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First-principles theory of field-effect doping in transition-metal dichalcogenides: Structural
properties, electronic structure, Hall coefficient, and electrical conductivity
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We investigate how field-effect doping affects the structural properties, the electronic structure, and the
Hall coefficient of few-layers transition-metal dichalcogenides by using density-functional theory. We consider
monolayers, bilayers, and trilayers of the H polytype of MoS2, MoSe2, MoTe2, WS2, and WSe2 and provide a full
database of electronic structures and Hall coefficients for hole and electron doping. We find that, for both electron
and hole doping, the electronic structure depends on the number of layers and cannot be described by a rigid
band shift. Furthermore, it is important to relax the structure under the asymmetric electric field. Interestingly,
while the width of the conducting channel depends on the doping, the number of occupied bands at each
given k point is almost uncorrelated with the thickness of the doping-charge distribution. Finally, we calculate
within the constant-relaxation-time approximation the electrical conductivity and the inverse Hall coefficient.
We demonstrate that in some cases the charge determined by Hall-effect measurements can deviate from the real
charge by up to 50%. For hole-doped MoTe2 the Hall charge has even the wrong polarity at low temperature.
We provide the mapping between the doping charge and the Hall coefficient. We present more than 250 band
structures for all doping levels of the transition-metal dichalcogenides considered within this work.
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I. INTRODUCTION

Since the rise of graphene [1] and the discovery of
topological insulators [2] a lot of interesting physics has
been found in systems with reduced dimensions. Other
two-dimensional (2D) material, such as monolayers or few-
layer systems (nanolayers) of transition-metal dichalcogenides
[3–7] (TMDs) are gaining importance because of their intrinsic
band gap. TMDs are MX2-type compounds where M is
a transition metal (e.g., M = Mo, W) and X represents a
chalcogen (S, Se, Te). These materials form layered structures
in which the different X-M-X layers are held together by weak
van der Waals forces. Thus, similar to graphene, one can easily
extract single or few layers from the bulk compound using the
mechanical-exfoliation or other experimental techniques.

Doping these nanolayers with field-effect transistors (FETs)
is particularly appealing [8–21] as it allows for the exploration
of the semiconducting, metallic, superconducting, and charge-
density-wave regimes in reduced dimensionality. Furthermore,
the TMDs are promising materials to realize valleytronics,
i.e., the usage of the valley index of carriers to process
information [7,15,22].

Despite these challenging experimental perspectives, the
understanding of structural, electronic, and transport proper-
ties at high electric field in FET configuration is still limited,
particularly in the physically relevant case of multilayer
samples. Previous theoretical works [20,23] analyzed the high
doping limit of 20 nm thick MoS2 flakes [10], relevant for
ionic-liquid-based FETs, by assuming that only the topmost
layer is doped uniformly. However, it is unclear to what extent
the doping of thick flakes can be modeled in this approximation
as the thickness of the conductive channel is not experimentally
accessible.
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A second crucial issue is the determination of the doping
charge. Usually the charge is determined via Hall-effect mea-
surements. However, the interpretation of Hall experiments
assumes a 2D electron-gas model, most likely valid only in the
low doping regime. In TMDs, due to the multivalley electronic
structure, this assumption is highly questionable.

In this paper we solve these issues and provide a thorough
study of structural, electronic, and transport properties and
of their changes under field-effect doping for TMDs. We use
our recently developed first-principles theoretical approach to
model doping in field-effect devices [24]. The method allows
for calculation of the electronic structure as well as complete
structural relaxation in field-effect configuration using density-
functional theory (DFT). We apply our approach to the H
polytype of MoS2, MoSe2, MoTe2, WS2, and WSe2.

The paper is organized as follows: In Sec. II we summarize
the parameters and methods used within the paper and the
relaxed geometries of the bulk TMDs. Then we will first show
the results for the undoped monolayer, bilayer, and trilayer
systems (Sec. III A). After a brief discussion on the quantum
capacitance (Sec. III B), we will investigate the changes of the
geometry and the electronic structure of the different TMDs
in Secs. III C and III D, respectively. Finally, we will focus
on how the doping-charge concentration can be determined
experimentally by Hall-effect measurements. We will show
in Sec. III E that the results of such a measurement cannot
be interpreted within a 2D electron-gas model but that the
specific band structure of the TMDs and its changes in a
field-effect setup need to be taken into account. In Sec. III F
we will furthermore investigate the density of states (DOS) at
the Fermi energy and the electrical conductivity as a function
of doping. In the end, we will summarize our results and
draw some final conclusion in Sec. IV. In the Supplemental
Material [25] we provide a full database of electronic structures
for all doping levels considered in this work (in total more
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TABLE I. Comparison of the calculated and experimental [31]
lattice parameters.

a calc. a exp. c calc. c exp.

MoS2 3.197 Å 3.160 Å 12.38 Å 12.29 Å
MoSe2 3.328 Å 3.289 Å 13.07 Å 12.93 Å
MoTe2 3.536 Å 3.518 Å 14.00 Å 13.97 Å
WS2 3.190 Å 3.153 Å 12.15 Å 12.32 Å
WSe2 3.341 Å 3.282 Å 12.87 Å 12.96 Å

than 250 calculations, Figs. S10–S45) and Hall coefficients
(Figs. S46–S48) of monolayer, bilayer, and trilayer dichalco-
genides as a function of doping.

II. COMPUTATIONAL DETAILS

All calculations were performed within the framework of
DFT using the Quantum ESPRESSO package [26], which uses
a plane-wave basis set to describe the valence-electron wave
function and charge density. We employed full-relativistic,
projector-augmented wave potentials [27]. While the local-
density approximation is known to underestimate the lat-
tice parameters, generalized-gradient approximations for the
exchange-correlation energy overestimate the out-of-plane
lattice constant (see, e.g., Ref. [28] and references therein).
In our FET setup a correct description of the interlayer
distance is, however, very important. Accordingly, we choose
the Perdew-Burke-Ernzerhof functional [29] (PBE) for the
exchange-correlation energy and furthermore included dis-
persion corrections [30] (D2). This also leads to the best
agreement with both the experimental in-plane and out-of-
plane lattice parameters (cf. Table I). A comparison between
PBE and LDA for MoS2 can be found in the Supplemental
Material (Fig. S9).

Using the experimental lattice parameters of the H polytype
of the bulk structures [31] as starting geometry, we minimized
the total energy as a function of the lattice parameters until it
changed by less then 2 meV. For the molybdenum-containing
dichalcogenides we used a cutoff of 50 Ry and 410 Ry
(1 Ry ≈ 13.6 eV) for the wave functions and the charge
density, respectively, while for the tungsten dichalcogenides
we chose 55 Ry/410 Ry. The Brillouin zone (BZ) integration
has been performed with a Monkhorst-Pack grid [32] of
16 × 16 × 4 k points and using a Gaussian broadening of
0.002 Ry ≈ 27 meV. The convergence with respect to the
number of k points as well as the wave-function and charge-
density cutoff has been checked. The self-consistent solution of
the Kohn-Sham equations was obtained when the total energy
changed by less than 10−9 Ry and the maximum force on all
atoms was less than 5 × 10−4 Ry a−1

0 (a0 ≈ 0.529177 Å is the
Bohr radius). The lattice parameters thus determined are given
in Table I and agree within 2% with the experimental values.

