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Using a combined analytical and numerical approach, we study the collective spin and orbital excitations in a
spin-orbital chain under a crystal field. Irrespective of the crystal-field strength, these excitations can be universally
described by fractionalized fermions. The fractionalization phenomenon persists and contrasts strikingly with the
case of a spin chain, where fractionalized spinons cannot be individually observed but confined to form magnons
in a strong magnetic field. In the spin-orbital chain, each of the fractional quasiparticles carries both spin and
orbital quantum numbers, and the two variables are always entangled in the collective excitations. Our result
further shows that the recently reported separation phenomenon occurs when crystal fields fully polarize the
orbital degrees of freedom. In this case, however, the spinon and orbiton dynamics are decoupled solely because
of a redefinition of the spin and orbital quantum numbers.
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I. INTRODUCTION

Strong correlation effects can lead to intriguing emergent
phenomena, such as the creation of quasiparticles like phonons
and magnons. Being long-lived objects with a well-defined
energy-momentum dispersion, these “new particles” exist as
eigenstates of the low-energy effective Hamiltonian. Their
statistics and quantum numbers, however, can be exotic and
different from those of the constituent particles. One well-
known example is the spin chain discussed below.

A. A reference system: Spin chain

Fractional excitation. In a spin S = 1/2 chain, when the
spins show ferromagnetic (FM) alignments, the elementary
excitations are S = 1 spin-flip (magnon) excitations, and
the corresponding spectrum exhibits a sharp, single-magnon
mode [1–3]. Naively, one might expect a similar scenario for
the S = 1/2 Heisenberg chain with nearest-neighbor (NN)
antiferromagnetic (AF) interactions. In that case, the ground
state is “almost” ordered with a slowly decreasing power-law
AF correlation, in which spins tend to form local SU(2)
singlets with their neighbors. However, instead of a magnon
excitation, a spin flip creates two elementary excitations—
called spinons—related to the formation of magnetic domain
walls [Fig. 1(a)]. Each spinon carries half of the spin quantum
number of a magnon [4] and no charge quantum number.
The phenomenon of carrying only a fraction of the quantum
numbers from the underlying constituents is referred to as
fractionalization [5–7].

Spinon confinement in strong magnetic field. Spinons in
an AF background are deconfined, as they can move away
from each other spatially without costing extra energy. The
spectrum of a spin-flip excitation (creating two spinons)
thereby develops an energy continuum [1–3,8]. This is quite
different when spin degeneracy is lifted by a magnetic field Hz.
For an Hz exceeding the critical strength H cr

z that sustains a FM

ground state, spin excitation is no longer fractional; spinons
cannot be individually observed but confined as magnons
[Fig. 1(b)]. In this case, inelastic neutron or x-ray scattering
experiments, which probe single spin-flip excitation, would
measure only a sharp, single-magnon mode [3].

Spin-charge separation. Another exotic property of a
spin chain is the potential separation of quantum numbers.
Upon doping a hole, another fractional elementary excitation
called a holon appears. Unlike spinons, which carry spin
1/2 but no charge, holons carry spin 0 and charge e. The
spinon and holon are decoupled and propagate at different
velocities, showing the separation of spin and charge quantum
numbers carried respectively by two different fractionalized
quasiparticles [9–13].

B. A related system: Spin-orbital chain

In addition to spin, the orbital degrees of freedom play an
important role in the low-energy physics of various correlated
transition-metal compounds [14,15]. Recent advance in
resonant inelastic x-ray scattering (RIXS) now allows this
technique to directly probe orbital excitations over almost the
entire Brillouin zone [16–19]. This has revived the studies of
various model Hamiltonians with competing or cooperating
spin-orbital interactions [20–24]. One of the simplest models is
the one-dimensional (1D) Kugel-Khomskii Hamiltonian [14]:

H = 4J
∑
〈ij〉

(
Si · Sj + 1

4

) (
Ti · Tj + 1

4

)
+ Ez

∑
i

T z
i .

(1)

Here, Si (or Ti) is an SU(2)-invariant spin (or pseudospin)
1/2 operator at site i, 〈ij 〉 represents an NN pair, J is the
superexchange energy, and Ez is the crystal-field strength.
Such a model emerges in the strong coupling limit for a
chain consisting of two orbitals per site expressed in terms of
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FIG. 1. (Color online) Illustrations showing collective excita-
tions in a spin chain [1–3]: (a) without magnetic field (Hz = 0),
the ground state exhibits AF correlations [top row, showing only
one fluctuating SU(2)-singlet configuration denoted by the dotted
rectangle]. A spin flip (middle row) creates two fractionalized spinons
(magnetic domain walls between parallel spins). The spinons are
deconfined and can propagate through two lattice sites via one
exchange interaction (bottom row). (b) For magnetic fields larger than
the critical strength (Hz � H cr

z ), the ground state is ferromagnetic
(top row). A spin-flip excitation (middle row) does not fractionalize.
Instead, the domain walls are confined as a single magnon excitation
when moving through the chain (bottom row).

the pseudospin operator. It also describes spin ladders with
four-spin interactions [25–27].

