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Light-hole exciton spin relaxation in quantum dots
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The phonon-induced flip of the exciton spin in single flat semiconductor quantum dots with a light-hole exciton
ground state is studied. The corresponding quartet, split by the exchange interaction, consists of three bright states
and a dark state located energetically below the bright exciton. The two in-plane polarized bright states contribute
to single-phonon transitions to the dark state and also to the upper bright state polarized in the z growth direction
of the dot. For these processes, the presented analytical results are calculated for the relaxation driven by the
spin-orbit interaction in the conduction and the light-hole valence subbands. The estimated spin-relaxation times
at low temperature are (at least) one order of magnitude lower than the bright exciton lifetime. Two other possible
transitions, within the in-plane polarized doublet and between the z-polarized bright and dark states as well,
proceed via intermediate states with a contribution from two acoustic phonons. These processes are strongly
suppressed at low temperature, whereas they appear to be of the same intensity as single-phonon transitions at
high enough temperatures.
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I. INTRODUCTION

Epitaxially grown structures of semiconductor self-
assembled quantum dots (QDs), which are considered as
candidate building blocks for quantum technologies, have
attracted great interest during the last decade. In particular,
epitaxial QDs can act as triggered sources of single [1] and
entangled photons [2]. Extensive experimental studies have
identified the main features of the exciton fine structure in self-
organized QDs. It is commonly accepted that the ground states
of the heavy-hole (hh) and light-hole (lh) excitons in typical
QDs are well separated, as a consequence of (intrinsic) strain
and confinement in the growth direction of a QD, and the hh
exciton has the lower energy. Systems with a light-hole ground
state, known recently, refer to nanostructures with a large
height:base ratio resembling vertical nanorods [3–5]. Quite re-
cently in Ref. [6] the creation of an excitonic ground state of the
lh type by applying elastic stress to an initially unstrained QD
with a hh exciton ground state was reported. The obtained self-
assembled GaAs QDs are characterized by high optical qual-
ity and the corresponding microphotoluminescence spectra,
which show three orthogonally polarized bright optical tran-
sitions, are fully consistent with the behavior of a lh exciton.
Obviously, the spin effects in such systems can be of interest.

In this paper we discuss the spin relaxation within the
fine structure of an excitonic ground state of the light-hole
type in flat (with a small height:base ratio) QDs similar to
those studied in Ref. [6]. To our knowledge, this problem has
not been considered to date, in contrast to the conventional
(unperturbed) QDs with the hh exciton ground state. Although
both cases are similar, for the spin relaxation within the
ground state of the lh exciton, one can expect some important
peculiarities due to the different “spin” structure in comparison
with the hh exciton. Our main aim here is to discuss these
features. Note that, for the heavy-hole exciton, two main
microscopic mechanisms of spin relaxation—a deformation-
induced exchange interaction [7,8] and spin-orbit–phonon
coupling [9,10]—have been recognized. The first transitions
have been found to dominate in strongly confining QDs,
while the second transitions are relevant for large QDs with

closely spaced levels [11]. Evidently, the same processes
can operate the spin-flip transitions within the ground state
of the lh exciton. For the GaAs QDs from Ref. [6], which
are characterized by large enough (in-plane) sizes, the
spin-orbit–phonon coupling is probably most likely and
below we restrict our model calculations of the lh exciton spin
lifetimes to the spin-orbit (SO) interaction in the conduction
and the light-hole valence subbands. Note that the SO-induced
transitions between the exciton (integer) spin states require no
external magnetic field, unlike the case of transitions between
the (half-integer) spin states of a free electron or hole [13].

The electron and the light hole have the same (z-projection)
angular momentum |jz| = |sz| = 1

2 and form therefore the
pair states |sz,jz〉 of the total momentum Fz = 0,±1. The
resulting four basis states are mixed and, consequently,
split by the electron-hole exchange interaction [14], as is
shown in Fig. 1. Below in numerical calculations we treat the
exchange-induced splittings as parameters with values taken
from Ref. [6]. The upper state |0U 〉 = 1√

2
[|0+〉 + |0−〉] (|0±〉 =

|± 1
2 ,∓ 1

2 〉) contributes to the optical transition, which is polar-
ized in the z growth direction. Below it is located the |±1〉 =
|± 1

2 ,± 1
2 〉 optically active doublet, which is circularly (σ+ and

σ−, respectively) polarized. The doublet states can be slightly
split (due to the in-plane anisotropy of the confinement poten-
tial) into two linearly polarized states (labeled |X〉 and |Y 〉)
with dipole moments along the two nonequivalent in-plane
QD axes. The lower state |0L〉 = 1√

