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Out-of-equilibrium electrons and the Hall conductance of a Floquet topological insulator
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Graphene irradiated by a circularly polarized laser has been predicted to be a Floquet topological insulator
showing a laser-induced quantum Hall effect. A circularly polarized laser also drives the system out of equilibrium,
resulting in nonthermal electron distribution functions that strongly affect transport properties. Results are
presented for the Hall conductance for two different cases. One is for a closed system, such as a cold-atomic gas,
where transverse drift due to nonzero Berry curvature can be measured in time-of-flight measurements. For this
case the effect of a circularly polarized laser that has been suddenly switched on is studied. The second is for
an open system coupled to an external reservoir of phonons. While for the former the Hall conductance is far
from the quantized limit, for the latter, coupling to a sufficiently low temperature reservoir of phonons is found
to produce effective cooling, and thus an approach to the quantum limit, provided the frequency of the laser is
large as compared to the bandwidth. For laser frequencies comparable to the bandwidth, strong deviations from
the quantum limit of conductance are found even for a very low temperature reservoir, with the precise value
of the Hall conductance determined by a competition between reservoir-induced cooling and the excitation of
photocarriers by the laser. For the closed system, the electron distribution function is determined by the overlap
between the initial wave function and the Floquet states, which can result in a Hall conductance which is opposite
in sign to that of the open system.
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I. INTRODUCTION

A cornerstone in condensed matter has been the discovery
of the quantum Hall effect [1,2], where electrons confined to
two dimensions (2D) and subjected to an external magnetic
field exhibit transport properties that are remarkable in their
insensitivity to material parameters. In particular, for the case
of the integer quantum Hall effect, the Hall conductance (σxy)
is quantized in integer multiples of the universal conductance
e2/h (i.e., σxy = Ce2/h), with the integer C being a geometric
or topological property of the band structure, known as
the Chern number [3–5]. Not surprisingly, the discovery
of this effect has lead to tremendous interest in exploring
similar topologically protected transport in other systems. An
important contribution in this direction was the theoretical
proposal of the quantum Hall effect in the absence of a
magnetic field, but in the presence of a staggered magnetic
flux which still breaks time-reversal symmetry [6]. Soon after,
topologically protected transport in 2D and 3D in time-reversal
preserving systems was discovered [7–10]. There is also now
a growing interest in generalizing these concepts to strongly
interacting systems [11].

Another intriguing class of systems is those that show
topological behavior only dynamically. An example of this are
the Floquet topological insulators (TIs), where a time-periodic
perturbation modifies the electron hopping matrix elements
in such a way as to mimic a magnetic flux [12–15]. Since
time-dependent Hamiltonians do not conserve energy, the
concept of energy levels does not exist. For the particular case
of time-periodic Hamiltonians, a quasienergy spectrum may
still be constructed from the eigenvalues of the time-evolution
operator over one period [16,17]. In this language, Floquet TIs
have bulk quasienergy bands with nonzero Berry curvature
and Chern number, and support edge states in confined
geometries [12–15,18–25].

However, there are many open questions in the study of
Floquet TIs that are unique to the fact that these systems
are out of equilibrium. First, much of the discussion in the
literature assumes that these quasienergy levels play the same
role as the true energy levels of a static Hamiltonian, which
leads to theoretical predictions of quantum Hall-like quantized
transport [12,18], with strong experimental signatures of ro-
bust chiral edge transport in optical waveguides [26]. However,
in a nonequilibrium system, the electron distribution function,
which enters in all measurable quantities, is not known a priori,
and depends sensitively on relaxation mechanisms [27–32],
and at least on shorter time scales, on how the external periodic
drive has been switched on [30,33–37]. Moreover, unlike static
Hamiltonians, there may not even be a one-to-one correspon-
dence between the Chern number of the bulk quasibands and
the number of edge states in the quasispectrum [23], and
hence some new topological invariants may be necessary for
time-periodic systems [38,39]. Often, dissipative coupling to
suitably chosen reservoirs can strongly modify the topological
properties [40,41], thus requiring new measures for topological
order in open and dissipative systems [42–44].

Understanding these issues is particularly important due to
several experimental realizations of Floquet systems, such as in
optical waveguides [26], cold atoms in periodically modulated
optical lattices [45], 2D Dirac fermions on the surface of a 3D
TI irradiated by a circularly polarized laser [46,47], and chiral
transport in graphene irradiated by THz radiation [48,49].