SU(4) limit: fractionalization and entanglement. Without
the crystal-field term (Ez = 0), Eq. (1) has an enlarged SU(4)
symmetry [28–30]. The SU(4) spin-orbital model can be
regarded as a generalization of the SU(2) spin chain to higher
symmetry representation, relevant to cold-atom measurements
of SU(N ) antiferromagnets in optical lattices [31–33]. The
model also serves as a good starting point to describe the spin
and orbital properties of real condensed matter systems [34].

Due to its high symmetry, the 1D SU(4) spin-orbital model
is exactly solvable by a numerical Bethe ansatz [29,35]. The
ground state was found to show AF and alternating orbital (AO)
correlations (AF × AO) [Fig. 2(a)], which can be described as
a superposition of SU(4) singlets [28–30]. In this case, a single
spin or orbital flip fractionalizes into different “flavorons”—
collective excitations carrying entangled fractional spin and
orbital quantum numbers [Fig. 2(a)] [21,36,37].

Strong crystal field: fractionalization and separation.
Although the SU(4) spin-orbital model has been applied
previously to real systems [28,38,39], its condensed matter
realization is still limited. Orbitals (unlike spins) can assume
different shapes in real space, and thereby realistic effective
orbital interactions usually have lower symmetries. However,
when Ez � Ecr

z [where Ecr
z is the critical field for inducing

a ferro-orbital (FO) ground state], Eq. (1) has been shown
to capture successfully the spin-orbital physics in a number
of quasi-1D cuprate materials [20,23]. This success mainly
relies on the relatively small energy scales of lower-symmetry
interactions (originating from the Hund’s coupling and

FIG. 2. (Color online) Illustrations showing collective excita-
tions in the spin-orbital chain in two different limits described in the
literature [20,29]: (a) without crystal field (Ez = 0), the ground-state
exhibits AF × AO correlations described by SU(4) singlets (top row,
showing only one fluctuating configuration denoted by the dotted
rectangle). A spin (or orbital) flip predominantly fractionalizes into
the σ and τ flavorons [29]; they are “free” quasiparticles, carrying
entangled spin and orbital quantum numbers (bottom row). (b) In
a strong crystal field (Ez � Ecr

z ), electrons occupy only the the
lower-lying orbitals and show AF correlations (AF × FO). An orbital
flip (middle row) was suggested to fractionalize into separate spinon
and orbiton, which, respectively, carry only the spin and orbital
quantum number (bottom row) [20].

orbital-dependent hoppings), which do not qualitatively
change the underlying physics in the limit of large Ez [20,23].

When Ez � Ecr
z , the ground state is described by SU(2) spin

singlets with AF correlations between electrons occupying
only the lower orbitals (AF × FO) [Fig. 2(b)]. An orbital-flip
excitation from such a state was suggested theoretically to
fractionalize into a spinon and an orbiton [20,23], which
respectively carry only spin and orbital quantum numbers
[Fig. 2(b)]. This spin-orbital separation has been reported
by recent RIXS measurements on Sr2CuO3 [18], CaCu2O3

[40], and SrCuO2 [41], and has lead to further investigation of
similar phenomena in other spin-orbital models [22,24].

C. Aim and structure of the paper

In this paper, we establish a unified description of collective
excitations in the spin-orbital chain at the isotropic SU(4)-
symmetric point and the anisotropic limit of large crystal field.
Although the excitations are fractionalized in both cases, their
natures seem quite distinct: The spin and orbital are entangled
on one hand, while they are reported to be separate on the
other. Bridging the theoretical gap between the two limits is
crucial to a comprehensive understanding of the fundamental
physics revealed by spectroscopic measurements on spin-
orbital systems. Moreover, it is important to understand the
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persistent fractionalization phenomenon despite the presence
of a strong crystal field. The latter contrasts strikingly with
the case of a spin chain in a strong magnetic field, where
fractionalized spinons cannot be individually observed but
confined as magnons of integral quantum numbers.

To answer these questions, we thoroughly investigate the
spin-orbital model in Eq. (1) for Ez ranging from 0 to Ecr

z . By a
combined numerical and analytical study, we unambiguously
show that collective excitations of the spin-orbital chain are
always fractional, carrying entangled spin and orbital quantum
numbers. We also show that the recently reported separation
phenomenon occurs when crystal fields fully polarize the
orbital degrees of freedom. In this case, however, the spinon
and orbiton dynamics are decoupled solely because of a redef-
inition of the spin and orbital quantum numbers. Our numer-
ically unbiased, highly quantitative calculations using cluster
perturbation theory with exact diagonalization (CPT+ED)
provide new excitation spectra at intermediate crystal fields.
In addition, our analytical large-N mean-field approach is
applied for the first time to the spin-orbital model, providing an
intuitive physical understanding of the collective excitations in
terms of particle-hole excitations in non-interacting fermionic
bands. This approach achieves a unified description of the
spin-orbital model for all values of Ez.