2
[|0+〉 − |0−〉] is optically

forbidden [15]. Hence for the lh exciton ground state,
there are three bright recombination channels associated
with the |±1〉 (or |X〉 and |Y 〉) states and the |0U 〉 state,
respectively. These states are characterized by different
radiative lifetimes τr⊥ = 3τr and τr‖ = 3τr/2, respectively,
where τr is the radiative lifetime of the hh exciton [16].
Phonon-assisted transitions, in which an independent spin
flip of the exciton-bound electrons or light holes occurs,
are possible between the states with Fz = 0 and Fz = ±1.
Consequently, such processes are available between the |0U 〉
(|0L〉) state and the |±1〉 states—the U ↔ 1 and 1 ↔ L

transitions shown in Fig. 1. Two other transitions in Fig. 1, the
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FIG. 1. The light-hole exciton spin states and the exciton-bound
single-particle spin-flip transitions in a quantum dot with a ground
state of the light-hole type; τr‖ and τr⊥ are the radiative lifetimes.

U ↔ L and ±1 ↔ ∓1 transitions, require the participation
of two phonons and involve the intermediate states [17].

II. THE MODEL

As noted above, we concentrate on the lh exciton spin
relaxation driven by the SO interaction in weakly confined
QDs. For this case, a way to calculate the spin-flip transitions
within the lh exciton fine structure is, formally, similar to
that for the hh exciton developed in Ref. [9]. Here we
formulate briefly some necessary statements and pay more
attention to the features typical for the lh exciton. The main
assumptions and definitions are the following. The spin-flip
transitions are driven by the

−→
k -linear part of the SO interaction

(in the conduction and light-hole valence bands) and the
piezoelectric nature of the carrier-phonon interaction. The
confinement along the growth direction is assumed to be
stronger than both the lateral quantum dot and the Coulomb
potentials, so that the envelope for the electron-hole pair
wave function �( 	re, 	rh) = ψ( 	ρe, 	ρh)φe(ze)φh(zh) is factorized,
where φe,h(ze,h) are the electron and hole envelope functions
in the z direction, and ψ( 	ρe, 	ρh) is the in-plane wave function
of the exciton in a lateral confinement potential. For QDs in
a weak confinement regime, the relative electron-hole motion
( 	ρ = 	ρe − 	ρh) and the motion of the exciton center of mass
[ 	R = (x,y)] are separated, ψ( 	ρe, 	ρh) = φ( 	ρ)F ( 	R), and only
the exciton center-of-mass motion is affected by the lateral
confinement. In what follows the lateral potential is assumed
to be a harmonic potential V ( 	R) = M�2R2/2, where M =
me + mlh⊥ is the translational mass of the lh exciton and mlh⊥
is the light-hole mass in the (x,y) direction [18]. For electrons
in the 	6 conduction band the SO interaction is given by [19]

He
SO = βe(σyky − σxkx), (1)

where 	k⊥ = {kx,ky} is the (in-plane) momentum operator, 	σ
are the Pauli matrices, and the strength of the SO coupling
βe depends on the material and the height of the QD,
βe = γc〈k2

z 〉 ∼ l−2
z with γc the Dresselhaus constant [20].

This term arises from the cubic-	k term in the electron
Hamiltonian describing the removal of the spin degeneracy of
the conduction-band states in a bulk semiconductor without
inversion symmetry [21]. It is usually called the bulk inversion
asymmetry term, or sometimes the Dresselhaus term. For the
light holes, we consider a

−→
k -linear term similar to that for

heavy holes, which in the light-hole basis has the form [9,22]

H lin
SO = βh(σxky + σykx), (2)

where the strength βh is of relativistic origin.

