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Local sublattice symmetry breaking for graphene with a centrosymmetric deformation
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We calculate the local density of states (LDOS) for an infinite graphene sheet with a single centrosymmetric
out-of-plane deformation, in order to investigate measurable strain signatures on graphene. We focus on the
regime of small deformations and show that the strain-induced pseudomagnetic field induces an imbalance of
the LDOS between the two triangular graphene sublattices in the region of the deformation. Real-space imaging
reveals a characteristic sixfold symmetry pattern where the sublattice symmetry is broken within each fold,
consistent with experimental and tight-binding observations. The open geometry we study allows us to make use
of the usual continuum model of graphene and to obtain results independent of boundary conditions. We provide
an analytic perturbative expression for the contrast between the LDOS of each sublattice, showing a scaling law
as a function of the amplitude and width of the deformation. We confirm our results by a numerically exact
iterative scattering matrix method.
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Introduction. Graphene under strain has been largely dis-
cussed in the literature and explored for different geometries,
with particular features providing alternative routes to confine
and control its charge carriers [1–3]. Significant development
in the theoretical description of strained graphene elucidated
how its electronic properties are modified on strained surfaces.
At the microscopic level, a general deformation is described
by modifications in the atomic positions which reflects in the
Hamiltonian as local changes in the hopping parameter [4,5].
In the continuum model these changes appear as an effective
gauge field, and electrons with momentum around the Dirac
valleys move in the deformed region as in the presence of a
pseudomagnetic field [6]. Strain also produces a deformation
potential, i.e., a scalar field similar to a local chemical
potential that can affect electron dynamics [6]. Very recently,
measurements in high-quality graphene samples on particular
substrates suggested a strong connection between random
fluctuations in strain and transport properties [7].

The use of strain effects to engineer graphene electronic
properties has also been explored in several experiments in
recent years [8–13]. As one of the most relevant findings,
Levy et al. were able to show the presence of pseudo-Landau
levels generated by giant pseudomagnetic fields induced by
homogeneous strain in graphene nanobubbles [8]. This exper-
imental confirmation that strain can have striking effects on the
electronic properties of graphene has been followed by other
experiments that explore the effect of different geometries
as a path to control graphene electromechanically [10–13].
A generic deformation of a graphene sheet can cause inho-
mogeneous strain, which results in an effective nonuniform
pseudomagnetic field and provides an experimental test bed
to explore the interplay between highly tunable magnetic
fields and Dirac fermions. For example, a scanning tunneling
microscope (STM) tip has been used not only to probe samples,
but also to continuously deform graphene nanomembranes,
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demonstrating electronic confinement due to nonuniform
pseudomagnetic fields [10]. For a similar experimental setup,
Mashoff et al. obtained atomically resolved STM images
of stable and lifted regions of graphene [11]. Whereas a
hexagonal arrangement of the carbon atoms was found at
unstrained regions, as expected for monolayer graphene [11],
within the strained area a triangular pattern of bright spots
was observed, signaling a symmetry breaking between A

and B sublattices in some regions. At the time the authors
speculated the effect to be caused by an instability in which
the different sublattices acquire a zigzag configuration with
respect to the substrate. However, a local sublattice rearrange-
ment requires energies that are prohibitive within the regime
of STM imaging, making such a scenario rather unlikely.
Atomistic tight-binding models [14–16] have predicted the
development of such asymmetry but a continuum, symmetry-
based description remains missing. Similar patterns were
observed in earlier works but remained unexplained also [17].
These results indicate an incomplete understanding of the
fundamental electronic properties of graphene samples where
local manipulation produces effective inhomogeneous gauge
and scalar fields.

In this work, we approach this problem by investigating
the electronic properties of a graphene sheet in the presence
of an axially symmetric out-of-plane deformation. The strain
produced by such distortion is represented by a pseudomag-
netic field with trigonal symmetry and embodies a good
approximation to standard experimental configurations, while
still allowing for analytical treatment. We use a scattering
formalism based on the continuum description of graphene
to address the question of confinement of electrons due to
this deformation. In particular, we calculate the local density
of states (LDOS) and show that a noticeable imbalance in
the distribution of charge density between the two graphene
nonequivalent sublattices appears even for small deforma-
tions, providing a possible explanation for the experimentally
observed sublattice asymmetry. We perform exact numerical
calculations and show that these results are well described
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within an analytical perturbative approach for small deforma-
tions. We analyze the dependence of the maximum LDOS
contrast between sublattices on energy and strain strength,
providing a scaling dependence with the parameters of the
deformation. Finally, we also show that the effective scalar
field introduced by strain minimally modifies the predicted
sublattice asymmetry.