The final geometry of the bulk system was used as the
starting geometry for the relaxation of the layered 2D systems
in an FET setup. To achieve this, the size of the unit cell was
fixed in plane and the perpendicular size was increased such
that the vacuum region between the repeated images was at
least 23 Å. The layers were stacked as in the H polytype of the
bulk compound. The BZ integration has been performed with a

TABLE II. Conversion for the doping-charge concentration n
(in e/unit cell) to charge-carrier concentration n per area cm−2

for the different dichalcogenides and two typical doping-charge
concentrations of n = 0.01 e/unit cell and n = 0.15 e/unit cell.

n = 0.01 e/unit cell n = 0.15 e/unit cell

MoS2 n≈0.1127 × 1014 cm−2 n≈1.6911 × 1014 cm−2

MoSe2 n≈0.1042 × 1014 cm−2 n≈1.5636 × 1014 cm−2

MoTe2 n≈0.0924 × 1014 cm−2 n≈1.3856 × 1014 cm−2

WS2 n≈0.1135 × 1014 cm−2 n≈1.7027 × 1014 cm−2

WSe2 n≈0.1035 × 1014 cm−2 n≈1.5521 × 1014 cm−2

Monkhorst-Pack grid of 64 × 64 × 1 k points for the charged
systems and 16 × 16 × 1 k points for the neutral ones. In
order to correctly determine the Fermi energy in the charged
systems, we performed a non-self-consistent calculation on
a denser k-point grid of at least 90 × 90 × 1 points starting
from the converged charge density. All other parameters were
the same as in the calculations for the bulk systems. For the
total-energy calculations of the 1T and 1T′ polytype of MoS2

and WSe2 under FET doping, we doubled the unit-cell size
along one in-plane direction and correspondingly halved the
number of k points along this direction.

Several methods have been developed to study electrostatics
in periodic boundary condition [24,33–35] with different
experimental geometries. We used our recently developed
method [24] as it is tailored for the FET setup and allows
for structural optimization. The dipole for the dipole correc-
tion [24,36] was placed at zdip = ddip/2 with ddip = 0.01 L

and L being the unit-cell size in the direction perpendicular
to the 2D plane—L changed for the different calculations and
was between 34 Å and 48 Å. The charged plane modeling the
gate electrode [24] was placed close to the dipole at zmono =
0.011 L. A potential barrier with a height of V0 = 2.5 Ry
and a width of db = 0.1 L was used in order to prevent the
ions from moving too close to the gate electrode. The final
results were found to be independent of the separation of
the dipole planes, as well as the barrier height and width as
long as it is high or thick enough to ensure that the electron
density at the position of the dipole and the gate electrode
is zero, ρe(zmono) = ρe(zdip) = 0. As we will often give the
doping-charge concentration per unit cell n (i.e., in charge
per unit cell, e/unit cell, with the elementary charge e ≈
1.602 × 10−19 C), we summarized in Table II the conversion
to charge-carrier concentration per area n (in cm−2) for
the different dichalcogenides and two typical doping-charge
concentrations of n = 0.01 e/unit cell and n = 0.15 e/unit
cell. Throughout the paper we will use n < 0 and n > 0 for
electron and hole doping, respectively. Typical charge-carrier
concentrations, which can be achieved in experiments using
either solid-state dielectrics such as SiO2 or ionic-liquid-based
FETs, can be found in Table III. Note that in principle those
maximum concentrations could be possible for all TMDs [37]
even if we did not find references for, e.g., ionic-liquid-based
field-effect doping of MoSe2.

In order to calculate the Hall tensor Rijk(T ; EF ), we used
the BOLTZTRAP code [45] to determine the conductivity
tensors in Eqs. (11) and (12) (see Sec. III E for more details).
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TABLE III. Maximum experimental charge-carrier concentration
n per area cm−2 for the different dichalcogenides using either a solid-
state or an ionic-liquid-based FET. References are given after the
charge-carrier concentration.

Polarity Solid-state FET Ionic-liquid FET

MoS2 n-type ≈ − 3.6 × 1013 [14] ≈ − 9.8 × 1014 [38]
p-type – –

MoSe2 n-type ≈ − 3.9 × 1012 [39] –
p-type ≈ + 2.0 × 1012 [39] –

MoTe2 n-type ≈ − 1.3 × 1013 [40] ≈ − 1.1 × 1013 [41]
p-type – ≈ + 1.8 × 1013 [41]

WS2 n-type ≈ − 1.0 × 1014 [19] ≈ − 4.0 × 1014 [42]
p-type – ≈ + 3.5 × 1013 [43]

WSe2 n-type – ≈ − 1.4 × 1014 [16]
p-type ≈ + 9.0 × 1012 [44] ≈ + 1.9 × 1015 [16]

We fitted the band structure for each doping of the different
TMDs by using 55 times more plane waves than bands
and used afterwards the in-plane components of the energy-
projected tensors to calculate the Hall coefficient Rxyz(T ; EF )
for temperature T and chemical potential EF . Rxyz(T ; EF ) is
the only relevant Hall coefficient for our 2D systems assuming
that the magnetic field is applied perpendicular to the layers.
We checked the convergence by calculating Rxyz(T ; EF ) with
increasing number of k points and found that the results for the
64 × 64 × 1 grid and the dense grid of the non-self-consistent
calculation are the same.

III. RESULTS

A. Electronic structure of TMDs

In the following we will first briefly summarize the results
for the undoped TMDs before investigating the changes
under field-effect doping. We focus on the changes in the
valence-band maximum and the conduction-band minimum
with changing transition metal or chalcogen and compare them
with other results found in literature [28].

Figure 1 shows the band structure and the projected density
of states (pDOS) for monolayer MoSe2 with and without
including spin-orbit coupling (SOC). Monolayer molybdenum
diselenide is (as most TMDs) a direct-band-gap semiconductor
with a DFT gap of about 1.329 eV at the K point. Our
calculated gap is smaller by 83 meV than the one in Ref. [28],
which can be attributed to our slightly larger in-plane lattice
parameter as the size of the band gap decreases with increasing
lattice constant [46–49]. This is due to the fact that the
valence-band maximum at K is formed by in-plane states of
both the transition metal and the chalcogen [49]. On the other
hand, the conduction-band minimum at K is mainly formed
by out-of-plane Mo states (dz2 without SOC and mj = ±1/2
for both j = 5/2 and j = 3/2 including SOC) and in-plane
states of the chalcogen. The valence-band maximum near � has
basically only out-of-plane states of Mo and Se as can be seen
in Fig. 1. This will become very important for hole doping of
the nanolayers in an FET setup—depending on which valley
is doped (K or �) one can expect different doping-charge
distributions. Energetically very close to the conduction-band
minimum at K is a minimum halfway between K and �.

FIG. 1. (Color online) Band structure and density of states pro-
jected onto atomic orbitals for monolayer MoSe2 without (top) and
with (bottom) including spin-orbit coupling. The energy is given
relative to the valence-band maximum Ev . As apparent in the case
without SOC, mainly in-plane states contribute to the valence-band
maximum near K (Mo dx2−y2 and dxy , Se px/y), while the maximum
near � is formed by out-of-plane states (Mo dz2 , Se pz). This also
holds in the SOC case where the valence-band states with mainly in-
plane character can be found near K (j = 5/2,mj = ±5/2, ±3/2 and
j = 3/2,mj = ±3/2) while those with more out-of-plane character
can be found near � (mj = ±1/2 for both j = 5/2 and j = 3/2, see
Ref. [51] for the states in terms of spherical harmonics). On the other
hand, the conduction-band minimum near K has mainly contributions
from out-of-plane Mo and in-plane Se states (without SOC: Mo
dz2 and Se px/y , with SOC: Mo mj = ±1/2 for both j = 5/2 and
j = 3/2).

The corresponding point in k space is called Q in literature
(sometimes � or �min as it is a minimum along the � line,
from � to K) even if it is not a high symmetry point of the
BZ. This is also why this minimum does not lie exactly at
the same point for the different TMDs and its position can
even change if the number of layers is increased. The states
close to the Q point have a stronger in-plane character and can
thus also lead to a different doping-charge distribution if the
doping occurs mainly at this point in the BZ. The same results
for the character of the different valleys were also obtained in
Refs. [48–50].