III. DECAY RATES, RESULTS AND DISCUSSION

A. One-phonon processes

For a spin-flip transition accompanied by emission of a
single phonon, the relaxation rate calculated from Fermi’s
golden rule is given by

1

τ
(e,h)
i→j

= 2π

�

∑
−→
q

∣∣Me,h−→
q

∣∣2
[N−→

q + 1]δ(Ei − Ej − �ω−→
q ), (3)

where τ
(e)
i→j (τ (h)

i→j ) determines the relaxation due to the spin
flip of the (exciton-bound) electron (hole) and the notation
i (j ) stands for the initial (final) state with the energy Ei (Ej ).
The matrix element Me,h−→

q
= 〈�i |He,h−→

q
|�j 〉, where the electron-

(hole-) phonon interaction H
e,h−→
q

is calculated to first order
of the SO-coupling strength βe (βh), and N−→

q is the thermal
(acoustic) phonon distribution function. Considering the (in-
plane) symmetrical QD, the resulting transition rates have the
forms

1

τ
(e,h)
U→1

= 1

τ
(e,h)
|0U 〉→|+1〉

= 1

τ
(e,h)
|0U 〉→|−1〉

= wU1

(
me,lh⊥

M

)2

β2
e,h(NU1 + 1), (4)

1

τ
(e,h)
1→L

= 1

τ
(e,h)
|+1〉→|0L〉

= 1

τ
(e,h)
|−1〉→|0L〉

= w1L

(
me,lh⊥

M

)2

β2
e,h(N1L + 1), (5)

wnm = (eh14)2

70πρ�3s5

En − Em

�

(
En − Em

��

)2

×
(

En − Em

�� + En − Em

)2

I (En − Em), (6)

I (En − Em) = 35

32

∑
k=l,t

(
s

sk

)5 ∫ π

0
e−a2(En−Em)2 sin2 ϑ/�

2s2
k

× gk(ϑ) sin3 ϑdϑ, (7)

with gt = 8 cos2 ϑ sin2 ϑ + sin4 ϑ − 9 sin4 ϑ cos2 ϑ and gl =
9 cos2 ϑ sin4 ϑ [23]. In Eqs. (4)–(7) the occupation factor
Nnm = (e(En−Em)/kBT − 1)−1, �� ≈ �

2/2Ma2 is the lateral
quantization energy with a the dot diameter [9], and the
summation is taken over the longitudinal (l) and transversal (t)
acoustic phonon branches. The first factor in Eq. (6) contains
the piezotensor component h14, the crystal mass density ρ,
and the sound velocity s−5 = s−5

l + 4s−5
t /3. For the spin-flip

transition accompanied by absorption of a single phonon, the
corresponding relaxation rate τ−1

j→i = τ−1
i→j e−(Ei−Ej )/kT .

According to Eqs. (4) and (5), the relative contribution of
the (exciton-bound) electron and hole to the spin-relaxation
times depends on the masses, the spin-orbit parameters,
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and the height of the QD (we recall that the SO strength
βe = γc〈k2

z 〉∼ l−2
z ), τ (e) = τ (h)(mlh⊥/me)2(βh/βe)2. With typ-

ical parameters for GaAs γc = 24.5 eV Å3 [21], |βh| =
11 meV Å [24], me = 0.067m0, and mlh⊥ = 0.2m0 [12],
the (exciton-bound) light-hole spin relaxation significantly
dominates since τ (h) ∼ 0.01τ (e) at lz ≈ 8 nm (reported in
Ref. [6]). For both the (exciton-bound) electron and hole, the
relaxation rates τ−1

U→1 and τ−1
1→L differ by the energy splitting

between the involved states. For a small energy transfer (En −
Em) < �s/a, long-wave acoustic phonons mainly contribute to
the relaxation process, the envelope integral Eq. (7) is limited
to unity, and, consequently, the relaxation is the more efficient
the larger is the density of the phonon states. At a large energy
transfer (En − Em) > �s/a, however, the contribution of the
short-wave phonons becomes increasingly important and the
envelope integral results in a decrease of the relaxation rate.
Note that in Ref. [6] the experimentally deduced splittings
EU − E1 = 200–600 μeV and E1 − EL = 30–40 μeV are
reported, whereas the characteristic energy �s/a ∼ 100 μeV
is calculated at a ≈ 25 nm and s ∼ 3 × 105 cm/s.

In order to evaluate numerically the (light-hole)
spin-relaxation rates from Eqs. (4)–(7) we take EU − E1 =
0.4 meV, E1 − EL = 0.04 meV, and a = 25 nm. For the
other parameters we use |βh| = 11 meV Å [24], M = 0.3m0,
mlh⊥ = 2.3m0, �� = 0.1 meV, ρ = 5 g/cm3, and eh14 =
1.2 × 107 eV/cm [12]. In Fig. 2 we show the temperature
dependence of the spin lifetimes τ

(h)
U→1 (solid line) and τ

(h)
1→L

(dashed line) in a wide temperature range. Separately, at low
and moderate temperatures these relaxation times are shown
in the inset in Fig. 2. It is seen in Fig. 2 that at low temperature
both the |0U 〉 and |±1〉 bright states decay with the relaxation
time on the order of a few tens of nanoseconds. At very low
temperature the 1 → L transition, which is characterized by
a small energy transfer, is noticeably slower than the U → 1
transition, while both processes are characterized by similar
rates already at the temperatures of a few kelvins, as is seen in
the inset in Fig. 2. At moderate temperature these processes
show relaxation times on the order of a few nanoseconds and
therefore compete with the radiative decay, which for typical
(hh exciton) QDs occurs usually on the nanosecond scale [25].

