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We present a practical scheme for creating topological polaritons in garden-variety systems based, for example,
on zinc-blende semiconductor quantum wells. Our proposal requires a moderate magnetic field and a potential
landscape which can be implemented, e.g., via surface acoustic waves or patterning. We identify indirect excitons
in double quantum wells as an appealing alternative for topological states in exciton-based systems. Topological
polaritons and indirect excitons open a new frontier for topological states in solid-state systems, which can be
directly probed and manipulated while offering a system with nonlinear interactions.
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Topological states and phases in quantum systems have
yielded a wealth of exotic phenomena, with measurable
signatures at edges and surfaces. In electronic topological
insulators, what would otherwise seem a usual semiconductor
may exhibit conducting states at its edges [1,2]. Similar
physics has emerged in photonic systems, where theory [3–6]
was followed by demonstrations of topological behavior in
microwave-range photonic crystals [7] and arrays of coupled
optical resonators [8,9] or waveguides [10]. Photons propa-
gating in chiral edge states are protected from backscattering
with material imperfections, and may revolutionize photonic
circuitry [11].

However, these developments are by and large due to linear
optical effects, while applications in photonic circuitry often
require nonlinear optical properties. Hence the importance of
the recently proposed “topological polaritons” [12], which
combine topology and nonlinear properties via light-matter in-
teractions. Excitons interact with one another and, when placed
in an optical microcavity, hybridize into so-called exciton-
polaritons which balance a strong exciton nonlinearity with
a significant optical component [13,14]. Polaritons are well
known for their integer spin degree of freedom, which allows
for spin currents [15,16] and a range of optical switches and
transistors [17–20]. Spin currents can also be generated using
indirect excitons in double quantum wells [21], and the long
lifetime of these particles has allowed excitonic transistors [22]
with optical coupling and control [23]. Both indirect-exciton
and polariton systems are strongly influenced by disorder,
which induces scattering and weakens signals carried by bal-
listic particle propagation. Topology promises to remedy this
issue, as was envisioned several years ago for excitons at the
surface of three-dimensional (3D) topological insulators [24]
or in coupled quantum wells close to ferromagnetic insulating
films [25], and more recently for exciton condensates in bilayer
HgTe [26] and InAs/GaSb [27] quantum wells.

In this Rapid Communication, we demonstrate theoretically
that topological excitonic states can be realized using surpris-
ingly simple ingredients present in two very common types
of systems: (i) polaritons in semiconductor microcavities, and
(ii) indirect excitons in coupled quantum wells. In scenario (i),
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polaritons exhibit two spin states coupled by the transverse-
electric–transverse-magnetic (TE-TM) splitting [28] arising
from the polarization-dependent reflectivity of the cavity
mirrors, supplemented by a weaker but complementary polar-
ization splitting of (direct) excitons stemming from the long-
range exchange interaction between electrons and holes [29].
In scenario (ii), we consider a pair of coupled quantum wells
in close enough proximity for long-lived indirect excitons
to form from electrons and holes in different layers. Four
different spin states (including bright and dark exciton spin
states) experience a Dresselhaus-type spin-orbit coupling [30].

In both scenarios, we start from topologically trivial
ingredients and use a magnetic field to break time-reversal
symmetry. The natural sensitivity of excitons to applied
magnetic fields circumvents the need for materials with large
gyrotopic permeability, while enabling operation at optical
frequencies. A periodic exciton or polariton potential is also
required to open a global (topological) gap, as discussed in
Ref. [12]. Such potential modulations can be implemented
by applying surface acoustic waves [31–34] (see Fig. 1) or
engineering permanent lattices [35,36].

FIG. 1. (Color online) Schematic view of a typical system sup-
porting topological polaritons or indirect excitons: Surface acoustic
waves modulate the thickness of quantum wells and interfere to
generate a triangular lattice potential for particles in the plane.
Whether multiple quantum wells are coupled together, as in the
depicted system of indirect excitons, or are strongly mixed with light
inside a microcavity, combining the periodic potential with an applied
Zeeman field B leads to topologically nontrivial bands.
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The simplification at the root of this Rapid Communication
stems from the linear-to-circular polarization conversion natu-
rally present in garden-variety systems of indirect excitons and
polaritons [15,21,37]. Topological polaritons can be created
by a “winding coupling” of topologically trivial exciton and
photon bands [12]. While the original proposal of Ref. [12]
exploited the pseudo-spin-orbit coupling present in the under-
lying electronic system to realize such a winding, here we
take advantage of the built-in splitting of TE and TM photonic
modes in typical planar microcavities [28]. In a basis of right-
and left-handed circularly polarized modes [φ+(k),φ−(k)],
this TE-TM polarization splitting can be described by the
Hamiltonian [15,16]

HTE-TM
φ = �φ(k)

(
0 e−2iϕ(k)

e2iϕ(k) 0

)
. (1)

In this basis, the coupling between modes with opposite
circular polarizations (or spin projections along the z direction)
exhibits a double winding in terms of the polar angle ϕ(k)
associated with k. Physically, this can be understood from the
fact that coupling the mode φ∓(k) to φ±(k) requires a change
of ±2 of total angular momentum in the z direction [38].