The different character of the states in the different valleys
is even more important for the other TMDs. From sulfur to
tellurium the difference between the minimum at K and Q

decreases: for MoS2 the minimum at K is lower by 279 meV
while it is only 154 meV and 72 meV lower for MoSe2 and
MoTe2, respectively. The change in the case of the tungsten
dichalcogenides is much lower, which, however, might be
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FIG. 2. (Color online) Band structure for bilayer and trilayer
MoSe2. The energy is given relative to the valence-band maximum
Ev . Molybdenum diselenide changes (as all TMDs investigated in
this paper) from a direct-band-gap semiconductor to an indirect one
when the number of layers is increased.

due to the stronger spin-orbit splitting of the bands near Q

compared the splitting at K . The band structures of all undoped
TMDs are summarized in the Supplemental Material [25],
Figs. S1–S5.

Increasing the number of layers in TMDs leads to a
well-known change from a direct-band-gap semiconductor to
an indirect one [28,50,52–55] as shown in Fig. 2. The change
of the direct band gap at K with increasing the number of
layers is much smaller than the changes at � or Q. This is
due to the small hybridization between different layers at K

as those states have only in-plane chalcogen character. On the
other hand, both valleys at � and Q have contributions from
Se pz states. Accordingly, the maximum (minimum) at � (Q)
shift up (down) in energy, which eventually leads to an indirect
band gap between � and Q (see also Ref. [50] for an in-depth
analysis). The transition between the indirect gap � → K

and � → Q happens at different number of layers and occurs
either in the bilayer case (MoSe2), in the trilayer case (WS2

and WSe2), or in the bulk limit (MoS2, MoTe2). Depending
on the level of theory that was used, one can also find very
different results in literature when this transition occurs. Most
calculations were done for MoS2 for which the transition either
already occurs for the bilayer [47,56,57] or with larger number
of layers [58–60]. In fact, Ramasubramaniam et al. have shown
in Ref. [61] that using the experimental bulk distance between
the layers in the bilayer case also leads to an indirect band
gap � → Q while relaxation using PBE + D2 leads to an
indirect gap � → K . Also for other TMDs one can find
different results [47,60,62–64]. For a comprehensive review
of the theoretical papers see also Ref. [28] and references
therein. Molybdenum ditelluride is especially peculiar, since
the calculations show that its valence-band maximum is
located at K even in the trilayer case. Furthermore, we find
that the difference between the maximum at � and K is
only 26 meV in bulk MoTe2 which is in agreement with the
experimental results in Ref. [65].

In Sec. III D we will see that, e.g., the varying difference
between the conduction-band minimum at K and Q for the

FIG. 3. (Color online) (a) Schematic illustration of an FET setup
in which the 2D metallic system is separated from the gate
electrode by a dielectric with dielectric constant εox of thickness dox .
(b) Equivalent circuit for the overall capacitance seen at the gate
electrode.

different TMDs will also lead to a different thickness of the
conductive channel for electron doping in an FET setup, while
nearly all TMDs will behave similarly under hole doping.
However, before investigating the changes under field-effect
doping we want to focus on another problem that can make it
difficult to dope a 2D system—the quantum capacitance.

B. Quantum capacitance

A prominent example in which the quantum capacitance
hinders the doping via field-effect setup is graphene. Due
to its linear dispersion relation at the K points, the charge
that can be induced in an FET setup is much smaller
than the corresponding charge at the gate electrode [66,67].
Thus, doping concentrations exceeding 1013 cm−2 are hardly
achievable using common dieletrics such as SiO2 or HfO2.
Similarly, the quantum capacitance in nanolayers of TMDs
could also reduce the amount of induced charge. In the
following we want to show that TMDs are, however, quite
different from graphene and that the quantum capacitance is
not relevant in their case as soon as the Fermi energy is within
the conduction or valence band. In fact, experimentally doping
concentrations in the order of 1014 cm−2 are possible using
ionic-liquid-based FETs [10,16,42,68,69] (cf. Table III).

The term “quantum capacitance” was first used by
Luryi [70] in order to develop an equivalent circuit model
to describe the incomplete screening of an electric field by a
2D electron gas. When a 2D metallic system is contacted by a
gate electrode [separated by a dielectric as shown in Fig. 3(a)],
the electric field generated by the charges on the dielectric
surface leads to a shift of the Fermi level of the 2D metal.
This effect results in a modified capacitance with respect to
the geometrical capacitance Cox per unit surface

Cox = εoxε0 d−1
ox , (1)

obtained for a capacitor having a dielectric constant εox and
thickness dox .

As shown in Fig. 3(b), the quantum capacitance CQ is in
series with that of the dielectric, namely

1

C
= 1

Cox

+ 1

CQ

. (2)

Under the simplified assumption that both Cox and CQ are
independent of the applied gate voltage VG, the charge induced
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TABLE IV. Geometrical capacitances for parallel-plate capaci-
tors with 100 nm SiO2 (relative permittivity εr = 3.9), 10 nm HfO2

(εr ≈ 20), and an 1 nm thick ionic-liquid (IL) FET (εr ≈ 15),
quantum capacitance for electron doping of the K valley (m ≈ 0.5m0)
and hole doping of the � valley (m ≈ m0) of MoS2 (ν = 4), and the
overall capacitance of a setup as shown in Fig. 3(b). All capacitances
are given in units of μF cm−2.

CK
Q = 133.9 C�

Q = 267.7

CSiO2 = 0.035 C = 0.035 C = 0.035
CHfO2 = 1.771 C = 1.748 C = 1.759
CIL = 13.28 C = 12.08 C = 12.65

in the 2D system nQ can be written as:

nQ =
⎧⎨
⎩

0 ∀ VG ∈ (Vv,Vc)
C(Vv − VG) ∀ VG < Vv

C(Vc − VG) ∀ VG > Vc

, (3)

where Vv and Vc are the onset potentials to fill the valence-band
minimum or conduction-band maximum, respectively. Thus,
when CQ � Cox , we have

C = Cox

(
1 + Cox

CQ

)−1

≈ Cox (4)

and we regain the classical result, i.e., the charge that can be
induced in the 2D system depends only on the applied gate
voltage and the capacitance between gate and sample.

As shown in Refs. [70,71], the quantum capacitance in
this case and for gate voltages larger (smaller) than the onset
potential of the conduction band (valence band) is given by

CQ = gsgvmq2

π�2
, (5)

where gs and gv , m, and q are the spin and valley degeneracies,
the effective mass, and the charge, respectively. Depending on
(i) the dielectric thickness dox , (ii) the effective mass of the 2D
metallic system, and (iii) the number of valleys ν = gs gv , the
quantum capacitance CQ can be relevant or not.

