here, k0 denotes the Fermi arc length, v the characteristic
Fermi velocity, φ the angle of the magnetic field with respect
to the surface normal, and L the thickness of the sample. γ is
of order unity and incorporates small-n quantum effects and 2c

denotes the number of bulk crossings (in Ref. [29], only c = 1
has been considered). Hence, by measuring the dependence
on the field direction, one can extract the second term ecL

�k0
of

Eq. (45). In an experiment with a surface gate potential similar
to Fig. 11, the change in ecL

�k0
originates from a change of the

length of the Fermi arcs �k0 but also from the change in the
number of bulk crossings �c.

VI. CONCLUSION

In summary, we studied an effective lattice model of
spin-orbit coupled electrons on the pyrochlore lattice at a
commensurate filling that realizes a Dirac semimetal phase
protected by the nonsymmorphic space group. Upon coupling
the electronic degrees of freedom to the lattice, a staggered
strain, which breaks the inversion symmetry, can sponta-
neously develop. For increasing strain, each Dirac node splits
into four Weyl nodes and a topological semimetal phase is
realized. At a critical strain, Weyl nodes of opposite chirality
annihilate and the system enters a trivial insulating phase. We
identified several interesting features of our model such as a
reentrant behavior of the Weyl semimetal phase in the elasticity
versus temperature phase diagram and the appearance of a
Griffiths wing in the presence of a staggered stress.

We furthermore presented a detailed group-theoretical
analysis of the electronic spectrum, which is independent of
the details of the considered lattice model and only relies

on symmetries. We highlighted the importance of nonsym-
morphicity for realizing a Dirac semimetal and displayed
symmetry-based arguments for the appearance of the Weyl
nodes in the inversion-symmetry broken phase.

Eventually, we studied the surface states of our model. Most
notably, we found a dependence of the connectivity and the
shape of the Fermi arcs on the termination of the sample.
We also demonstrated that it is possible to continuously
change the connectivity of the Fermi arcs through a Weyl-
Lifshitz transition by applying a surface potential. A change
in the connectivity may also change the number of times an
electron crosses the bulk in order to complete its semiclassical
orbit, which leads to a clear signal in a quantum oscillation
experiment with a varying field direction.

The model considered in this paper is relevant for py-
rochlore oxides with heavy transition-metal ions such as
iridates. For these systems, one possibility to tune the
chemical potential to the Dirac nodes is to consider alloys
of the type A2−xBxIr2O7. In transition-metal oxides, electronic
correlations are often important but in 5d systems, they are
in general less pronounced. Moreover, the fundamental Berry
curvature structure around the Weyl nodes is perturbatively
stable against interactions [66]. In our study, we have therefore
neglected these effects and instead studied a noninteracting
system. However, the interplay between electron-electron and
electron-lattice interactions is a challenging but interesting
research direction which we leave for further studies.

In conclusion, we presented a route in which a nonmagnetic
Weyl semimetal is realized as a thermodynamic phase with
spontaneous inversion symmetry breaking upon coupling the
electronic degrees of freedom to the lattice. Many of the
observed phenomena of our model, such as the reentrant
behavior of the Weyl semimetal, the dependence of the
surface Fermi arcs on the termination, and the Weyl-Lifshitz
transitions, are expected to be independent of the details of the
system and should be applicable to a large class of materials,
in particular including other systems belonging to the No.
227 (Fd3̄m) space group such as diamond, β-cristobalite, and
spinel oxide structures.
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APPENDIX A: PROJECTIVE REPRESENTATIONS
OF SPACE GROUPS

Here, we provide a derivation of Eq. (17). A more complete
discussion can be found in Ref. [61]. For brevity, we write IR
for irreducible representation and nDIR for n-dimensional IR
throughout the Appendix.

Every element of a space group G can be expressed as a
point operation R followed by a uniform shift by a vector t
which we write compactly as {R | t},

{R | t} : v �→ Rv + t. (A1a)
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Action of the element on functions in real space, including
Bloch wave functions, is

{R | t} : f (v) �→ f [R−1(v − t)] (A1b)

and the composition rule is

{R2 | v2} ◦ {R1 | v1} = {R2 ◦ R1 | R2v1 + v2}. (A1c)

The identity element is {E | 0}.
The set T of all pure translations by Bravais lattice vectors

is a subset of G, and can be used to write all elements of G

compactly as

G = T ◦ {R1 | t1} + · · · + T ◦ {Rn | tn}, (A2)

where the point operations R1, . . . ,Rn act at the same point
in real space and are all different. If the vectors t i can all be
made zero by a proper choice of the point of symmetry, the
lattice is called symmorphic. If this cannot be done, the lattice
is dubbed nonsymmorphic. Note also that the set

F = {R1, . . . ,Rn} (A3)

of the point operations is always a group, while the coset
representatives {Ri | t i} form a group if and only if the space
group is symmorphic.