The rest of the paper is organized as follows. Section II
presents the numerical CPT+ED spectra of the spin and orbital
dynamical structure factors. Section III introduces the large-N
mean-field theory of constrained fermions and the resulting
compact supports of spin and orbital excitations. Section IV
focuses on an effective t-J model description (which has
previously lead to the suggestion of spin-orbital separation)
and discusses its limitation. Section V summarizes our findings
with additional concluding remarks. The Appendix provides
further details of the CPT+ED calculations and discusses the
mapping of Eq. (1) onto an effective t-J model.

II. NUMERICAL RESULTS

We begin to study Eq. (1) by computing the transverse spin
and orbital dynamical structure factors:

S(q,ω) = 1

π
lim
η→0

�〈ψ |Sx
q

1

ω + Eψ − H − iη
Sx

q |ψ〉, (2)

O(q,ω) = 1

π
lim
η→0

�〈ψ |T x
q

1

ω + Eψ − H − iη
T x

q |ψ〉. (3)

Here, |ψ〉 is the ground state of H with energy Eψ , Sx
q ≡∑

j eiqj Sx
j /

√
L is the Fourier transform of the local spin

operator (the same applies to T x
q ), and L is the number of lattice

sites. The dynamical structure factor is related to the Fourier
transform of a real-space correlation function and provides the
energy-momentum dispersion relation of elementary spin or
orbital excitation.

We first employ the numerical CPT+ED technique [42–45]
to compute S(q,ω) and O(q,ω). CPT is a quantum cluster
approach [46] complementing finite-size ED simulations. It
can be regarded as an efficient interpolation scheme to obtain
spectra with continuous momentum transfers. The method
reproduces several known exact results for the spin chain and
the spin-orbital model at a quantitative level (see Appendix A).

FIG. 3. (Color online) Dynamical structure factors for spin [(a)–
(c)] and orbital [(d)–(f)] computed by CPT+ED at various Ez:
(top) Ez = 0 with no orbital polarization; (middle) Ez ∼ 0.6Ecr

z with
half polarized orbitals; and (bottom) Ez = Ecr

z with fully polarized
orbitals. The false color white represents zero intensity, and black
represents the maximal intensity [0.4 for (c) and 0.2 for the others].
The L = 16 ED calculations are broadened by a 0.25J Lorentzian.
The ripple structure resulting from CPT interpolation smooths and
the overall spectral shape converges quickly with increasing L.

We note that the main spectral features discussed below also
can be identified by ED, and our conclusion of a fractional
nature in the spin-orbital chain does not depend on the
CPT implementation. However, the additional fine spectral
details provided by CPT+ED greatly facilitate the comparison
of our numerical and analytical results. Further CPT+ED
calculations are detailed in Appendix A.

Figure 3 displays the CPT+ED spectra at different Ez

for spin (left panels) and orbital (right panels) dynamical
structure factors. When Ez = 0 (top panels), the ground state
shows AF × AO correlations described by SU(4) singlets
without any orbital polarization (T z

tot ≡ ∑
i T

z
i /L = 0). The

spin and orbital spectra are identical, with gapless excitations
at q = 0, π/2, and π . For Ez 	= 0, the spectra can exhibit
incommensurate soft modes. When half of the orbitals are
polarized (T z

tot = 1/4, middle panels), the zero-energy spin
excitations shift away from q = π/2; the orbital excitations
remain gapless at q = π/2 but gapped at q = 0, π (see
Sec. III for an intuitive understanding). When Ez = Ecr

z , the
orbitals are fully polarized (T z

tot = 1/2, bottom panels), where
electrons reside only in the lower-lying orbitals and show AF
correlations. The spin spectrum consists of the one-spinon
branch and two-spinon continuum as those in a spin chain; the
orbital spectrum is identical to the hole-addition spectrum in a
t-J model (see Sec. IV) [20,47].

The above results agree with Bethe-ansatz and density
matrix renormalization group (DMRG) calculations [48,49],
showing incommensurate soft modes under external fields
and broad energy continua implying fractional elementary
excitations. However, it is difficult to obtain the spectral weight
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information with Bethe-ansatz solutions; it is also challenging
to converge the DMRG results in longer chains or higher
energies due to the enlarged spin-orbital basis. Besides S(q,ω)
and O(q,ω), we further compute the simultaneous spin-orbital
flip spectra OS(q,ω) [obtained by replacing Sx

q with Sx
q T x

q in
Eq. (2)]. For all values of Ez, we find that OS(q,ω) follow
exactly the dispersion of O(q,ω). This holds only because the
exchange interaction in Eq. (1) retains an SU(4) symmetry.
A strong Hund’s coupling JH , for example, can lower the
symmetry to SU(2) × U(1), and OS(q,ω) no longer tracks
O(q,ω). This feature could benchmark the role of JH in
materials such as V2O3 [50].