FIG. 2. The one-phonon relaxation times within the fine structure
of the light-hole exciton ground state as a function of temperature.
For the parameters and details see the text.

B. Two-phonon processes

Consider first the two-phonon processes contributing to
the exciton spin relaxation within the in-plane polarized
radiative doublet of the light-hole exciton ground state, so-
called longitudinal spin relaxation. For a symmetrical dot,
a direct (single-phonon) relaxation between these states is
completely absent because of the zero density of the phonon
states involved, so that the indirect channel is of paramount
importance. Let us begin with the “indirect” process in which
the dark state serves as the intermediate state; see Fig. 1. In
this process a phonon is scattered from the state 	q to the state
	q ′ while the spin of the bright exciton flips. The corresponding
relaxation rate calculated from Fermi’s golden rule is given by

1

τ
(e,h)
|+1〉 → |−1〉

= 2π

�

∑
	q,	q ′

∣∣Me,h

	q,−	q ′
∣∣2

δ(E+1 − E−1 + �ω	q − �ω	q ′)

×N	q(N	q ′ + 1) . (8)

The effective matrix element involved in Eq. (8) contains
transitions from one of the bright states to the dark state
with the emission of a phonon and then back to the other
(orthogonally polarized) bright state with the absorption of a
phonon; see Fig. 1. The exciton spin is changed in both the
first and second transitions. The resonant part of the transition
matrix element has the form [26,27]

M
e,h

	q,−	q ′ = 〈−1|He,h

	q |0L〉〈0L|He,h

	q ′ |+1〉
E−1 − EL − �ω	q + i�/2τL

, (9)

where the phonon matrix elements are calculated to first order
of the SO coupling strength βe (βh) and τL is the dark state
lifetime with respect to all allowed destroying processes. At
low temperature the dark (lh exciton ground) state lifetime can
be approximated by

1

τL

= 1

τnr

+
∑
i=e,h

1

τ
(i)
|0L〉→|+1〉

+
∑
i=e,h

1

τ
(i)
|0L〉→|−1〉

, (10)

where τnr is the dark exciton nonradiative lifetime. (A
nonradiative decay of τnr ≈ 10 ns, e.g., has been reported for
conventional InGaAs/GaAs self-assembled QDs in Ref. [28].)
Using the expression |1/(ε + i	L/2)|2 = (2π/	L)δ(ε), where
	L = �/τL is the dark state width, from Eq. (8) one immedi-
ately obtains

1

τ
(e,h)
|+1〉→|0L〉→|−1〉

= 1

τ
(e,h)
|+1〉→|0L〉

τL

τ
(e,h)
|0L〉→|−1〉

, (11)

where the factor τL/τ
(e,h)
|0L〉→|−1〉 can be viewed as the conditional

probability that the lh exciton being in the dark state relaxes
just to the |−1〉 bright state by means of the electron (hole)
spin flip. From the above result, which is relevant for a
symmetrical dot with no anisotropic exchange splitting, the
relation τ|+1〉→|0L〉→|−1〉 = τ|−1〉→|0L〉→|+1〉 follows. Similarly,
for the longitudinal relaxation, which proceeds via the |0U 〉
bright state as the intermediate state (see Fig. 1), one obtains

1

τ
(e,h)
|+1〉→|0U 〉→|−1〉

= 1

τ
(e,h)
|+1〉→|0U 〉

τ0

τ
(e,h)
|0U 〉→|−1〉

. (12)

Here τ0 is the lifetime of the (lh exciton ground) z-polarized
bright state (with respect to all allowed destroying processes),
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which can be approximated by