Table IV shows the total capacitance, geometrical capaci-
tance for typical gate dielectrics, and the quantum capacitance
for electron doping of the K valley or hole doping of the �

valley of MoS2 (the effective masses of the different valleys
were taken from Ref. [47]). As the geometrical capacitance of
a parallel-plate capacitor increases with decreasing thickness
of the dielectric, an ionic-liquid (IL) FET with an 1 nm
thick electric double layer (inner Helmholtz plane) shows
the largest deviation of the total capacitance C from the
geometrical capacitance CIL—even for a thin dielectric layer of
10 nm HfO2, C ≈ 0.986 CHfO2 . Yet, for TMDs the number of
valleys increases with increasing doping (valleys at K and Q or
K and � for electron or hole doping, respectively), which also
leads to a considerably larger DOS at the Fermi energy than
for a single quadratic band. Thus, the quantum capacitance
CQ is further increased [71], which in turn leads to C ≈ Cox .
Similar results have been found by Ma and Jena in Ref. [72]
who also provide a detailed description of the low-doping
regime n < 1013 cm−2

C. Structural changes under field-effect doping

The doping via FET setup has only a minor influence on the
structure of the TMDs—the changes are much smaller than for,
e.g., ZrNCl [24]. This is due to the weak polarity of the bond
between the transition-metal and the chalcogen. The largest
change can be found for the layer thickness (z component
of the chalcogen-chalcogen vector) of the layer closest to
the charged plane representing the gate electrode—the layer
thickness increases by ≈0.06 Å for a large electron doping of
n = −0.3 e/unit cell (n ≈ − 3.16 × 1014 cm−2) and decreases
by ≈0.02 Å for a large hole doping of n = +0.3 e/unit cell.
This change is mainly due to the increase/decrease of the
chalcogen–transition-metal bond length of those being closest
to the gate—we find ≈+0.04 Å for n = −0.3 e/unit cell and
≈−0.02 Å for n = +0.3 e/unit cell. Accordingly, there is also
a small change in the angle between the first chalcogen, the
transition-metal, and the second chalcogen of up to +0.9◦
(−0.4◦) for large electron (hole) doping. Note that even if the
structural changes seem to be small it is still important to relax
the system in the FET setup. Otherwise, the band structure
can be quite different for doping |n| > 0.15 e/unit cell as
exemplified in Fig. S6 in the Supplemental Material [25].

Even if the internal structure changes only slightly under
FET doping, electron doping could induce a phase transition
where the structure of the full nanolayer system is altered. It is
well known that lithium [73,74] or potassium [75] intercalated
MoS2 can undergo a phase transition in which the Mo
coordination changes from a direct-band-gap, semiconducting,
trigonal-prismatic structure (labeled 2H, “2” as there are
two layers in the unit cell) to a metallic, octahedral one
(1T). It has been found experimentally [76,77] and shown
theoretically [78,79], that also monolayer MoS2 can undergo
this phase transition. In the calculations, for a high electron
doping by H (Ref. [78]) or Li (Ref. [79]) adsorption of n ≈
−0.35 e/unit cell or n = −0.44 e/unit cell, respectively, the
octahedral phases such as the 1T or 1T′ phases become more
stable than the 1H phase. In the 1T′ phase the molybdenum
forms zigzag chains like tungsten in WTe2 [80–85]. Such a
transition was also found experimentally by rhenium doping
of WS2 nanotubes [86] and monolayer MoS2 [87], and by
transfer of hot electrons generated in gold nanoparticles to
monolayer MoS2 [88]. In order to determine if the FET
setup can lead to such a phase transition for electron doping,
we compare in Fig. 4 the total energy for the monolayer
structures of 1T-MoS2 and 1T′-MoS2 (Etot

x-MoS2
) with the total

energy of the 1H polytype (Etot
1H-MoS2

). We find that the 1T′

structure becomes more stable for electron doping larger than
n = −0.44 e/unit cell in close agreement with the results of
Refs. [78,79]. Thus, it seems that the interaction between the
H/Li atoms and the MoS2 layer has only a minor influence on
the phase stability as the transition occurs in our FET setup
at the same doping. We also calculated the energy difference
between 1T′-WSe2 and 1H-WSe2, (Etot

1T′-WSe2
− Etot

1H-WSe2
), for

a few concentrations of electron doping and found that for
a concentration of n = −0.35 e/unit cell the 1T′ polytype
becomes more stable by 63 meV. In the following, we will
thus only consider doping of the H polytype with electron
concentrations n � −0.35 e/unit cell as it is the most stable
structure found in nature and is often used to prepare the
samples by the mechanical-cleavage method.
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FIG. 4. (Color online) (Left) Structure of three different struc-
tural phases of monolayer MoS2. The H polytype is the one found in
the bulk compound where the coordination of the molybdenum (gray)
is trigonal prismatic. The T polytype with octahedral coordination
can change to the T′ polytype in which the molybdenum atoms form
zigzag chains. The sulfur atoms are shown in yellow. (Right) With
increasing electron doping the difference between the total energy of
1T/1T′ structure (Etot

x-MoS2
) and the total energy of the 1H polytype

(Etot
1H-MoS2

) decreases. For a doping larger than n = −0.44 e/unit cell
(n ≈ −4.96 × 1014 cm−2) 1T′-MoS2 is the lowest-energy structure.

D. Band structure in FET setup

In the following section, we want to investigate the influence
of field-effect doping on the electronic properties of the
TMDs. The doping via FET setup changes the band structure
considerably as exemplified in Figs. 5 and 6, which show
the band structures for different electron and hole doping
levels for monolayer and trilayer MoS2, respectively. In the
Supplemental Material [25] we also demonstrate that it is
important to correctly model the FET setup by comparing the
band structures of monolayer and trilayer MoSe2 calculated
with a compensating jellium background to those calculated
with our method (Figs. S7, S8). Furthermore, we also provide
the band structures for more doping levels and all the other
TMDs in the Supplemental Material [25] (in total more
than 250 calculations, Figs. S10–S45). We summarized the
evolution of the band structure with increasing doping in
the left panel of Figs. 7–11, which show the position of
the different band extrema with respect to the Fermi energy.
Additionally, the right panel in those figures shows the relative
amount of doping charge per valley given by

nα = e

Nα

∑
k∈	α

ε1�εi,k�ε2∑
i

|ψi,k|2. (6)

Here α = {�,K,Q}, 	α defines the subset of k points, which
are closer to, e.g., α = � than to any α 	= �, Nα is the total
number of those k points, and εi,k is the eigenenergy for band
i at k. The interval [ε1,ε2] is always chosen such that the
probability density is integrated between an energy within
the former band gap Em and the Fermi energy EF of the
doped system, i.e., [EF ,Em] and [Em,EF ] for hole and electron
doping, respectively.

1. Electron doping

For n-type doping of monolayer MoS2 (as for all monolayer
TMDs) the doping charge first occupies the extrema at K . For
small doping (as long as only one valley is doped) the bands
are rigidly shifted. However, as soon as a second valley is
close to the Fermi energy, the doping cannot be described by
a rigid shift of the bands anymore. For electron doping, the
down shift of the bands at K slows down and, as the valley at
Q starts to get occupied, is eventually reversed into an up shift.
Finally, for high electron doping, the K valley is unoccupied
again and the doping charge is solely localized around Q.
Comparing our results of the changes in the conduction band
for electron doping of monolayer MoS2 (Figs. 5 and 7) with
literature shows that it is important to correctly model the
system—while the authors of Ref. [89] find an up shift of
the Q valley with increasing electron doping, we see a down
shift. The opposite shift in Ref. [89] might be due to the
free-electron states at � (i.e., the states in the vacuum between
the repeated images, cf. also Ref. [90]), which approach the
Fermi energy with increasing doping. Also the authors of
Refs. [20,23,90] find a down shift of the Q valley further
supporting our results even if in those works the asymmetric
electric field in an FET has not been taken into account.
The amount of doped electrons needed to have the charge
completely localized at Q depends on the TMD (i.e., the initial
energy difference between the minimum at K and Q) and
is larger than n = −2.2 × 1014 cm−2 (n ≈ −0.2 e/unit cell):
the transition occurs for MoS2 at n ≈ −3.83 × 1014 cm−2,
for MoSe2 at n ≈ −2.5 × 1014 cm−2, for MoTe2 at n ≈
−2.22 × 1014 cm−2, for WS2 at n ≈ −3.41 × 1014 cm−2, and
for WSe2 at n ≈ −3.31 × 1014 cm−2. Please note, that using
LDA could slightly change these results as it leads to a
smaller unit cell. The compressive in-plain strain would then
reduce the difference between the conduction-band minima
at K and Q [46,47,49] and thus decrease the doping-charge
concentration needed to solely dope the valley at Q (cf.
Fig. S9).