When coupled to excitonic modes (χ+,χ−) (where ±
distinguishes spin projections along z as above, and explicit
k dependences are omitted), the photonic modes (φ+,φ−)
hybridize into (four) polaritonic modes [39]. Here we assume
that the exciton-photon coupling is much larger than the
polarization splitting between photonic (or excitonic) modes,
which is typically satisfied for polaritons in microcavities [37].
This allows us to focus on the lower polariton branch consisting
of two modes of the form ψ± = P0φ± + X0χ± + X±2χ∓,
where P0, X0, and X±2 are complex (Hopfield) coefficients
determined by the nature of the exciton-photon coupling,
with indices indicating the change of total angular momentum
required for each coupling (for angular momentum conser-
vation, X±2 must be of the form e±2iϕ and vanish at k = 0
to avoid any singularity, while P0 and X0 cannot contain
any winding). Instead of taking advantage, as in Ref. [12],
of the relatively large coupling X±2 that can appear at large
momenta, here we consider the typical regime where, at
finite but low momenta, X±2 ≈ 0 and polarization splitting
dominates. In this low-momentum regime more accessible
to experiments [14], the polaritonic modes (ψ+,ψ−) directly
inherit the winding coupling originating from Eq. (1). More
explicitly, one finds

HTE-TM
ψ

(
ψ+
ψ−

)
= �ψ

(
0 e−2iϕ

e2iϕ 0

) (
ψ+
ψ−

)
, (2)

with coupling strength

�ψ = |P0|2�φ + |X0|2�χ, (3)

where �χ ≡ �χ (k) denotes the (much weaker) splitting of
excitonic modes due to an electron-hole exchange interac-
tion [29]. The form and amplitude of �ψ strongly depends
on the exciton-photon detuning, which we assume to be
much smaller than the exciton-photon coupling strength. For
small k ≡ |k|, �ψ (k) ≈ �k2 [28,37]. The winding coupling
[Eq. (2)] is readily accessible in experiments, giving rise to the
optical spin Hall effect [15,16] and spin-to-angular momentum
conversion [38].

FIG. 2. (Color online) Opening up a topological gap: Cross-
sectional view of the typical polariton band structure found at a
Dirac point (located at kD) generated using a periodic (e.g., triangular
lattice) potential. A finite Zeeman field splits the bands corresponding
to + and − circular polarizations into two Dirac cones (shown in faint
red and blue) by 2�Z , leading to a well-defined ring of resonance.
The TE-TM (winding) coupling (2) of strength �k2

D then opens a
topological gap, resulting in hybridized bands (solid lines) with Chern
number ±2.

Topological states emerge very naturally when combining
the (double) winding coupling of Eq. (2) with another type
of polarization splitting, the one induced by a magnetic
field, which provides the time-reversal symmetry breaking
crucially required for the appearance of unidirectional (chiral)
edge states (as we demonstrate below). Magnetic fields act
on polaritons via the magnetic moment of their excitonic
component. When applied in the z direction, a field of
strength B shifts polaritonic modes ψ± in energy by ±�Z=± 1

2|X0|(ge − gh)μBB, where ge and gh are the electron and hole
g factors, and μB is the Bohr magneton. To understand how
topology arises in this scenario, it is instructive to examine
what happens at a single crossing (or “Dirac point”) between
polarization-degenerate polariton bands. As depicted in Fig. 2,
bands with opposite polarizations (+ and −) split by 2�Z when
introducing a magnetic field. Due to the TE-TM splitting of
Eq. (2), a topological gap then opens along the resulting ring
of resonance. Intuitively, the topological nature of this gap can
be understood by noticing that the hybridized bands consist of
eigenstates which, described as spinors on the Bloch sphere,
fully wrap around the sphere as k runs over all momenta: While
increasing |k| through the resonance flips the spinor from ψ+
to ψ− (or vice versa), the winding coupling e−2iϕ(k) leads to
an azimuthal twist which completes the (double) wrapping
of the unit sphere. In practice, the isolated band crossing (or
Dirac point) required for the above topological behavior can
be obtained by introducing a periodic potential for polaritons
(i.e., for excitons or/and photons) [40]. Triangular or hexagonal
lattice potentials—exhibiting Dirac points—are particularly
suitable for this purpose, although other geometries can also
be considered [41].