1

τ0
= 1

τr‖
+ 1

τnr

+
∑
i=e,h

1

τ
(i)
|0U 〉→|+1〉

+
∑
i=e,h

1

τ
(i)
|0U 〉|→−1〉

, (13)

where τr‖ is the corresponding radiative lifetime. The factor
τ0/τ

(e,h)
|0U 〉→|−1〉 in Eq. (12) can be viewed as the conditional

probability that the lh exciton in the |0U 〉 intermediate state
relaxes just to the |−1〉 bright state. For QDs of high quality, the
radiative recombination can dominate in a wide temperature
range, that is, τr‖ � τnr . Supposing also that the hole spin
relaxation dominates, the total relaxation rate is given by (we
recall that for symmetrical QDs the equality τ|+1〉↔|0L(U )〉 =
τ|−1〉↔|0L(U )〉 = τ1↔L(U ) holds)

1

τ
(h)
|+1〉→|−1〉

= 1

τ
(h)
1→L

τnr

τ
(h)
L→1 + 2τnr

+ 1

τ
(h)
1→U

τr‖
τ

(h)
U→1 + 2τr‖

.

(14)

As expected, the relaxation rate Eq. (14) tends to zero at zero
temperature since one of the sequential transitions is assisted
by the absorption of a phonon.

Consider now the spin-flip transition from the z-polarized
bright to the dark state. Although both of these states are
characterized by the same total momentum Fz = 0, direct
(thermally activated) transition between the symmetric |0U 〉
and antisymmetric |0L〉 superposition of the basis states is,
evidently, absent. The desirable transitions, however, can
happen with a participation of the intermediate states, as is
shown in Fig. 1. For the U → L process, which is accompanied
by the emission of two phonons, the relaxation rate is given
by (for simplicity, we concentrate as before on the hole spin
relaxation)

1

τ
(h)
U→L

= 2π

�

∑
	q,	q ′

∣∣Mh
	q,	q ′

∣∣2
δ(EU − EL − �ω	q − �ω	q ′ )

× (N	q + 1)(N	q ′ + 1). (15)

For this process, the Fz = ±1 states of the lh exciton serve as
the intermediate states (which we label below by |k〉) and the
effective matrix element has the form [26]

Mh
	q,	q ′ =

∑
k=|+1〉,|−1〉

{ 〈0L|Hh
	q ′ |k〉〈k|Hh

	q |0U 〉
EU − Ek − �ω	q + i�/2τk

+ 〈0L|Hh
	q |k〉〈k|Hh

	q ′ |0U 〉
EU − Ek − �ω	q ′ + i�/2τk

}
, (16)

where τk is the lifetime of the intermediate |k〉 state with
respect to all allowed destroying processes. Below for
both intermediate states we take the same lifetime τ|+1〉 =
τ|−1〉 = τ1. One can check that for the matrix elements
involved in Eq. (16) the equality 〈0L|Hh

	q ′ |+1〉〈+1|Hh
	q |0U 〉 =

−〈0L|Hh
	q ′ |−1〉〈−1|Hh

	q |0U 〉 holds. Consequently, the consid-
ered process is not relevant for ideally symmetrical QDs
with no anisotropic exchange splitting. Introducing a slight
hybridization of the Fz = ±1 states, we suppose that the
respective anisotropic splitting �xy is small as compared to
the energy transfer in both sequential transitions. Consid-
ering the resonant contributions and using the expression

|1/(ε + i	1/2)|2 = (2π/	1)δ(ε), where 	1 = �/τ1 is the in-
termediate state width, one obtains

1

τ
(h)
U→L

= �2
xy

�2
xy + 	2

1

4

τ
(h)
|0U 〉→|+1〉

τ1

τ
(h)
|+1〉→|0L〉

, (17)

where the factor τ1/τ
(h)
|+1〉→|0L〉 is the conditional probability

that the lh exciton in the intermediate state relaxes just to the
dark state by means of a hole spin flip. Note that from the above
expression the obvious relation τ

(h)
L→U = τ

(h)
U→Le(EL−EU )/kBT

follows. Hence for the relaxation Eq. (15) the correlation
between the intermediate level separation �xy and the width 	1

is important [29]. In the low-temperature regime, the lifetime
of the in-plane polarized bright (lh exciton ground) state can
be approximated by

1

τ1
= 1

τr⊥
+ 1

τnr

+
∑
i=e,h

1

τ
(i)
|+1〉→|0L〉

+
∑
i=e,h

1

τ
(i)
|+1〉→|0U 〉

, (18)

where τr⊥ is the corresponding radiative lifetime.
Believing as before that the hole spin relaxation dominates,

that is, τ (e) � τ (h), the relaxation rate Eq. (17) reduces to (at
τr⊥ � τnr )