In multilayer MoS2, WS2, and WSe2 first the valley at
K is doped and both valleys at K and Q are occupied until
n ≈ −3.3 × 1014 cm−2 while in bilayer and trilayer MoSe2

and MoTe2 the order is reversed: electrons first occupy the
valley at Q and the doping at K is always smaller. This is due
to the minimum at Q being lower in energy than the one at
K in the undoped system (see Figs. 8 and 9). For a doping
of n � −2.1 × 1014 cm−2 for MoSe2 the K valley is even
unoccupied. Yet, one can expect that for small electron doping
(|n| < 1013 cm−2) of thick samples (more than three layers) of
MoS2, WS2, and WSe2 the electrons will also first occupy the
Q valley as this valley is lowered in energy with increasing
number of layers.

2. Hole doping

For p-type doping of the monolayer TMDs, the doping
charge first occupies the extrema at K . However, in contrast to
the electron-doping case, in the high-hole-doping limit (n >

+0.2 e/unit cell, n � +2.1 × 1014 cm−2) of the monolayer
TMDs both valleys at � and K are occupied—the relative
amount of doping charge in the � valley is even higher than
that in K . The transition when the � valley is more occupied
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FIG. 5. Band structure for different FET-induced doping of monolayer MoS2. The figures in the left column are for electron doping
while the right column shows the hole-doping case. For monolayer MoS2 mainly the valleys at K are filled and only for a high doping
of n ≈ ±1.69 × 1014 cm−2 (n = ± 0.15 e/unit cell) a small amount of charge is in the maximum at � (hole doping) or in the minimum at
Q (electron doping). The band structures for more doping levels and all the other TMDs can be found in the Supplemental Material [25]
(Figs. S10–S45).

than the K valley again depends on the TMD, i.e., on the
initial energy difference between the valence-band maxima.
In the case of MoS2, for example, even a small doping is
enough to dope more the � valley. The only exception from
this picture is MoTe2 for which K is always more occupied
even for n = +0.35 e/unit cell (n ≈ +3.23 × 1014 cm−2, cf.
Fig. 9).

Hole doping of the bilayer and trilayer TMDs is again very
similar: in all investigated compounds (except MoTe2) first
the conduction-band maximum at � is occupied, while for
higher doping also K starts to get filled. Most interestingly,
in some cases the second band at K is never occupied. For
trilayer WS2 and WSe2 it is even pushed down in energy,
effectively increasing the splitting of the spin-orbit-split bands.
For WSe2 it is possible to achieve even higher hole-doping
concentrations than shown in Fig. 11 by using an IL-FET [16].

We thus calculated for trilayer WSe2 also some higher doping
cases (up to n = +1 e/unit cell, or n ≈ +1 × 1015 cm−2) in
order to understand what might happen for such a high doping.
Our calculated band structure is very different from the one in
Ref. [16], which was calculated without proper treatment of
the FET setup. For a doping of one hole per unit cell the second
band at K is pushed down below the Fermi energy and also the
first band at K is lowered. The band structure in Fig. 12 shows
that the former band gap is closed and the first two bands are
nearly unoccupied. However, since these are bands localized
on the first layer close to the gate, we believe that for such a
high doping the ions of the ionic liquid might start to interact
with WSe2. In our simplified model without inclusion of the
full dielectric it is difficult to prove this statement and we will
thus leave this interesting problem for future investigations
and will concentrate here on lower doping values.
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FIG. 6. Band structure for different FET-induced doping of trilayer MoS2. The figures in the left column are for electron doping while
the right column shows the hole-doping case. In contrast to the monolayer case, the doping at �/Q (hole/electron doping) is more important
in trilayer MoS2. The band structures for more doping levels and all the other TMDs can be found in the Supplemental Material [25]
(Figs. S10–S45).

3. Conductive channel

Another important property in order to understand different
experiments on FET doping on TMDs is the doping-charge
layer thickness, i.e., the size and shape of the conductive
channel created and influenced by the gate voltage. To
visualize the conductive channel we calculated the planar-
averaged doping-charge distribution along z,

ρ
dop
|| (z) = e

	2D Nk

∫
dA

ε1�εi,k�ε2∑
i,k

|ψi,k(r)|2. (7)

Here 	2D is the unit cell area and Nk is the total number of k
points. The interval [ε1,ε2] is defined as above, i.e., [EF ,Em]
and [Em,EF ] for hole and electron doping, respectively. This
property not only reveals the thickness of the conductive

channel but also the relative distribution among the different
layers.

In our calculations for low hole doping the charge is nearly
evenly distributed between the first two layers with only small
contributions at the third layer as can be seen in the top panel of
Fig. 13. Increasing the doping (i.e., increasing the gate voltage,
bottom panel of Fig. 13) the charge is more and more localized
on the layer closest to the gate with a negligible amount of holes
on the third layer. In the case of electron doping of multilayer
MoS2, the charge is localized on the first layer as only the K

valley is doped (small contribution of the out-of-plane states
of sulfur). Only for higher doping when the minimum at Q is
occupied, a small amount of charge can be found on the second
layer (cf. bottom panel of Fig. 13 and right panel of Fig. 7).
One can also see that the asymmetry in the doping-charge
distribution is more pronounced for hole doping and that the
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FIG. 7. (Color online) Position of the different band minima/maxima Ei (left) with respect to the Fermi level and relative amount of doping
charge per valley nα (right) as a function of doping for monolayer, bilayer, and trilayer MoS2. “Q” labels the conduction-band minimum
halfway between K and �. In each graph, the scale and the units for the lower x axis are given in the lowest graph, while those of the upper x

axis are given in the uppermost graph. Two different line styles for the two spin-orbit-split conduction-band minima at K were used in order
to enhance the readability. Lines are guides for the eye.

system in this case moves closer to the dielectric. Furthermore,
for low hole doping the doping charge on the second layer is
even slightly larger than the one on the first.

Figure 14 summarizes the doping-charge distribution for
all bilayer and trilayer TMDs. In the hole-doping case all
TMDs behave similarly except MoTe2: for low doping the
holes are delocalized over the first two layers with only small
contributions in the third layer and, thus, the bilayer and trilayer
systems are nearly the same. Increasing the doping leads to
stronger localization of the charge within the first layer and
an effective narrowing of the conductive channel. One can
also easily understand why MoTe2 behaves differently: in all
multilayer TMDs first the valley at � is doped, since it is
the valence-band maximum, while in MoTe2 the K valley
is the maximum. As we have seen in Sec. III A the states
close to � have large out-of-plane contributions of both the
transition-metal and the chalcogen atom, while the valley at K

is composed only of in-plane states. Increasing the hole doping
however also leads for MoTe2 to a small doping of the � valley.
Thus, the amount of charge within the second layer increases
slightly in the beginning. The small kink for trilayer MoTe2

close to n = +0.46 × 1014 cm−2 is due to both bands at � and
K being close to the Fermi energy. In this low-doping limit
(per valley) the calculation would require an infinite number
of k points to fully converge the results. Further increase of
the doping leads, as for all TMDs, to a larger screening of the

electric field and therefore to the stronger localization within
the first layer as can also be seen in the bottom panel Fig. 13.