To demonstrate that our scheme leads to the emergence
of topological states, we now examine a system with edges
and derive the exact form of its spectrum by a plane-wave
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expansion approach (instead of a less precise tight-binding
approximation). We consider a ribbon-type geometry where
the system is periodic in the x direction and finite in
the y direction (with Dirichlet boundary conditions), and
experiences a potential

V (r) = V0[cos(K1 · r) + cos(K2 · r) + cos(K3 · r)], (4)

with K1 = 4π (0,1/
√

3)/a, K2,3 = 2π (1,±1/
√

3)/a, ampli-
tude V0, and lattice constant a, which can be realized, e.g., by
interfering surface acoustic waves as depicted in Fig. 1. The
time-independent Schödinger equation describing the spinor
polariton wave function is[

− �
2

2meff

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (x,y) + σ�Z − ε

]
ψσ (x,y)

+�

(
− ∂2

∂x2
+ 2iσ

∂2

∂x∂y
+ ∂2

∂y2

)
ψ−σ (x,y) = 0, (5)

where meff is the polariton effective mass, σ = ±1 distin-
guishes right- and left-handed circular polarizations, ε is an
energy eigenvalue, and � and 2�Z are the TE-TM and Zeeman
splittings defined as above. Translation symmetry in the x

direction makes it convenient to express the solutions of Eq. (5)
in Bloch form, ψσ (x,t) = eikxxuσ (x,y), with uσ (x,y) periodic
in x. The periodicity of uσ (x,y) and V (x,y) allows us to
expand them as Fourier sums. Substitution into Eq. (5) then
leads to an eigenvalue problem for the spectrum ε(kx).

Concerning parameters, Zeeman splittings of up to 0.2 meV
have been measured for polaritons in semiconductor micro-
cavities under a magnetic field of 5 T [42], while values of
up to 1 meV are effectively achievable by optically inducing
a large spin imbalance [43]. So far polariton potentials
with an amplitude of 0.18 meV have been realized using
surface acoustic waves [33]. Higher values can, however, be
envisioned, given that amplitudes of up to 2 meV have been
reported in bare quantum wells [32]. Large amplitudes can
also be expected for permanent polariton potentials realized
by patterning composite materials [35,36]. As for the TE-TM
splitting, typical values are around � = 0.05 meV μm2

[16,28].
Figure 3 illustrates a polariton dispersion obtained us-

ing conservative parameters. The topological gap reaches
about 0.1 meV, which significantly exceeds typical polariton
linewidths of the order of tens of μeV [14] (larger gaps can be
obtained, e.g., at higher fields). As anticipated above, the gap
is bridged by pairs of counterpropagating chiral edge states
localized at opposite edges. In accordance with bulk-edge
correspondence (see, e.g., Ref. [1]), the lower and upper bands
are topologically nontrivial, with Chern numbers +2 and −2.

An alternative appealing platform for realizing chiral
edge states in exciton-based systems is provided by indirect
excitons, which are typically formed in structures of coupled
quantum wells where electrons and holes are confined in
separate wells. Indirect excitons are perhaps best known for
their long radiative lifetime resulting from the reduced overlap
between electron and hole wave functions, which allows for
the formation of condensates [45]. They are also appreciated
for their four-component spin degree of freedom due to the
coexistence of bright excitons (with Jz = ±1 spin projection
normal to the plane) and dark excitons (with Jz = ±2) at

FIG. 3. (Color online) Dispersion of topological polaritons in a
triangular lattice [Eq. (4)] with periodic boundary conditions in
the x direction and vanishing (Dirichlet) boundaries conditions in
the y direction. Eigenstates are color coded according to their
proximity to edges—red and blue corresponding to lower and
upper edges, respectively—with bulk states shown in gray. Dirac
points at akx = ±2π/3 are shown by vertical lines. Parameters:
� = 0.05 meV μm2, 2�Z = 0.1 meV, V0 = 0.6 meV, a = 3 μm,
and meff = 7.5×10−5m0 [16], where m0 is the free electron mass.

similar energies [30,46], and for their rich spin dynamics due
to spin-orbit interactions [30,47]. Of particular interest here is
the Dresselhaus spin-orbit coupling arising from the intrinsic
crystal asymmetry of zinc-blende (e.g., GaAs) crystals, which
was similarly invoked in Ref. [25]. In a basis of indirect-exciton
spinor wave functions (ψ+1,ψ−1,ψ+2,ψ−2), the spin dynamics
can be captured by the Hamiltonian