III. MEAN-FIELD LARGE-N THEORY OF CONSTRAINED
FERMIONS

We next develop an analytical formalism to understand our
numerical spectra. We note that a direct mean-field decoupling
of the spin and orbital variables in Eq. (1) fails to describe both
its static and dynamic properties [20,28–30]. The two degrees
of freedom show strong quantum entanglement and fluctuation
[21,36,37], foreseeing the failure of a simple linear spin- or
orbital-wave approximation [20]. Here, we use a different type
of mean-field theory that was first developed for SU(N =
2) antiferromagnets [51], and later generalized to large N

[52]. This method concerns a fermionic representation of the
exchange interaction, followed by a mean-field decoupling in
terms of local valence bond singlets that preserve the SU(N )
symmetry of the problem [53,54]. As shown below, such
approach captures the main features of the spin-orbital model
even for Ez 	= 0.

We begin by noticing that no charge fluctuation is implicitly
assumed in the spin-orbital model: The system has exactly one
particle per lattice site (quarter-filled), where double, triple and
quadruple occupancies are prohibited. We next express the spin
and pseudospin operators of Eq. (1) in terms of the constrained
fermion ciσ and Schwinger boson piα operators:

S+
i = c

†
i↑ci↓ S−

i = c
†
i↓ci↑, (4)

T +
i = p

†
iapib T −

i = p
†
ibpia, (5)

where ↑ / ↓ denotes one of the two spins σ , and a/b

denotes one of the two orbitals α. [Note that one could also
represent the spin (pseudospin) using the Schwinger boson
(constrained fermion) representation—the choice is arbitrary.]
These constrained fermions and Schwinger bosons fulfill the
spin and pseudospin commutation relations provided that∑

σ c
†
iσ ciσ = 1 and

∑
α p

†
iαpiα = 1. We further define the

constrained fermion carrying both spin and orbital quantum
numbers:

f
†
iασ = c

†
iσ p

†
iα, (6)

with the constraint
∑

ασ f
†
i,ασ fi,ασ = 1 that follows from

the constraints on the ciσ and piα occupation numbers.
By applying the above transformations, we finally arrive at
the Hamiltonian of constrained fermions for the spin-orbital

chain:

H = − J
∑

〈ij〉,ασ,α′σ ′
(f †

iασ fjασ + H.c.)(f †
jα′σ ′fiα′σ ′ + H.c.)

+ 1

2
Ez

∑
iσ

(f †
iaσ fiaσ − f

†
ibσ fibσ ). (7)

Here, we note that both constrained fermion operators ciσ

(due to the constraint of one fermion per site) and fiασ (due to
its definition and also the constraint of one fermion per site)
fulfill nonfermionic anticommutation rules, which is similar to
the case of projected fermions in the t-J model [55]. However,
these “special” anticommutation relations will not be enforced
in the following mean-field treatment, and fiασ will be referred
to simply as fermionic operator.

At this stage, we perform a mean-field decoupling of the
above four-fermion interactions in terms of local valence
bond singlets, χij ≡ ∑

α,σ (f †
iασ fjασ + H.c.), which preserve

the SU(4) symmetry of the problem [51,53]: χijχji →
(χij 〈χji〉 + χji〈χij 〉)/2. The resulting mean-field Hamiltonian
HMF reads

HMF =
∑
k,σ

(εkaf
†
kaσ fkaσ + εkbf

†
kbσ fkbσ ), (8)

where εka/b = −4
√

2J cos(δk) cos(k)/π ∓ Ez/2, with δk =
arcsin[Ezπ/(4J )]/2 when Ez < 4J/π , and δk = π/4 when
Ez � 4J/π [56–58]. Determined by self-consistent mean-
field equations, εka/b represent the energies of two doubly
degenerate fermionic bands separated by Ez (see Fig. 5). With
the constraint of one fermion per site (fulfilled only on average
at the mean-field level), the bands are filled up to the respective
Fermi momenta: ±kF ∓ δk and ±kF ± δk , where kF = π/4 is
the Fermi momentum at Ez = 0, and δk (defined above) is an
additional shift with nonzero Ez.