For electron doping we can divide the different TMDs
into two different classes: (i) those in which the conductive
channel for low doping (n ≈ −1013 cm−2) has a thickness
of just one layer (MoS2, WS2, WSe2) and (ii) those with a
three-layer-thick channel (MoSe2, MoTe2). Using the results
of Figs. 7–11 one can see that in the TMDs of class (i) initially
the K valley is doped while in (ii) the Q valley is occupied.
Since the chalcogen states close to the conduction-band
minimum at K have mainly in-plane character (in contrast
to the transition-metal states, which have dz2 character), the
hybridization between the layers is small and the electrons are
more localized within the first layer. The chalcogen states close
to Q on the other hand have a large out-of-plane contribution,
which leads to a stronger hybridization between the layers.
With increasing doping the electric field of the gate is more and
more screened and the size of the conductive channel reduces
to one layer. Furthermore, one can also understand why the
tungsten dichalcogenides have a steep increase of the channel
thickness in the beginning while this is not the case for MoS2:
first, the difference between the conduction-band minimum
at K and Q is much smaller in multilayer WS2/WSe2 than in
MoS2 and second, a small electron doping can also results in an
effective separation of the single (doped) layer from the mul-
tilayer system. The difference between the conduction-band
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FIG. 8. (Color online) Position of the different band minima/maxima Ei (left) with respect to the Fermi level and relative amount of doping
charge per valley nα (right) as a function of doping for monolayer, bilayer, and trilayer MoSe2. “Q” labels the conduction-band minimum
halfway between K and �. In each graph, the scale and the units for the lower x axis are given in the lowest graph, while those of the upper x

axis are given in the uppermost graph. Lines are guides for the eye.

FIG. 9. (Color online) Position of the different band minima/maxima Ei (left) with respect to the Fermi level and relative amount of doping
charge per valley nα (right) as a function of doping for monolayer, bilayer, and trilayer MoTe2. “Q” labels the conduction-band minimum
halfway between K and �. In each graph, the scale and the units for the lower x axis are given in the lowest graph, while those of the upper x

axis are given in the uppermost graph. Lines are guides for the eye.
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FIG. 10. (Color online) Position of the different band minima/maxima Ei (left) with respect to the Fermi level and relative amount of
doping charge per valley nα (right) as a function of doping for monolayer, bilayer, and trilayer WS2. “Q” labels the conduction-band minimum
halfway between K and �. In each graph, the scale and the units for the lower x axis are given in the lowest graph, while those of the upper x

axis are given in the uppermost graph. Lines are guides for the eye.

FIG. 11. (Color online) Position of the different band minima/maxima Ei (left) with respect to the Fermi level and relative amount of
doping charge per valley nα (right) as a function of doping for monolayer, bilayer, and trilayer WSe2. “Q” labels the conduction-band minimum
halfway between K and �. In each graph, the scale and the units for the lower x axis are given in the lowest graph, while those of the upper x

axis are given in the uppermost graph. Lines are guides for the eye.
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FIG. 12. Band structure of trilayer WSe2 for a high hole doping
of n ≈ +1.03 × 1015 cm−2 (n = +1 e/unit cell).

minimum at K and Q for monolayer MoS2 is, however, twice
as large as in the tungsten systems (≈300 meV for MoS2 and
≈150 meV for WS2/WSe2). Thus, the valley at the Q point is
doped much earlier in WS2/WSe2 than in MoS2.

4. Number of occupied bands

It is important to note that the thickness of the doping-
charge distribution, the number of occupied bands at a given
k point, and the number of TMD layers (i.e., the system size)
are uncorrelated. Indeed, as can be seen in Fig. 15, the total
spin-valley degeneracy ν can be quite similar for different
number of layers, whereas the doping charge is localized on
one or two layers as seen in the previous section. Here the

FIG. 13. (Color online) Planar-averaged doping-charge distribu-
tion along z for trilayer MoS2 for a doping of n ≈ ±2.25 × 1013 cm−2

(n = ± 0.02 e/unit cell, upper panel) and n ≈ ±1.69 × 1014 cm−2

(n = ± 0.15 e/unit cell, lower panel). The dashed line within the
graph indicates the end of the barrier potential, while the sketch
above shows the position of the atoms (gray: Mo, yellow: S).

FIG. 14. (Color online) Relative doping charge per layer for
bilayer and trilayer of the different dichalcogenides with increasing
FET doping.

total spin-valley degeneracy has been calculated by counting
the number of valleys within the interval [ε1,ε2] as defined
above:

ν =
∑

α

να =
∑

gα
s gα

v . (8)

Here gα
s and gα

v are the spin and valley degeneracies of the
valley at k point α = {�,K,Q}. For electron doping ν is much
higher than in the hole-doping case as the valley degeneracy
for the conduction-band minimum close to Q is gv = 6 (spin
degeneracy gs = 1). Thus, as soon as the valley at Q is doped,
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FIG. 15. (Color online) Total spin-valley degeneracy ν as a func-
tion of doping for the monolayer, bilayer, and trilayer system of
all investigated TMDs. The total spin-valley degeneracy has been
calculated by summing the spin and valley degeneracies of all doped
valleys. Lines are guides for the eye.

ν increases drastically by 6 or 12 depending on whether only
one or both spin-orbit-split bands are filled. For some TMDs a
high electron doping of n < −3.5 × 1014 cm−2 leads to a large
lowering of the minimum at Q—so much that it is actually
not a valley anymore but a ring around �. This can be seen
by the minimum between � and M , which appears in the
band structure (cf. Figs. 5 and 6 and band structures in the

Supplemental Material [25]). In this case, we do not count it
as six independent valleys but as one.

In contrast, for high hole doping (n � +2 × 1014 cm−2)
of multilayer TMDs the number of occupied valleys is either
ν = 6 or ν = 8 as only bands at K (gv = 2, gs = 1) and �

(gv = 1, gs = 2) are doped. In the monolayer systems often
two valleys are doped—the valence-band maximum at K and
either the second spin-orbit-split band at K or the valence-band
maximum at �. Accordingly, the difference between the
valence-band maximum at K and at � determines the doping-
charge concentration needed in order to dope two valleys at
different points in the BZ. The spin-degenerate maximum at
� is occupied for monolayer MoS2, MoSe2, WS2, and WSe2

for hole doping larger than +1 × 1013 cm−2, +5 × 1013 cm−2,
+2 × 1013 cm−2, and +8 × 1013 cm−2, respectively. Again
monolayer MoTe2 is exceptional due to the large difference
of ≈600 meV between the maximum at K and �. Just for
a very high hole doping of n ≈ +3.23 × 1014 cm−2 (n =
+0.35 e/unit cell) the second band at K is occupied and a ring
around and close to � appears (which is again counted as 1).

Up to now we have focused on the changes in the electronic
structure of the different TMDs with increasing doping and we
saw that for, e.g., high electron doping the charge is mainly
localized around the Q point. We now want to investigate
how the amount of doping charge and thus the number of
occupied bands and the thickness of the conductive channel is
determined experimentally.

E. Hall-effect measurements

In order to determine the doping charge in a sample, one
commonly performs a Hall experiment as the inverse Hall
coefficient is directly proportional to the charge-carrier density
n in the case of parabolic, isotropic bands. This, however, is
already a crude approximation, which, as we will see below,
can lead to large differences between the charge-carrier density
thus calculated and the real density within the sample.