H =

⎛
⎜⎜⎝

�Z 0 βekee
−iϕ βhkhe

−iϕ

0 −�Z βhkhe
iϕ βekee

iϕ

βekee
iϕ βhkhe

−iϕ −�′
Z 0

βhkhe
iϕ βekee

−iϕ 0 �′
Z

⎞
⎟⎟⎠ , (6)

where βe and βh are Dresselhaus constants for electrons
and holes, respectively [44]. The wave vectors associated
with electrons and holes with effective mass me and mh are
related to those of excitons via ke = me

me+mh
k and kh = mh

me+mh
k,

respectively. Here the Zeeman splitting differs for bright and
dark excitons due to the distinct spin orientations of their
electron and hole components: While �Z = 1

2 (ge − gh)μBB

for bright excitons as above, �′
Z = − 1

2 (ge + gh)μBB for dark
excitons. Most importantly, the Dresselhaus spin splitting of
electron and hole states at nonzero ke and kh gives rise
to coupling terms with single windings e±iϕ . Note that we
have neglected the Rashba spin-orbit coupling [44,47], which
is only significant in the presence of bulk quantum-well
asymmetry or under large electrical bias.

As we demonstrate below, the appearance of winding
couplings in a four-component system grants us access to a rich
variety of topological features. Similarly as above, topology
emerges from the interplay of the winding couplings with a
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FIG. 4. (Color online) Dispersion of topological indirect
excitons obtained from Hamiltonian (6) with a triangular-lattice
potential (color coding as in Fig. 3). Parameters were taken from
Ref. [44]: βe = 2.7 μeV μm, βh = 0.92 μeV μm, ge = 0.01,
gh = −8.5×10−3, me = 0.07m0, and mh = 0.16m0, where m0 is
the free electron mass. A magnetic field B = 2 T was applied with
a lattice potential V0 = 5 μeV and lattice constant a = 1.2 μm. In
this particular parameter regime, two topological gaps are found in
the low-energy spectrum (shaded regions), of 0.17 and 0.03 μeV,
respectively.

magnetic field, and is only revealed upon introduction of a
periodic potential. Below we examine the system with the
same ribbon geometry and triangular lattice potential as above
(again realizable, e.g., using surface acoustic waves [32]). To
derive the spectrum, we use the analog of Eq. (5) with four spin
components, an exciton effective mass mex = me + mh, and
spin-orbit coupling and magnetic field described by Eq. (6).

Remarkably, the system allows for multiple band gaps
with different numbers of topologically protected chiral edge
states. Band gaps are either (i) topologically trivial, (ii)
topological with a single pair of counterpropagating chiral
edge states, or (iii) topological with two such pairs. We present
in Fig. 4 the typical indirect-exciton dispersion obtained using
experimentally available parameters (taken from Ref. [44]).
Two low-energy gaps are shown, exemplifying both cases

(ii) and (iii). In practice, parameters can be chosen so as
to optimize the size of a particular gap: Under a magnetic
field B = 2 T with spin-orbit coupling and indirect-exciton
parameters from Ref. [44], the lower-energy gap [of type (ii)]
can reach about 0.3 μeV with a periodic potential of amplitude
V0 = 6 μeV and lattice constant a = 1.1 μm, while a gap
of type (iii) of about 1.3 μeV can be obtained by choosing
V0 = 10 μeV and a = 0.75 μm. Note that the maximum
achievable gap increases linearly with the applied magnetic
field B. Since indirect excitons are typically much longer lived
than polaritons [45], topological gaps of the order of 1 μeV
are in principle well within resolvable range.

In summary, we have demonstrated that topological polari-
tons and indirect excitons can be realized in garden-variety
single and double quantum wells made of ordinary materials,
such as GaAs. Our proposal relies on the TE-TM splitting
and Dresselhaus-type spin-orbit coupling naturally present in
microcavities or in systems of indirect excitons, respectively.
Conservative experimental values for these couplings lead
to topological gaps that are larger than the typical polari-
ton/exciton linewidth using readily available magnetic fields
(well below 5 T) and exciton potential amplitudes (below
1 meV). In contrast to the original proposal of Ref. [12], our
scheme for topological polaritons does not require excitons
and photons to interact resonantly. In fact, a strong photonic
component is only required to enhance the typically weak
TE-TM splitting of excitons. In more exotic systems with
large excitonic TE-TM splitting [48,49], photons would not
be necessary to generate topological states using our scheme.
We expect the ability to engineer edge states protected from
backscattering to play an important role in the development of a
broad variety of exciton-based information processing devices.

Note added. We have become aware that a related paper
was submitted to Physical Review Letters [50]. The authors
focus on the application of the above generic scheme to create
topological polaritons in micropillar arrays described by the
tight-binding limit of Eq. (5).
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