In this mean-field picture, collective spin and orbital
excitations become “particle-hole” excitations of the non-
interacting constrained fermions across the Fermi level. In
particular, the spin spectra are related to excitations within
the degenerate bands, while the orbital spectra are related
to excitations between the nondegenerate bands. The com-
pact support (region where a function is nonzero) for the
spin and orbital excitations can be computed respectively
by S̄(q,ω) = ∑

k∈FS,q+k /∈FS,α,σ δ(ω − εq+k,ασ + εkασ̄ ), where
σ̄ ≡ −σ , and Ō(q,ω) = ∑

k∈FS,q+k /∈FS,σ δ(ω − εq+k,aσ +
εkbσ ) + ∑

k∈FS,q+k /∈FS δ(ω − εq+k,bσ + εkaσ ). The evolution
of compact supports as a function of Ez is shown in Fig. 4.

As seen in Figs. 3 and 4, the mean-field results agree well
with the numerical simulations, revealing inter alia the shift
in momentum of the zero-energy modes with Ez. The origins
of the zero-energy modes [e.g., at q = 0,π/2 when Ez = 0,
and at q = π/2 (for orbital) or at q = 0,π (for spin) when
Ez = Ecr

z ] can be understood in terms of the allowed momenta
for zero-energy particle-hole excitations between the occupied
and unoccupied fermionic bands (see Fig. 5). While the mean-
field approach cannot account for the spectral intensity [59],
it reproduces essentially the compact supports and the overall
bandwidths for the spin and orbital dynamical structure factors.
Only the low-intensity branch of the numerical spectra are
missing; it originates from the ω flavoron [29] and would
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FIG. 4. (Color online) Compact support for spin [(a)–(c)] and
orbital [(d)–(f)] spectra obtained by mean-field large-N theory of
constrained fermions at various Ez: (top) Ez = 0 with no orbital
polarization; (middle panels) Ez = 2

√
2J/π (∼0.7Ecr

z in the mean-
field picture) with half polarized orbitals; and (bottom) Ez = Ecr

z with
fully polarized orbitals. In (b), the darker (lighter) branch refers to
spin-flip excitations of electrons in the upper (lower) orbitals. In (e),
the darker (lighter) branch refers to orbital-flip excitations caused by
pseudospin raising (lowering) operators.

involve four constrained fermions, which cannot be captured
in the mean-field theory.

We last note that the above mean-field theory works better
for the spin-orbital model with SU(4) exchange interaction
than for the SU(2) spin chain. More precisely, when Ez = 0,
the bandwidth of the spin excitation is

√
2πJ in CPT+ED,

and 8
√

2J/π in mean field (a factor of 1.23 difference). When
Ez = Ecr

z , the spin excitation bandwidth is 2πJ in CPT+ED,
and 8J/π in mean field (a factor of 2.47 difference). In
the orbital spectra, however, the quantitative differences are
smaller. The extrapolated numerical critical field is Ecr

z ∼
1.38J , only 1.08 times larger than the mean-field value

Ecr
z = 4J/π . These results agree with Ref. [53], showing

that the mean-field approximation for SU(N ) antiferromagnets
gradually improves as N becomes larger [53,54]. In fact, the
mean-field theory becomes exact for SU(N ) models when
N → ∞. We also note that a bosonic theory usually works
better for systems with long-range order, such as a fully spin-
polarized chain or a square-lattice Heisenberg antiferromagnet
[60]. It thus cannot be applied to our case of a spin-orbital chain
under an external crystal field, where only the orbital variables
are polarized but no true spin long-range order develops.

IV. t- J MODEL DESCRIPTION AND ITS LIMITATION

In this section, we discuss the use of an effective t-J model
to describe the spin-orbital chain, which has previously lead
to the suggestion of spin-orbital separation [18,20,23,40]. In
particular, we show that the t-J model description is valid only
when Ez � Ecr

z .
According to Appendix B, we can rewrite the spin-orbital

model Eq. (1) as a bosonic t-J model [61]:

Ht-J = J
∑

〈i,j〉,σ
(b†iσ bjσ + H.c.) + 2J

∑
〈i,j〉

(
Si · Sj + 1

4

)

+ Ez

∑
i

nbi , (9)

where biσ is a hard-core boson operator subject to the
constraint

∑
σ b

†
iσ biσ � 1. In this case, electrons in the upper

a orbitals can be seen as holes in the spin background formed
by electrons in the lower b orbitals.

After the mapping, the orbital spectrum O(q,ω) =
1
4 [O+−(q,ω) + O−+(q,ω)] for the spin-orbital model is equiv-
alent to the hole spectral function A(q,ω) ≡ ∑

σ Aσ (q,ω) in
a half-filled t-J model (with a factor of 2 difference in the
spectral weight). Here,

Aσ (q,ω) = 1

π
lim
η→0

�〈ψ |b†qσ

1

ω + Eψ − Ht-J − iη
bqσ |ψ〉,

Oμν(q,ω) = 1

π
lim
η→0

�〈ψ |T μ
q

1

ω + Eψ − H − iη
T ν

q |ψ〉.