If we take spin-orbit coupling into account, a 2π rotation of
a wave function in real space is accompanied by a 2π rotation
of the electron spin which results in a sign change of the wave
function. This operation is not equivalent to identity and we
denote it as E. A 4π rotation is equivalent to identity E.

We adopt the periodic boundary conditions. Then the group
T is Abelian and as such it has only 1DIRs ρk labeled
by momenta k. The corresponding representation space is
spanned by a Bloch wave function at k,

ψα,k(r) = exp (ik · r)uα,k(r), (A4)

where uα,k(r) is the cell-periodic part. The representations of
a pure translation by vector v is

ρk({E | v}) = exp (−ik · v). (A5)

The IRs of the space group G can be more than one-
dimensional, but they reduce to the 1DIRs (A5) on the
subgroup T . Let us consider a representation ρ of G that
contains ρk in its decomposition on subgroup T ; i.e., it contains
ψα,k(r) as one of the basis vectors in its representation space.
Then element {R | t} transforms a Bloch function at k into

{R | t} : exp (ik · r)uα,k(r)

�→ exp [ik · (R−1r) − ik · t]uα,k(R−1r − t), (A6)

which can be easily recognized as a Bloch function at Rk. This
means that ρ necessarily also contains ρRk in its decomposition
on T .

To find the allowed spectrum degeneracies at k we have
to consider only those symmetry operations that leave the
momentum of a Bloch function invariant (modulo reciprocal
lattice vectors). We construct it as follows. Let us denote the
subgroup of point operations F that leave k invariant (called

the little co-group of k) as G
k
. Then the group we are looking

for is

Gk =
⋃

i

T ◦ {Ri | t i}, Ri ∈ G
k
. (A7)

It is a subgroup of G called the little group of k.
The IRs ρ̃k of Gk reduce on the subgroup T to 1DIRs

labeled by the same momentum k, so according to Eq. (A5)
for a Bravais vector v

ρ̃k({E | v}) = exp (−ik · v)1, (A8)

where 1 is the unit matrix. This means that representations of
Bravais translations commute with representations of all other
elements of Gk.

It is useful to perform a substitution

ρ̃k({R | t}) = exp (−ik · t)Dk({R | t}). (A9)

The composition rule (A1c) and the representation of Bravais
translations (A8) imply that

Dk({Ri | t i})Dk({Rj | tj })
= exp (−igi · tj )Dk({Rk | tk}), (A10)

where gi = (R−1
i k) − k is a reciprocal lattice vector, Rk =

Ri ◦ Rj is a point group operation from G
k
, and tk is a

vector appearing together with Rk in expansion (A2). Note
that instead of considering the function Dk on elements of Gk,

we might restrict our attention to its values on elements of G
k

by defining

Dk(Ri) := Dk({Ri | t i}), (A11a)

Dk(Ri)Dk(Rj ) = exp (−igi · tj )Dk(Ri ◦ Rj ). (A11b)

This completes the derivation of Eq. (17).
The factors exp (−igi · tj ) are completely fixed by the

crystal symmetry and are referred to as the factor system of
the projective representation. The projective representations

of group G
k

can be found as ordinary representation of some
larger group that we will refer to as the extension group of

G
k
. One only has to pick up those representations of the

extension group that are compatible with the factor system.
Reference [61] goes through all high-symmetry points of all
space groups, gives the appropriate extension of every little
co-group, provides a complete list of their representations,
and picks up those that are compatible with the factor system.

APPENDIX B: LINEAR DISPERSION AROUND THE
DIRAC NODE

In Sec. IV B we analyzed the dispersion around the fourfold
degeneracy at the X point by studying constraints posed

on the matrix elements (22) by the generators of G
X

. In
this Appendix, we briefly introduce an alternative procedure
mentioned in Ref. [50]. This method is computationally very
efficient, but it conceals the role of individual symmetries as
well as the specific form of the k · p expansion (26).

According to the Clebsh-Gordan decomposition, the num-
ber of times, aσ , that the complex conjugate representation ρσ∗
is contained in the product representation ρμ × ρν is given by

aσ = 1

|G|
∑

k

χμ(Ck)χν(Ck)χσ (Ck)Nk, (B1)

where Ck are the classes of the group G (in our case, the

extension group of G
X

), |G| is the number of elements of G, Nk
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BZDUŠEK, RÜEGG, AND SIGRIST PHYSICAL REVIEW B 91, 165105 (2015)

is the number of elements in Ck , and χ stands for the characters
of the representations. The right-hand side of Eq. (B1) is
symmetric under permutations of (μ,ν,σ ); therefore [67] aσ

is also the number of times ρμ∗ appears in ρν × ρσ , and the
number of times ρν∗ appears in ρμ × ρσ .

We further consider the selection rules. Let |ψμ

i 〉 be dμ

states that belong to IR ρμ, and |φν
j 〉 be dν states that belong

to IR ρν . The scalar products 〈ψμ

i |φν
j 〉 are invariant under G.