Model. The electronic properties of undeformed graphene
are, for low energies and large system sizes, governed by
two copies of a two-dimensional (2D) Dirac Hamiltonian
H0 = vFp · σ where vF ≈ 106 m/s is the velocity of graphene
electrons, p the electronic momentum around the K (K ′) point,
and σ = (σx,σy) are Pauli matrices reflecting the pseudospin
degree of freedom associated with the sublattice structure
of the honeycomb lattice [18]. The strain is produced by
a mechanical deformation modeled with a height profile
h(r) that is centrosymmetric and is written generically as
h(r) = Ah0(r/b), where h0 contains the radial profile, and
the parameters A and b describe the amplitude and effective
radius of the deformation. In the following, to illustrate our
results, we consider the case of a Gaussian bump with height
profile h0(x) = e−x2

. Note, however, that our results below are
qualitatively valid for a generic profile h0 with axial symmetry.

The effect of such deformation on the electronic properties
in the continuum limit are described within the theory of
elasticity. For an out-of-plane deformation the strain tensor
of elasticity [19] is derived from the height profile h according
to εij = 1

2∂ih∂jh, which in polar coordinates (r,θ ) reads

ε = αf (r/b)

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
, (1)

where α = A2/b2 sets the strength of the strain, while its spa-
tial distribution is contained in the function f (x) = 1

2 [h′
0(x)]2.

For the Gaussian profile, one has f (x) = 2x2e−2x2
.

In the presence of the deformation, electrons experience the
strain as a gauge field

A(r) = − gv

evF
αf (r/b)

(
cos 2θ

− sin 2θ

)
, (2)

where we chose the zigzag direction to lie along the x axis [2].
The coupling constant is gv = β�vF/2a ≈ 7 eV [5], being
β = |∂ log t/∂ log a| ≈ 3, and t and a the hopping parameter
and the lattice constant of graphene.

For the radial symmetric deformation, the associated pseu-
domagnetic field B = ∇ × A shares the trigonal symmetry of
the graphene lattice,

Bz(r) = �

e

( −β

2ab

)
αb0(r/b) sin 3θ, (3)

where the spatial profile is given by the function b0(x) =
2f (x)

x
− f ′(x). For the Gaussian-shaped deformation, one has

b0(x) = 8x3e−2x2
.

In addition to the gauge field, the electrons are also exposed
to a scalar potential proportional to the trace of the strain
tensor. In our model it is represented by V (r) = −gsαf (r/b)
with gs = 3 eV as a typical value [14]. The low-energy
electronic properties in the presence of the deformation are

hence described by

H = vF[p + eA(r)] · σ + V (r). (4)

In this Rapid Communication we consider a bump that is
smooth on the scale of the lattice constant, such that a coupling
between the valleys can be neglected [14,16,20,21]. Moreover,
we consider an infinite graphene sheet containing a single
deformation, hence our results are independent of finite size
effects and boundary conditions [14–16,20,21].

Perturbation theory. In this section we present analytic
results for the change in the LDOS produced by the scattering
of electrons off the deformation obtained with a perturbative
approach in real space. We consider, therefore, small deforma-
tions that allow for an expansion in the parameter α.

From now on we set � = vF = 1, and work around the K

valley. The effect of the K ′ valley is discussed at the end of
this section. We split the Hamiltonian in the kinetic part H0

and the perturbation V ,

V(r) = eA(r) · σ =
(

0 A−(r)
A+(r) 0

)
, (5)

where we defined A±(r) = e[Ax(r) ± iAy(r)] = (−β

2a
)αf (r/b)

e∓2iθ . We neglect the scalar potential in this part; we will
include its effect in the next section.