(10)

FIG. 5. (Color online) Evolution of the mean-field fermionic bands as a function of the crystal field at (a) Ez = 0, (b) Ez = Ecr
z /2, and

(c) Ez = Ecr
z . The collective spin and orbital excitations in the mean-field picture correspond to “particle-hole” excitations of the constrained

fermions across the Fermi surface (denoted by the dotted horizontal lines). The energies of the a-orbital and b-orbital fermionic bands are
separated by Ez, and the allowed “particle-hole” excitations change with the crystal field accordingly. The thick arrows point to the allowed
zero-energy spin (red) and orbital (blue) excitations.
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FIG. 6. (Color online) Collective excitations computed by L =
16 exact diagonalization at Ez = 10J (>Ecr

z ) [20], where the spin-
orbital model is ferro-orbitally ordered and mapped onto a half-filled
t-J model. In (a), the orbital spectrum O−+(q,ω) of the spin-orbital
model (blue line) is the same as the hole spectral function A(q,ω) in
the t-J model (green area). Note that O+−(q,ω) = 0, since all lower
orbital are occupied in the studied limit. In (b), the spin spectrum in
the spin-orbital model (red line) is identical to the spin spectrum in
the t-J model (black area).

Since all the lower-lying orbitals are occupied when Ez � Ecr
z ,

O+−(q,ω) = 0, and O−+(q,ω) = A(q,ω). Moreover, the spin
spectra S(q,ω) for both models are identical.

To verify the above mapping, we compute the spectral
functions for the two models using ED. As shown in Fig. 6, the
results are in perfect agreements. This demonstrates (for the
first time) that the mapping to the effective bosonic t-J model
is completely correct when Ez � Ecr

z . We also note that the
physics of a bosonic t-J model with t > 0 is the same as that
of a fermionic t-J model with t < 0. The latter follows from a

FIG. 7. (Color online) Illustrations showing the repulsive (attrac-
tive) interaction between two parallel (antiparallel) spins in the upper
a orbitals. This interaction (∝JaSia · Sja) is neglected in the t-J
model approach, explaining why the mapping onto the t-J model
does not work for Ez < Ecr

z ; see text for details.

Jordan-Wigner transformation of the spin-orbital Hamiltonian
[20], which is allowed when Ez � Ecr

z .
When Ez < Ecr

z , however, more than one electron occupy
the upper orbitals, and the spin interaction between them
cannot be neglected (see Fig. 7 and Appendix B). In this case,
the spin-orbital model cannot be mapped to the bosonic t-J
model, and their spectra are distinct.

V. DISCUSSION AND CONCLUSION

The agreement between our numerical method and the
analytical large-N approach justifies the fermionic mean-field
picture [62]. (We note that in Ref. [63], a simple mean-field
approach was also employed to justify spin-charge separation
in 1D cuprates.) The method immediately explains why
OS(q,ω) follows the dispersion of O(q,ω): a joint spin-
orbital flip is described as particle-hole excitations between
two bands with opposite spin and orbital quantum numbers.
This produces the same “topology” as that of pure orbital
excitations, since the bands with different spin but the same
orbital quantum numbers are degenerate (see Fig. 5). This also
enables us to arrive at the following conclusions:

(i) Excitations are always fractional. We note that the
mean-field constrained fermions are noninteracting “good”
quasiparticles, and a single spin flip (S = 1 excitation)
can be understood as creating two independent fractionalized
fermions (a particle and a hole) with quantum numbers
(Sz = 1/2,T z = α) and (Sz = −1/2,T z = α), respectively.
Similarly, an orbital-flip excitation fractionalizes into the
(Sz = σ,T z = 1/2) and (Sz = σ,T z = −1/2) fermions. Inde-
pendent of Ez, fractionalization thereby always exists. This
contrasts strikingly with the case of a pure spin chain, where
the elementary excitations are S = 1 magnons when Hz � H cr

z

[1–3]. In the spin-orbital model, Ez acts only on the orbital
variables and does not quench the quantum spin dynamics,
allowing peculiar fractionalization even under large crystal
fields.