Using the Schur orthogonality relation, we find〈
ψ

μ

i

∣∣φν
j

〉 = 1

|G|
∑
k�

∑
g∈G

ρ
∗μ

ik (g)ρν
j�(g)

〈
ψ

μ

k

∣∣φν
�

〉

= 1

|G|
∑
k�

〈
ψ

μ

k

∣∣φν
�

〉 |G|
dμ

δij δk�δ
μν

= 1

dμ

∑
k

〈
ψ

μ

k

∣∣φν
k

〉
δij δ

μν ; (B2)

i.e., the products are nonzero iff the functions |ψμ

i 〉 and |φν
j 〉

belong to the same representation. By the symmetry of (B1),
this is equivalent to stating that the trivial representation ρ1 is
contained in the product representation ρμ × ρν .

We further consider matrix elements〈
ψ

μ

i

∣∣Ô∣∣φν
j

〉
(B3)

of an operator O that transforms according to representation
ρσ . It is useful to define states |φ̃(σ×ν)

k 〉 = Okj |φν
j 〉 that

transform according to ρσ × ρν . The findings of the previous
paragraph applied to states |ψμ

i 〉 and |φ̃(σ×ν)
k 〉 imply that matrix

elements (B3) are nonzero iff ρσ is contained in the product
ρμ × ρν [67].

We apply these findings to matrix elements (22). As
discussed therein, the perturbation Hamiltonian transforms
according to the vector representation ρvec, and the states
transform according to representation ρ4D. Note that we can
decompose the product ρ4D × ρ4D as a sum of the symmetric
part [ρ4D × ρ4D] acting in the Hermitian sector of the matrix
elements,

Sij ( p) = [
HX

pert( p)
]
ij

+ [
HX

pert( p)
]∗
ji

, (B4)

and the antisymmetric part {ρ4D × ρ4D} acting in the anti-
Hermitian sector of the matrix elements,

Aij ( p) = [
HX

pert( p)
]
ij

− [
HX

pert( p)
]∗
ji

. (B5)

Since, in our case, the two sets of wave functions are identical,
the antisymmetric sector completely vanishes. Hence, the
linear correction to the spectrum is nonzero iff ρvec is contained
in the symmetrized Kronecker product [ρ4D × ρ4D].
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[35] G. Başar, D. E. Kharzeev, and H.-U. Yee, Phys. Rev. B 89,
035142 (2014).

[36] S. A. Parameswaran, T. Grover, D. A. Abanin, D. A. Pesin, and
A. Vishwanath, Phys. Rev. X 4, 031035 (2014).

[37] S. Murakami, New J. Phys. 9, 356 (2007).
[38] S. Murakami and S.-i. Kuga, Phys. Rev. B 78, 165313 (2008).
[39] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett.

107, 186806 (2011).
[40] B.-J. Yang, M. S. Bahramy, R. Arita, H. Isobe, E.-G. Moon, and

N. Nagaosa, Phys. Rev. Lett. 110, 086402 (2013).
[41] J. Liu and D. Vanderbilt, Phys. Rev. B 90, 155316 (2014).
[42] A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84,

235126 (2011).
[43] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng,

X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).
[44] M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu,

I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F.
Chou, and Z. Hasan, Nat. Commun. 5, 4786 (2014).

[45] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng,
D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z.
Hussain, and Y. Chen, Science 343, 864 (2014).

[46] Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng,
D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, H. M., Z.
Fang, X. Dai, D. L. Shen, Z. X. Feng, Z. Hussain, and Y. Chen,
Nat. Mater. 13, 677 (2014).

[47] L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang,
and S. Y. Li, Phys. Rev. Lett. 113, 246402 (2014).

[48] S.-Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan,
I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T.-R. Chang,
H.-T. Jeng, C.-Y. Huang, W.-F. Tsai, H. Lin, P. P. Shibayev, F.-C.
Chou, R. J. Cava, and M. Z. Hasan, Science 347, 294 (2015).

[49] B.-J. Yang and N. Nagaosa, Nat. Commun. 5, 4898 (2014).
[50] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,

and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).
[51] S. A. Parameswaran, A. M. Turner, D. P. Arovas, and

A. Vishwanath, Nat. Phys. 9, 299 (2013).
[52] C.-X. Liu, R.-X. Zhang, and B. K. VanLeeuwen, Phys. Rev. B

90, 085304 (2014).
[53] C. Fang and L. Fu, arXiv:1501.05510 [cond-mat.mes-hall].
[54] H. Fukazawa and Y. Maeno, J. Phys. Soc. Jpn. 71, 2578 (2002).
[55] M. Soda, N. Aito, Y. Kurahashi, Y. Kobayashi, and M. Sato,

Physica B 329–333, 1071 (2003).
[56] C. Cosio-Castaneda, P. de la Mora, F. Morales, R. Escudero, and

G. Tavizon, J. Solid State Chem. 200, 49 (2013).
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