We closely follow the work of Madsen and Singh [45]
and sketch the calculation of the Hall coefficient (or more
specifically, the Hall tensor Rijk) within Boltzmann transport
theory. In the presence of an electric field E and a magnetic
field B, the electric current j can be written as

jα = σαβEβ + σαβγ Eβ Bγ + · · · , (9)

with the conductivity tensors σαβ and σαβγ , and the indices
denoting the spatial dimensions. Here and henceforth, we will
always adopt Einstein’s sum convention, according to which
whenever an index occurs twice in a single-term expression,
the summation is carried out over all possible values of this
index. The Hall tensor is defined as

Rijk(T ; EF ) = Eind
j

jappl
i Bappl

k

= (σ−1)αj σαβk (σ−1)iβ , (10)

where Eind
j is the electric field along direction j , which is

induced by the applied magnetic field Bappl
k and current jappl

i

along direction k and i, respectively.
Within the relaxation-time approximation the conductivity

tensors σαβ and σαβγ for temperature T and chemical potential
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EF are given in the 2D case by [45]

σαβ(T ; EF ) = q2

(2π )2

∫
τi,k vi,k

α v
i,k
β

[
−∂fEF

(T ; εi,k)

∂ε

]
d2k,

(11)

σαβγ (T ; EF ) = q3

(2π )2

∫
τ 2
i,k εγuν vi,k

α vi,k
ν

(
M

i,k
βu

)−1

×
[
−∂fEF

(T ; εi,k)

∂ε

]
d2k. (12)

Here, q = ±e is the charge of the charge carriers in band
εi,k with momentum k, fEF

(T ; ε) is the Fermi function
fEF

(T ; ε) = (exp[(ε − EF )/(kBT )] + 1)−1, and εγuν is the
Levi-Civita symbol. The relaxation time τi,k in principle is
dependent on both the band index i and the k-vector direction.
Furthermore, vi,k

α is the group velocity

vi,k
α = 1

�

∂εi,k

∂kα

(13)

and (Mi,k
βu )−1 the inverse mass tensor

(
M

i,k
βu

)−1 = 1

�2

∂2εi,k

∂kβ∂ku

. (14)

To show that the inverse Hall coefficient Rxyz is proportional
to n, we start by assuming bands with quadratic dispersion.
The dispersion relation for a quadratic, isotropic band in two
dimensions is given by

εi,k = �
2k2

2mi

, (15)

with k2 = k2
x + k2

y . The group velocity is then vi,kα
α = �kα/mi

while the mass tensor in Eq. (14) is for each band a diagonal
matrix with m−1

i on the diagonal. In the zero-temperature limit
and assuming an i- and k-independent relaxation time τi,k =
τ (EF ) the conductivity distributions in Eqs. (11) and (12) are
given by

σαα(0; EF ) =
∑

i

q2 τ

mi

ni, (16)

σαβγ (0; EF ) = −
∑

i

q3 τ 2

m2
i

εαβγ ni, (17)

where ni is the charge-carrier density in band i. Finally,
assuming that the magnetic field is applied perpendicular to
the 2D system along z, we get for the Hall coefficient

Rxyz(0; EF ) =
∑

i m
−2
i ni

q
(∑

i m
−1
i ni

)2 . (18)

Thus, only for valley-independent effective mass mi = m the
inverse Hall coefficient is directly proportional to the doping-
charge concentration n = nq. The results in Eqs. (16), (17),
and (18) also hold for a 3D system, however with the
important difference that the conductivity in two dimensions
is independent of the mass of the charge carriers, since the
density n is proportional to m. Furthermore, the Hall coefficient
is inversely proportional to the mass m in the 2D case.

In the constant-relaxation-time approximation [τi,k =
τ (EF )] and for hexagonal symmetry (such as in the TMDs),
the Hall tensor in Eq. (10) has only two independent coeffi-
cients [91] (in-plane and out-of-plane component). However,
it is important to remember that this simple equation for
the Hall coefficient Rxyz, Eq. (18), is only valid as long
as there are only bands with isotropic, quadratic dispersion
and if τi,k = τ (EF ). For small doping this might be a good
approximation but in the high-doping case this approximation
can break down—especially, as soon as a minimum/maximum
with nonquadratic dispersion starts to get filled.

Figure 16 shows the ratio of the inverse Hall coefficient
R−1

xyz(T ; EF ) [calculated with the BOLTZTRAP code [45] using
Eqs. (10)–(12) and assuming τi,k = τ (EF )] to the doping-
charge concentration n, as a function of doping for the
monolayer, bilayer, and trilayer systems for T = 300 K. The
comparison between T = 0 K and T = 300 K, which can
be found in the Supplemental Material [25], Figs. S46–S48,
shows that the temperature has only a minor influence on the
inverse Hall coefficient except for MoTe2 (which we will also
discuss separately).

For most of the studied systems, the inverse Hall coefficient
R−1

xyz(300 K; EF ) shows a strong deviation from the doping
charge n for large doping—the doping-charge concentration
calculated using the inverse Hall coefficient can be 1.5 times
larger than the real concentration. In fact, R−1

xyz(300 K; EF ) ≈ n
is true only in two cases [cf. Eq. (18)]: either (i) if mainly one
valley with parabolic dispersion is doped or (ii) if the doping
charge is split between several valleys with quadratic bands,
which, however, have similar effective masses.

Case (i) holds only for small hole doping (n � +5 ×
1013 cm−2) of all multilayer TMDs as mainly the � val-
ley is doped. The deviation of the inverse Hall coeffi-
cient from the doping charge n increases with increasing
doping of the valence-band maximum at K . Accordingly,
R−1

xyz(300 K; EF ) ≈ n for a larger range of hole doping of
multilayer MoS2 than in the other TMDs as the doping at K

is negligible. For high hole doping (n � +2 × 1014 cm−2) the
deviation is due to the nonparabolicity of the bands near K . If,
however, the charge is split between � and K the difference can
be explained by the much larger effective mass of the � valley
[i.e., in variance with case (ii)]. Assuming n� ≈ nK = n/2, the
ratio of the inverse Hall coefficient to the doping charge [cf.
Eq. (18)] simplifies to

Rxyz(0; EF )−1

n
= 1

2
+ m� mK

m2
� + m2

K

, (19)

which is always smaller than 1 for m� 	= mK. This also
explains why the ratio approaches ≈0.7 for small hole doping
of monolayer MoS2. At T = 300 K the charge n is split
between both maxima which have however very different
masses [47]—m� = 3.524 m0 and mK = 0.637 m0.

The agreement between R−1
xyz(300 K; EF ) and n is much

better for electron doping up to n ≈ −2 × 1014 cm−2 even if
both conduction-band minima at K and Q are occupied. This
is due to the similar effective masses of those two valleys. As in
the hole-doping case the difference between R−1

xyz(300 K; EF )
and n increases for larger doping (n � −2 × 1014 cm−2),
which is due to the increasing nonparabolicity of the bands.
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FIG. 16. (Color online) Ratio of the inverse Hall coefficient R−1
xyz

to the doping charge n as a function of doping for the monolayer
(black, solid), bilayer (red, dashed), and trilayer (green, dash-dotted)
of all investigated TMDs for a temperature of T = 300 K. Note also
the different range of the ordinate in the case of MoTe2.

The only case where the model of a 2D electron gas
with constant relaxation time gives reasonable results for
the doping-charge concentration within a large range of both
electron and hole concentrations is multilayer MoS2. Since
the agreement between R−1

xyz(T ; EF ) and n can be much better
in other systems as exemplified for CoSb3 in Ref. [45], the
deviations shown in Fig. 16 point out problems if the specific
band structure is not taken into account. Once again, MoTe2

is particularly interesting because the inverse Hall coefficient
R−1

xyz(300 K; EF ) is nearly three times bigger than n for a hole
doping of n ≈ +1.4 × 1014 cm−2.
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FIG. 17. (Color online) Hall coefficient Rxyz as a function of
doping for monolayer MoTe2 and temperatures T = 300 K, T =
100 K, and T = 50 K. The inset shows the band structure for a
critical doping of n ≈ 1.48 × 1014 cm−2 (n = +0.16 e/unit cell). The
specific band structure of MoTe2 with the nearly linear dispersion
along K → � and the changing sign of the effective mass when
increasing the distance to K leads to the large difference between
R−1

xyz and n.