(ii) Spin and orbital are always entangled. According to
the SU(N ) mean-field approach, irrespective of the values
of Ez, the spin and orbital excitations can be described by
fractionalized fermions (momentum eigenstates carrying both
spin and orbital quantum numbers), and thereby the two
degrees of freedom are always entangled. This spin-orbital
entanglement [21,36,37,64], however, has to be reconciled
with the suggested spin-orbital separation for Ez � Ecr

z in
Refs. [18,20,23,40]. There, electrons in the lower orbitals
are implicitly assumed to carry only spin but no orbital
quantum number, whereas the single electron in the upper
orbital carries only the orbital but no spin quantum number.
In this case, the spin-orbital model (having 4 degrees of
freedom) can be mapped onto an effective t-J model (having
3 degrees of freedom), as the spin degree of freedom of the
electron in the upper orbital does not interact with other spins,
leading to an emergent separation. However, such separation
can be regarded as a decoupling of the spinon and orbiton
dynamics only because of a redefinition of the spin and orbital
quantum numbers, which is allowed only for describing a
single orbital- or spin-flip excitation from the FO ground
state.
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In summary, using an unbiased, highly quantitative numeri-
cal technique and the large-N mean-field theory of constrained
fermions, we have formulated for the first time a unified
framework to describe a spin-orbital chain in various regimes
ranging from the isotropic SU(4)-symmetric point to the
anisotropic limit of large crystal field. The description based
on SU(N ) mean-field theory provides an intuitive picture to
understand the spin and orbital spectra in terms of particle-hole
excitations between effective noninteracting fermionic bands.
This study connects the physics predicted and observed in
quasi-1D copper oxides [18,20,23,40] to the physics described
by numerically exact Bethe-ansatz solutions [29,35,48], and
possibly to observables in optical lattice measurements with
ultracold atoms [31–33]. Extensions of this study to lower
symmetries and higher dimensions are interesting areas for
future work.
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APPENDIX A: CLUSTER PERTURBATION THEORY
WITH EXACT DIAGONALIZATION

Here, we describe the numerical approach employed in this
study, which involves an interpolation by cluster perturbation
theory of the exact diagonalization spectra (CPT+ED) [42–
44]. CPT is a quantum cluster approach [46] which can provide
both dynamical and temporal information for quantum lattice
models in the thermodynamic limit, thereby complementing
finite-size ED simulations. It also can be viewed as a simple
and efficient method for obtaining spectra of continuous
momentum transfer. By benchmarking this method against
exact Bethe-ansatz solutions, we show that several known
exact results for the spin chain and the spin-orbital model
can be reproduced by CPT+ED at a quantitative level.

The CPT algorithm proceeds by (i) dividing the model
lattice Hamiltonian into multiple identical, finite-size clusters,
(ii) solving the problem (exactly if possible) on these clusters
(usually by ED), and (iii) treating perturbatively the interclus-
ter terms of the Hamiltonian to first order in a strong-coupling

expansion. The core formula resulting from these procedures
reads

Ga,b(Q,ω) =
(

Ĝ(ω)

1 − V̂ (Q)Ĝ(ω)

)
a,b

, (A1)

and

GCPT(q,ω) = 1

L

L∑
a,b=1

e−iq(a−b)Ga,b(Lq,ω). (A2)

Here, Ga,b(Q,ω) is written in a mixed representation of real
space indices within the finite-size cluster and Fourier space
wave vector between the clusters: Ĝ(ω) is the cluster Green’s
function (computed preferably with open boundary condition
[65]), and a,b are the real-space indices for an L-site lattice.
The intercluster terms are accounted for by V̂ (Q) written in
the reciprocal superlattice representation.

In our case of a one-dimensional (1D) chain, V̂ (Q) =
Jeff(eiQδa,Lδb,1 + e−iQδa,1δb,L), where Jeff is the effective
strength of the exchange coupling between intercluster spin
(or orbital) operators. We have tried Jeff = J,−J,0, and the
CPT results only weakly depend on our choice of Jeff , as long
as L is large enough. While CPT was originally developed
for Hamiltonians without intercluster interactions, it remains a
good approximation of the lattice green function even with the
presence of intercluster superexchange terms (such as those in
the t-J model or the Heisenberg spin chain). This is because the
accuracy of CPT is not directly controlled by including higher
order terms in the strong-coupling perturbation theory, but
mainly by increasing the cluster sizes in the simulations [44].
As shown in Fig. 8, when L increases, the overall spectral shape

FIG. 8. (Color online) Dynamical structure factors for spin [(a)–
(c)] and orbital [(d)–(f)] computed by CPT+ED on lattices of different
lengths L. The ED spectra are broadened with a 0.25J Lorentzian.
The false color white represents zero intensity, and black represents
the maximal intensity [0.4 in (a)–(c) for a pure spin chain; 0.2 in
(d)–(f) for the spin-orbital model]. With increasing L, the ripple
structure resulting from CPT interpolation smooths and the overall
spectral shape converges.
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FIG. 9. (Color online) Benchmark of the CPT+ED calculations
[(c) and (d)] against exact Bethe-ansatz solutions [(a) and (b)]. The
colors in (a) and (b) do not represent the spectral intensity, but only
the compact support (nonzero region of a function). The ED spectra
(broadened with a 0.25J Lorentzian) are computed on an L = 16 and
24 site lattice for (c) and (d), respectively. The exact spectral shape
and overall bandwidth for both the SU(4) spin-orbital model and
the SU(2) spin chain are reproduced by CPT+ED at a quantitative
level.

converges quickly for both the spin chain and the spin-orbital
model; the (artificial) ripple structures resulting from CPT
interpolation also weaken in intensity and smooth gradually
with increasing L.