1

τ
(h)
U→L

= �2
xy

�2
xy +	2

1

4 τr⊥ e(EU −E1)/kBT[
τ

(h)
1→Lτ

(h)
1→U + τr⊥

(
τ

(h)
1→L + τ

(h)
1→U

)] . (19)

As follows from Eqs. (14) and (19), the relaxation rates
of the considered two-phonon processes are determined
by the competition between different decay channels of
the intermediate states. If the intermediate states contribute
mainly to radiative and nonradiative decay, the indirect
relaxation is strongly suppressed in comparison with the in-
volved single-phonon transitions. When the spin-flip processes
strongly dominate, which can happen at elevated tempera-
tures, the indirect relaxation is governed by single-phonon
transitions.

In order to estimate the above relaxation rates, we use the
same parameters as in Fig. 2 and we take �xy = 3 μeV,
τnr = 10 ns, and τr = 0.5 ns (we recall that the involved
radiative lifetimes τr⊥ = 3τr and τr‖ = 3τr/2). In Fig. 3 we
show the dependence of the (hole) spin lifetimes τ

(h)
|+1〉→|−1〉

and τ
(h)
U→L on the temperature at low (the main panel) and

moderate (the inset) temperatures. For comparison, the one-
phonon relaxation times τ

(h)
U→1 and τ

(h)
1→L are also presented

in the inset. In Fig. 3 it is seen that both considered indirect
processes, being very slow at low temperature, are significantly
accelerated with growth of the temperature. The respective
decay times are about 1 μs at 2 K and decrease to a couple
of nanoseconds at 70 K. In the inset in Fig. 3 it is also
seen that at a high enough temperature the two- and one-
phonon transitions are characterized by similar decay times, as
expected.

Hence, according to the numerical estimates obtained (with
the splitting parameters reported in Ref. [6] for GaAs QDs of
the light-hole type), for the radiative triplet of the lh exciton
ground state the main decay channel at low temperature is
radiative decay, whereas at moderate temperature the spin-flip
transitions also become important. In this case radiative decay
of the z-polarized exciton is limited by the spin-flip transition
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FIG. 3. The two–phonon relaxation times within the fine structure
of the light-hole exciton ground state as a function of temperature.
Inset: The one- and two-phonon relaxation times. For the parameters
see the text.

to the bright doublet located below, while the thermalization
process to the dark state is still suppressed. Similarly, radiative
decay of the in-plane polarized bright state at moderate
temperature is limited by decay to the dark state and the (z-
polarized) bright state as well, while the longitudinal relaxation
is much less important. Here we would like to note that the
presented numerical results for the lh exciton spin lifetimes
are calculated with dot parameters, such as the electron and
light-hole masses, the SO strengths, etc., which are typical for
unstrained GaAs QDs. To obtain the exact quantitative results
for strained QDs, similar to those studied in Ref. [6], a separate
detailed analysis probably must be carried out.

C. Magnetic field effects

Now we consider the impact of the longitudinal (parallel to
the z direction) magnetic field on the lh exciton spin relaxation.
We will discuss this just briefly since a complete solution
of this problem requires separate consideration. The Zeeman
effect leads to a further transformation of the spin states of
the lh exciton. For the states with Fz = ±1, the resulting wave
functions (in an asymmetrical QD with the anisotropic splitting
�xy) are

�
U,L
1 = 1√

2

⎡
⎢⎣

√√√√√1 ± �
(1)
B√(

�
(1)
B

)2 + �2
xy

|+1〉

±
√√√√√1 ∓ �

(1)
B√(

�
(1)
B

)2 + �2
xy

|−1〉

⎤
⎥⎦ , (20)

where the Zeeman splitting �
(1)
B = μB(ge − gh)B with ge (gh)

the electron (hole) g factor [14]. Similarly, for states with

Fz = 0, the resulting wave functions are

�
U,L
0 = 1√

2

⎡
⎢⎣

√√√√√1 ± �
(0)
B√(

�
(0)
B

)2 + (�UL)2
|0+〉

±
√√√√√1 ∓ �

(0)
B√(

�
(0)
B

)2 + (�UL)2
|0−〉

⎤
⎥⎦ , (21)