Let us start with the states of the Dirac equation in the
absence of the deformation. Here, we take circular waves as a
set of basis states,

∣∣�(0)
m (r)

〉 =
√

ε

4π
eimθ

(
e−iθ/2J|m−1/2|(εr)

i sgn(m)eiθ/2J|m+1/2|(εr)

)
, (6)

where ε denotes the energy of the Dirac fermions (which we
assume to be positive, for simplicity), and m is a half-integer
index labeling the states according to their angular momentum.
Jn(x) denotes the Bessel function of nth order. We chose a
normalization such that∫

dr
〈
�(0)

m (ε; r)|�(0)
n (ε′; r)

〉 = δnmδ(ε − ε′). (7)

Our goal is to find the scattering state |�m(r)〉, which replaces
|�(0)

m (r)〉 when the bump is present. This is determined by the
Lippmann-Schwinger equation

|�m(r)〉 = ∣∣�(0)
m (r)

〉 + ∫
dr′G(r,r′)V(r′)|�m(r′)〉, (8)

which contains the Green’s function of graphene,

G(r,r′) = −iπ
∑
m

{∣∣�(0)
m (r)

〉〈�(−)
m (r′)|, r < r ′

|�(+)
m (r)〉〈�(0)

m (r′)
∣∣, r > r ′,

(9)

where we defined

|�(±)
m (r)〉 =

√
ε

4π
eimθ

(
e−iθ/2H

(±)
|m−1/2|(εr)

i sgn(m)eiθ/2H
(±)
|m+1/2|(εr)

)
. (10)

H (±)
μ (x) = Jμ(x) ± iYμ(x) are Hankel functions of first and

second kind. A derivation of Eq. (9) is given in the
Supplemental Material [22].

For small deformations, we solve the Lippmann-Schwinger
equation in the Born approximation, and replace the scattering
state |�m(r)〉 on the right-hand side of the equation by
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the unperturbed state |�(0)
m (r)〉. Note that our perturbative

approach is valid for gs,vα � ε. The explicit form of the
resulting scattering states is shown in the Supplemental
Material [22]. The trigonal symmetry of the pseudomagnetic
field underlies the coupling between angular momentum states
differing by 3.

The LDOS is obtained by calculating ν(ε,r) =∑
m〈�m(r)|�m(r)〉. The new states are properly normalized to

leading order in α, as the linear in α correction is orthogonal to
the unperturbed state. Since we are interested in the different
sublattice occupations, we further introduce the sublattice-
resolved LDOS

νA/B(ε,r) =
∑
m

〈�m(r)|PA/B |�m(r)〉, (11)

where PA/B are projectors on the respective sublattice A/B.
For undeformed graphene, evaluating Eq. (11) with the free
states |�(0)

m (r)〉 produces the well-known value of

ν
(0)
A,B(ε,r) = ε

4π

∑
m

[J|m−1/2|(εr)]2 = ε

4π
, (12)

for the LDOS per sublattice.
We now want to discuss the effect of the deformation on

the LDOS. Specifically we address the limit εb � 1, which
is the relevant case for experiments with a radius of a few
lattice constants. In this case, one may simplify the results by
using the asymptotic expressions of the Bessel and Hankel
functions for small arguments r � b [22]. Upon retaining only
the leading contribution for small energies, one finds for the
corrections δνA,B = νA,B − ν

(0)
A,B to leading order in α,

δνA(ε,r)

νA(ε,r)
= −δνB (ε,r)

νB(ε,r)
= −βA2

ba
sin 3θ g(r/b) (13)

with the function

g(x) = 1

x3

∫ x

0
dy y3 f (y). (14)

To leading order in α, one can replace ν
(0)
A,B by νA,B in

the denominator of Eq. (13). Notice that the relative LDOS
correction has no dependence on energy. Thus, the deformation
changes the local occupation in the different sublattices in
opposite directions, and their spatial distribution shares the
symmetry of the underlying pseudomagnetic field with a radial
distribution governed by the function g(x). Specifically for a
Gaussian height profile, one finds

g(x) = 1

4x3

[
1 − e−2x2

(1 + 2x2 + 2x4)
]
. (15)

The spatial distribution of the change in LDOS for sublattice
A according to Eq. (13) is shown in Fig. 1(c) for a Gaussian
deformation of typical dimensions.

A quantity of experimental relevance is the LDOS contrast
between sublattices, defined as

C = 2
|νA − νB |
νA + νB

, (16)

which is plotted as a function of the radial distance in Fig. 2(a).
Note that, for a fixed width b of the deformation, Eq. (13)
indicates that the contrast C scales quadratically with the

FIG. 1. (Color online) Schematic view of the graphene lattice
with a magnified out-of-plane deformation. (b) Pseudomagnetic field
created by a deformation with a Gaussian height profile as in (a).
(c) Spatial profile of the LDOS for sublattice A in the presence
of a bump [see Eq. (13)]. Bright (dark) spots indicate an increase
(decrease) of LDOS compared to the undeformed graphene sheet.
For sublattice B, the effect is exactly opposite.

amplitude of a centrosymmetric deformation. This scaling is
shown for a Gaussian deformation in Fig. 3 and compared with
the exact numerical results presented in the next section.