In order to understand the origin of this behavior of R−1
xyz/n

for hole doping of monolayer MoTe2, we plot Rxyz as a
function of temperature in Fig. 17. As the temperature is
reduced, the Hall coefficient Rxyz(T ; EF ) decreases and for
T � 50 K it even changes the sign. The result for T = 50 K
in Fig. 17 indicates that in the range of +1.25 × 1014 cm−2 �
n � +1.5 × 1014 cm−2 the Hall coefficient Rxyz changes twice
the sign. The band structure for a doping of n ≈ +1.48 ×
1014 cm−2 (inset in Fig. 17) shows that the valence band has
at least two inflection points close to the K point, which cross
the Fermi energy with increasing doping. Accordingly, the
effective mass changes the sign and thus also the conductivity
tensor σαβγ and Rijk . Furthermore, the nearly linear dispersion
along K → � leads to m → 0 and thus to the large
difference between R−1

xyz and n. For bilayer and trilayer MoTe2

the deviations are smaller and at higher doping values. This
is due to the finite contribution of the doping charge at the �

point, which leads to a smaller doping around K .

F. Conductivity and DOS at the Fermi energy

In the end, we want to briefly analyze the DOS at the Fermi
energy EF and the in-plane conductivity σxx/τ in Fig. 18. Both
were calculated using the fitted band structure of BOLTZTRAP.
The DOS at the Fermi energy EF in the left-hand panel
shows that the doping charge cannot always be described with
quadratic, isotropic bands in two dimensions (as also shown
above by the behavior of R−1

xyz). In this case, DOS(EF ) would
be constant and would have steps as soon as another band
crosses EF . In fact, DOS(EF ) has steps and those can be
related to crossing bands, but for high doping it can deviate
from a simple 2D electron gas.

For hole doping of monolayer MoS2, MoSe2, WS2, and
WSe2 the DOS at the Fermi energy is nearly constant as
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FIG. 18. (Color online) DOS at the Fermi energy EF (left, T = 0 K) and in-plane conductivity σxx/τ (right, T = 300 K) as a function of
doping for the monolayer (black, solid), bilayer (red, dashed), and trilayer (green, dash-dotted) of all investigated TMDs. Note also the different
range of the ordinate for DOS(EF ) in the case of WS2 and WSe2. Lines are guides for the eye.

soon as the � valley is doped, i.e., for doping larger than
n ≈ +0.1 × 1014 cm−2, n ≈ +1.5 × 1014 cm−2, n ≈ +0.5 ×
1014 cm−2, and n ≈ +0.9 × 1014 cm−2, respectively. Also for
hole doping smaller than n � +1.1 × 1014 cm−2 of multilayer
MoS2 the DOS is constant as only the � valley is doped in this
regime. The nonconstant behavior for hole doping of the other
multilayer systems increases with increasing doping of the K

valley: it is more pronounced for MoSe2 and WSe2 than for
MoS2 and WS2 (cf. Figs. 7–11). In the case of MoTe2, where
mainly the valence bands at K are doped, a description with
2D, quadratic, isotropic bands completely fails.

For n-type doping of all TMDs the DOS at the Fermi energy
shows a quasi-2D behavior. It has steps when the conduction-

band minimum at K or Q enters the bias window and is nearly
constant in between. However, for larger electron doping the
nonconstant behavior increases. This is due to the stronger
deviation of the spin-orbit-split conduction band at Q from a
quadratic dispersion.

The in-plane conductivity σxx/τ is another measure for the
deviation from quadratic, isotropic bands in two dimensions.
As can be seen in Eq. (16), for a perfect 2D electron gas
the conductivity would be an increasing linear function of the
doping-charge concentration n. Most interestingly, the right-
hand panel of Fig. 18 shows that σxx/τ weakly differs from
one TMD to the other and from the monolayer to the multilayer
case. Only for the tungsten dichalcogenides the conductivity
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has a small nonlinear component for n-type doping. This might
be due to the stronger SOC of tungsten which leads also to
larger deviation of the Q valley from a quadratic dispersion.

IV. CONCLUSIONS

In this work, we have calculated from ab initio the
structural, electronic, and transport properties for monolayer,
bilayer, and trilayer TMDs in field-effect configuration. We
have first investigated the structural changes of the TMDs
under field-effect doping. We found that the internal structure
is only slightly changed but that it is nevertheless important
to fully relax the system. We also showed that high electron
doping can induce a phase transition from the 1H to the
1T′ structure. In accordance with literature this transition
can, however, only occur for electron doping larger than
n � −0.35 e/unit cell. Therefore, we concentrated on smaller
doping of the H polytype as it is the most stable structure found
in nature.

The band structure and thus also the transport properties
can be changed considerably under field-effect doping. We
have shown that most TMDs behave similarly under hole
doping while for electron doping they can be divided into
two different classes: one in which the conductive channel
has a width of approximately two layers for small doping
(MoSe2 and MoTe2) and one in which the charge is localized
within the first layer. This can be attributed to the relative
position of the conduction-band minimum at K and Q in the
multilayer TMDs. In the former class Q is lower than K and
the doping charge first occupies the states in the Q valley.
Since these states have a large pz contribution of chalcogen
states, the hybridization between the layers is larger and the
electrons are more delocalized. Additionally, for the tungsten
dichalcogenides the difference between K and Q is smaller
than for MoS2 and thus, as the electron doping is increased,
the charge rapidly starts to occupy states at Q. This leads
to an increase of the width of the conductive channel to
approximately two layers. For high electron doping only the
Q valley is occupied in all investigated TMDs (also in the
monolayer systems) and the width of the conductive channel
is reduced to one layer.

Under hole doping most TMDs behave similarly: in the
monolayer case first the valence-band maximum at K is
occupied while in the multilayer case it is the � valley. This
also leads to the delocalization of the doping charge over more

layers as the states at � have large chalcogen pz character.
For large hole doping also in the monolayer case the doping
at � is larger than those at K . The only exception from this
picture is MoTe2 in which the valence-band maximum for the
undoped compound is always at K even in the multilayer case.
Accordingly, the doping charge within the K valley is always
larger than those at �.

However, even if the thickness of the doping-charge distri-
bution is approximately two layers for multilayer TMDs, the
number of doped valleys can be comparable to the monolayer
case. The main difference is between n-type and p-type doping:
as the valley degeneracy for the conduction-band minimum at
Q is gv = 6, the total number of doped valleys can be as large
as ν = 16 while for hole doping the maximum is ν = 8.

In the next part, we have seen that a Hall-effect measure-
ment can often not directly be used in order to determine the
charge-carrier concentration under the assumption of quadratic
bands—the charge thus determined can be up to 1.5 times
larger than the real doping charge within the sample. For
MoTe2 the Hall coefficient Rxyz even changes the sign due
to the changing curvature of the valence band. Thus, an
interpretation based on parabolic bands would lead to an
incorrect sign of the charge of the carriers. Even if this can
only be seen at low temperatures, the Hall-effect measurement
still largely overestimates the doping charge concentration if
one does not take into account the specific band structure. Only
in the case of multilayer MoS2 the inverse Hall coefficient is
directly proportional to the doping-charge concentration for a
large range of electron and hole doping.

In this work, we have shown that it is important to correctly
model an FET setup. The changes in the electronic and
transport properties cannot be described with both the rigid
doping and the uniform-background doping approach. We
provide not only a full database of electronic structure of
monolayer, bilayer, and trilayer dichalcogenides as a function
of doping, but also a mapping between the doping charge and
the Hall coefficient.
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