where �
(0)
B = μB(ge + gh)Bz and �UL = EU − EL. The basis

states now contribute to the wave functions Eqs. (20) and (21)
with different weights, which depend on the magnitude of the
magnetic field. Consequently, the initially linearly (in-plane)
polarized bright states become elliptically polarized, while the
initially dark state becomes (at least partially) optically active
with the oscillator strength increasing with an increase in the
magnetic field. Moreover, at strong enough magnetic fields,
when the Zeeman splitting prevails over the exchange-induced
splitting, the |sz,jz〉 basis states can be restored and then all of
the four lh exciton states will be bright. For in-plane polarized
bright states with anisotropic splitting of a few micro electron
volts, recovery of the |±1〉 unperturbed states happens already
at small fields, as was observed in Ref. [6]. To reach a similar
result for the Fz = 0 states with exchange-induced splitting of
a few hundreds of micro electron volts, large magnetic fields
are required.

The magnetic field affects the one- and two-phonon
transitions within the fine structure of the lh exciton in different
ways. In principle, the direct (single-phonon) transitions are
still allowed. However, the spin-flip transitions from (to)
the two in-plane polarized states, which are split by the
Zeeman interaction, are characterized now by a different
energy transfer. Additionally, the field-induced change of the
wave functions of the states involved leads to various transition
probabilities. As a result, since the basis states are coupled by
the SO interaction only in pairs [30], not all of the one-phonon
relaxation channels survive at large fields, which leads to a
quenching of the two-phonon processes. To illustrate, note
that for symmetrical QDs the momentum and spin operators
included in the SO interaction [see Eqs. (1) and (2)] act
separately. The probabilities of the one-phonon transitions
therefore are effectively governed by the (square) matrix
element of a spin Hamiltonian of the form H (e,h)

s = σy ∓ σx

(in the electron and hole bases, respectively) constructed on the
spin eigenfunctions. For single-phonon processes, the respec-
tive (normalized) probabilities are shown in (the main panel of)
Fig. 4 in dependence on the magnetic field. The calculations
are performed with the set of parameters �xy = 10 μeV,
�UL = 480 μeV, ge − gh = 1.4, and ge + gh = −2.4, which
is relevant for the GaAs QDs from Ref. [6]. It is seen in Fig. 4
that among the four possible transitions (for each carrier, the
hole and electron) only two of them survive at large fields.
For example, when the exciton-bound hole flips its spin, the
transition probability between the |�U

0 〉 and |�U
1 〉 states (and

between the |�L
0 〉 and |�L

1 〉 states as well) tends to zero with
growth of the field. For the exciton-bound electron, the two
other spin-flip processes, between the |�U

0 〉 and |�L
1 〉 states

(and between the |�L
0 〉 and |�U

1 〉 states as well), are not
effective at large fields. Schematically, this is shown in the inset
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FIG. 4. The one-phonon transition probabilities within the fine
structure of the light-hole exciton ground state as a function of
magnetic field. Inset: Allowed (solid arrows) and quenched (dashed
arrows) transitions at large magnetic fields. For the parameters see
the text.

in Fig. 4, where the solid (dashed) arrows refer to the allowed
(quenched) transitions. In the inset in Fig. 4 it is seen that
at large fields the two-phonon processes become practically
forbidden and only an independent flip of the hole and then
the electron spins (or vice versa) results in the indirect spin
flip transitions between the |±1〉 bright states and between the
|0±〉 bright states as well.

IV. ADDITIONAL REMARKS

Below we would like to provide some remarks and
additions. (i) For the light-hole-related relaxation rates, the
presented results Eqs. (4)–(7) are obtained with the 	k-linear
SO interaction Eq. (2), which is of relativistic origin. Actually,
both the light-hole subband and the electron subband transform
according to the same spinor representation 	6 [22] and,
consequently, for the light hole, the SO interaction of the form
Eq. (1) is also relevant,

H cub
SO = αh(σxkx − σyky), (22)

where the strength αh = γh〈k2
z 〉 has a nonrelativistic nature

and depends on the height of the QD. The relative magnitude
of the relaxation times τlin and τcub due to the relativistic and
the Dresselhaus SO coupling, respectively, is given by

τlin = τcub

(
αh

βh

)2

. (23)