To conclude this section let us discuss the role of the two
valleys K and K ′ in these results. As mentioned above, the

(a) 

(b) 

FIG. 2. (Color online) LDOS contrast C as a function of distance
from the bump’s center for fixed angle θ = π/2 (A = 0.1 nm, b =
0.5 nm). (a) Comparison of C between perturbative (solid line,
blue), and exact numerical approaches (red points) for ε = 0.5 eV.
(b) Different data sets obtained numerically for ε = 0.5 eV, gs = 0
(blue), ε = 0.5 eV, gs = 3 eV (red), ε = 0.1 eV, gs = 3 eV (green),
and ε = 0.9 eV, gs = 3 eV (yellow).
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FIG. 3. (Color online) Scaling of contrast C as a function of
amplitude for fixed Gaussian width b = 0.5 nm. Curves obtained
with perturbative (solid line, blue), and exact numerical methods
(points, red) for ε = 0.5 eV are compared.

deformation is smooth enough that it does not couple the
valleys and their contributions add directly. To see that these
are identical, note that the Dirac Hamiltonian takes the same
form in both valleys when the spinors are written in the valley
symmetric representation [23]: (ψA,ψB) around valley K ,
and (ψB,−ψA) around valley K ′. Note that the components
referring to A and B sublattices are interchanged between
different valleys. On the other hand, the pseudomagnetic field
enters the Dirac equation with opposite sign for each valley
(in contrast to a real magnetic field that has the same sign in
both valleys). These two effects ensure that their contributions
to the sublattice occupancy contrast are identical.

Numerics. In this section we discuss briefly our exact
numerical approach for the continuum model, which is
not restricted to the case of small amplitude deformations.
The results obtained confirm our findings described in the
previous section in the corresponding regimes. We use a slight
modification of the method introduced in Ref. [24], which
allows for the calculation of the scattering matrix S for an
arbitrarily shaped scalar potential. The extension to include
a vector potential is straightforward. To calculate the LDOS
integrated over a certain (arbitrarily chosen) volume V per
sublattice, we include a fictitious additional scattering potential

Vε(r) =
(

εA 0
0 εB

)
×

{
1, r ∈ V

0, else. (17)

Such potential locally changes the electron’s energy in V

by a magnitude εA/B in the different sublattices A/B. The
LDOS per sublattice integrated over V is then found from the

scattering matrix S via

νj (V ) = 1

2πi
Tr

[
S† ∂S

∂εj

]
εA/B=0

, (18)

where j = A,B specifies the sublattice. Figure 2(a) shows
a comparison between analytical and numerical results for
realistic parameters. Note that in the region of small amplitudes
the contrast obtained with the expression from perturbation
theory follows closely the exact solution given by the numer-
ical approach. Numerical calculations in the presence of the
scalar potential V (r) induced by the deformation were carried
out for different values of the phenomenological parameter gs .
Our results, as shown in Fig. 2(b), confirm that its effect on
the contrast is negligible [note that, to leading order in α, V (r)
affects the occupation of both sublattices in the same way,
thus not affecting the contrast (16)]. Furthermore, the energy
independent value for the contrast predicted with the analytical
approach (as long as the requirements ε 	 αgs,v and εb � 1
are met) is also verified in the numerical results as shown in
Fig. 2(b).

Conclusions. We have shown that a centrosymmetric
deformation, with its local breaking of the lattice translational
symmetry, produces a local sublattice symmetry breaking on
the electronic properties of a graphene sheet, and a consequent
LDOS contrast between sublattices. Analytic expressions
within the Born approximation predict the intensity of the
LDOS contrast to be determined by the amplitude of the
deformation and to be energy independent for the range
of validity of the approximation. Exact numerics carried
out with scattering matrix methods confirm the validity of
these results, for experimentally realistic parameters. While
our numerical approach allows us in principle to treat any
size of deformations, we concentrated here on the study of
small deformations and showed that there is a measurable
LDOS contrast between sublattices even in the absence of
Landau levels [18]. The crossover to this regime will be
published elsewhere. Our findings here provide an alternative
interpretation for recent experimental observations on STM
graphene nanomembranes [25] and provide a quantitative way
to guide the use of strain in the design of electronic properties
of graphene flakes.
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