Figure 9 benchmarks the CPT+ED calculations against
the compact supports (regions of nonzero spectral weight)
obtained by Bethe-ansatz solutions. As seen from the compar-
ison, CPT+ED is capable of reproducing the exact spectral
shape and overall bandwidth at a quantitative level. We note
that in these 1D systems, the spin and orbital spectra in the
ED calculations already show multiple peaks which spread out
widely in energy, implying a fractional nature of the excitations
(see Fig. 6). On the other hand, ED calculations performed on
the higher-dimensional counterparts would show only sharp
spectral peaks, and thereby the CPT-interpolated spectra would
not display any continuum.

APPENDIX B: MAPPING THE SPIN-ORBITAL MODEL
TO A BOSONIC t- J MODEL

Here, we discuss the mapping of the spin-orbital Hamil-
tonian onto an effective t-J model, which is shown to be
valid only when Ez � Ecr

z . We begin with a more general
spin-orbital model:

Hgen

=
∑
〈i,j〉

(
Si · Sj + 1

4

)[
Jab(T +

i T −
j + T −

i T +
j )

+ Jb

(
T z

i − 1

2

)(
T z

j − 1

2

)
+ Ja

(
T z

i + 1

2

)(
T z

j + 1

2

)]

+ Ez

∑
i

T z
i . (B1)

This more realistic spin-orbital model describes systems where
the two orbitals a and b under consideration are not equivalent
(e.g., p orbitals in alkali hyperoxides [66], or d − d excitations
in copper oxides [23]). When 2Jab = 2Ja = 2Jb ≡ J , the
model is equal to Eq. (1).

Using a similar transformation discussed in Sec. III, we can
rewrite Eq. (B1) as

Hgen =Ja

∑
〈i,j〉

(
Sia · Sja + 1

4

)
+ Jb

∑
〈i,j〉

(
Sib · Sjb + 1

4

)

+ Jab

2

∑
〈i,j〉,σ,σ̄

(f †
iaσ fibσ̄ f

†
jbσ̄ fjaσ + f

†
ibσ fiaσ̄ f

†
jaσ̄ fjbσ )

+ 1

2
Ez

∑
i,σ

(f †
iaσ fiaσ − f

†
ibσ fibσ ), (B2)

where S+
ia = f

†
ia↑fia↓ and S+

ib = f
†
ib↑fib↓. We then map

Eq. (B2) onto a bosonic t-J model [by neglecting interactions
between spins in the a orbitals (∝JaSia · Sja)] with the
following transformations. (i) We substitute fiaσ = aifiσ ,
where ai fermion carries the orbital degree of freedom, and
fiσ is a spin Schwinger boson subject to the constraint a

†
i ai =∑

σ f
†
iσ fiσ . (ii) We introduce b

†
iσ = f

†
ibσ ai , where biσ are

hard-core boson operators with the constraint
∑

σ b
†
iσ biσ � 1.

In this case, the third term in Eq. (B2) [denoted as Hkin]
becomes Hkin = Jab/2

∑
〈i,j〉,σ [b†iσ bjσ (

∑
σ ′ f

†
iσ ′fjσ ′) + H.c.].

(iii) We then neglect the fiσ Schwinger boson operators (which
describe changes of the spin configuration for electrons in the
a orbital), since these do not influence the dynamics of the b

bosons. They do not affect the statistics, either, as the f bosons
on different sites commute.

Altogether, we arrive at the following Hamiltonian:

Ht-J
gen =Jab

2

∑
〈i,j〉,σ

(b†iσ bjσ + H.c.) + Jb

∑
〈i,j〉

(
SibSjb + 1

4

)

+ Ez

∑
i

nbi , (B3)

which is a bosonic t-J model [61] with t ≡ Jab/2. In this
case, the a-orbital electrons can be seen as holes in the spin
background formed by electrons in the b orbitals.

We emphasize that the above mapping requires a com-
pletely “silent” spin of electrons in a orbitals, since in the
mapping the interactions ∝JaSia · Sja are neglected (see
Fig. 7). The latter situation occurs when Ja = 0, or when only
one electron occupies orbital a. In the spin-orbital Hamiltonian
studied in the main text, Ja is finite (2Jab = 2Ja = 2Jb = J , as
mentioned above). Therefore the mapping of the spin-orbital
model, Eq. (1), onto an effective t-J model, Eq. (9), can be
performed only when Ez � Ecr

z , where a single orbital-flip
excitation results in at most one electron in orbital a. In the
latter case, substituting 2Jab = 2Jb = J in Eq. (B3) renders
Eq. (9) in the main text.
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