Using the parameters for GaAs, |βh| = 11 meV Å [24] and
|γh| = 9 eV Å3 [31], from Eq. (23) we obtain that τcub � τlin

at lz � 3 nm, that is, the Dresselhaus term Eq. (22) is important
in flat enough QDs, as expected. For the case considered
here, the relativistic term Eq. (2) strongly dominates since
τlin ≈ 0.02 τcub at lz ≈ 8 nm. (ii) For QDs with an asymmetric
confining potential in the growth direction, an additional
source for the spin relaxation can arise from the Rashba spin-
orbit coupling [32]. Similarly to the Dresselhaus term Eq. (22),
the Rashba term is relevant for both the exciton-bound electron

and the light hole, whereas the Rashba coupling contributes
to the hh splitting only when the hh-lh mixing is taken into
account [33]. (iii) In principle, for the light holes, as for elec-
trons, the spin-flip transitions in QDs can be mediated by the
hyperfine interaction with nuclei. For electrons in GaAs QDs,
the nucleus-mediated spin-flip transition rate is found to be
lower than the spin-orbit rates [34]. (iv) The presented results
for single-phonon processes are calculated for the piezoelectric
type of carrier-phonon interaction which is known to be most
effective in polar crystals for small energy transfer [26]. The
relative magnitudes of the relaxation times τdef and τpiezo due
to the deformation potential and the piezoelectric type of
carrier-phonon interaction, respectively, are given by [9]

τ
(e,h)
def ∼ τ (e,h)

piezo

(
eh14

D(e,h)

)2(
�s

�

)2

, (24)

where De (Dh) is the deformation potential constant in the
conduction (valence) band and � is the energy transfer. For
typical values D � 5 eV and s = 2.4 × 105 cm/s, we obtain
τdef � τpiezo at � � 0.4 meV, so that the deformation potential
interaction becomes important for the U ↔ 1 transition, which
is calculated here for the energy transfer EU − E1 = 0.4 meV.
The obtained relaxation times are therefore overestimated
approximately twice, but the corrected values are still on the
order of a few tens of nanoseconds at low temperature, as
follows from Fig. 2. (v) For strained QDs, the impact of the
valence band mixing (VBM) on the exciton eigenstates due to
anisotropic strain effects can be important (a strictly isotropic
biaxial strain is probably difficult to reach in experiments).
(Another obvious reason of the light-hole–heavy-hole mixing
is the in-plane shape anisotropy of the dot.) Definitely, the
VBM in itself cannot be a source of the exciton spin relaxation
(the electron spin is not affected) and all possible changes
are caused by the interplay between the SO coupling and
the Bir-Pikus interaction [22]. The hole mixing due to the
k-linear interaction of the relativistic origin now also becomes
effective [9,22]. [In the light-hole basis this interaction is given
by Eq. (2).] Additionally, the interplay between the VBM and
the short-range exchange interaction contributes to splitting
of the bright doublet, similarly to the heavy-hole exciton [35].
Consequently, even for (strained) QDs with a symmetrical
(in-plane) shape, the bright doublet can be split into two
linearly polarized states. Further, for the in-plane strain
anisotropy, the light-hole states with Fz = 0 (±1) are coupled
to the heavy-hole states with Fz = ±2 (∓1), respectively
[36]. As a result, transitions between the z-polarized and dark
states and within the in-plane polarized doublet as well can
still proceed only with participation of two phonons. For the
one-phonon transitions, the above effects result in additional
terms in the corresponding transition matrix elements, which
are proportional to the heavy-hole character (the probability
for the hole to be heavy). For the strained dots of interest
(with a pronounced light-hole character of the ground state)
these additional terms will evidently not be very important.

V. CONCLUSION

In summary, for (strained) quantum dots with the light-
hole exciton ground state, scenario of the phonon-induced
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exciton spin relaxation is more various than for similar
(unperturbed) quantum dots with the heavy-hole exciton
ground state. Generally, for the light-hole subband, which
transforms according to the same spinor representation as
the electron subband, additional sources of spin flips appear
in comparison with the heavy-hole subband. Besides, for
the light-hole exciton, there are additional channels of spin
relaxation. Within the fine structure of the heavy-hole exciton
the main thermally activated spin-flip process is a decay of
the bright state to dark states, which can limit the generation
of single photons from a dot. Similar transitions between the
in-plane-polarized bright states and the dark state are present
for the light-hole exciton as well. Here, however, an additional
spin-flip transition—a decay of the z-polarized bright state to

the in-plane polarized bright state—is relevant. Moreover, for
the z-polarized bright state, the above process is the main decay
channel at low temperature. Decay of this state to the dark
state becomes important only at high enough temperatures.
The numerical estimates obtained allow one to believe that
the exciton spin relaxation in the light-hole quantum dots,
as in the case of similar conventional quantum dots, is most
likely quenched over (at least) tens of nanoseconds at low
temperatures.
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