In this paper we study graphene irradiated by a circularly
polarized laser, taking into account the full time evolution of
the system, and also accounting for coupling to an external
reservoir of phonons. A similar study was carried out for 2D
Dirac fermions [30], where it was shown that in the absence of
coupling to an external reservoir, i.e., when the system was an
ideal closed quantum system, the electron distribution function
retained memory of the state before the laser was switched on,
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and also depended on the laser switch-on protocol. It was
also shown that coupling to phonons makes the system lose
memory of these initial conditions, yet the electron distribution
function was still far out of equilibrium even when the phonons
were an ideal reservoir. The effect of the electron distribution
function on the photoemission spectra was discussed.

In this paper our goal is to study the effect of the electron
distribution function on the dc Hall conductance both for
an ideal closed quantum system and for an open system. A
computation of the Hall conductance requires going beyond
the continuum model of Dirac fermions because the Berry
curvature for a Floquet system becomes mathematically ill
defined in the continuum, in the vicinity of k points where
laser-induced interband transitions are allowed. On a lattice,
on the other hand, even in the presence of resonances, the
Berry curvature remains well defined. Thus, in this paper we
generalize the treatment of Ref. [30] to graphene with the aim
of exploring the dc Hall conductance.

Usually Hall conductance is measured in solid-state sys-
tems using four terminals or leads, two for driving the
current, and two transverse leads across which the voltage
is measured [50]. However, in cold-atomic gases one may
study the Hall conductance even without leads, by applying
a small potential gradient, and studying the transverse drift
of the particles in time-of-flight measurements [45]. Thus,
our results for the closed system are applicable to such a
setup. Our results for the open system are more relevant to
a solid-state device where the electron-phonon scattering is
strong.

We now discuss some subtleties related to transport in
two dimensions. In general, the conductance and conductivity
are related as conductance = conductivity × LD−2. Thus, for
D = 2, both the conductance and conductivity become inde-
pendent of the sample size, and a four-terminal measurement
of the conductance also measures the conductivity, the latter
being typically evaluated within the linear-response Kubo
formalism. At the same time, conductance of mesoscopic
systems can also be computed within a Landauer formalism
provided there is no inelastic scattering in the system [50]. For
larger systems, where electron-electron or electron-phonon
scattering becomes important, the Landauer formalism can
no longer be applied.

The Landauer formalism can be generalized to time-
periodic systems [51], and this approach has been used to
compute the two-terminal [24,27] and four-terminal [29]
conductance of graphene sheets irradiated by a laser. This
formalism again assumes that there is no inelastic scattering,
and that energy is conserved up to an integer times the laser
frequency, with the electron occupation probabilities primarily
determined by the overlap of the Floquet states with the
states in the leads. Our treatment in this paper, employing
the Kubo formalism, is in the opposite limit where the sample
size is large so that inelastic electron-phonon scattering is
important. Thus, our results are in a regime complementary to
that addressed in Ref. [29]. In this limit of large system size,
the mean chemical potential of the leads maintains the average
filling (in our case we are always at half filling), while the
voltage difference that maintains current flow is modeled as a
small electric field maintained across the sample, and which is
treated within the linear-response Kubo formalism.

The outline of the paper is as follows. In Sec. II, the model
is introduced, a Kubo formula for the dc Hall conductance is
derived, and the “ideal” quantum limit explained. In Sec. III,
the dc Hall conductance is presented for the closed system and
compared with the “ideal” case. In Sec. IV, we generalize to
the open system where the electrons are coupled to a phonon
reservoir. The rate or kinetic equation accounting for inelastic
electron-phonon scattering in the presence of a periodic drive
is derived. The results for the Hall conductance at steady
state with different reservoir temperatures are obtained and
compared with results for the closed system and with the
“ideal” case. Finally, in Sec. V, we present our conclusions.

II. MODEL

We study graphene irradiated by a circularly polarized laser,
and also coupled to a bath of phonons. The Hamiltonian is

H = Hel + Hph + Hc, (1)

where (setting � = 1) Hel is the electronic part,

Hel = −th
∑

k

(c†kA c
†
kB

)

(
0 hAB

k (t)[
hAB

k (t)
]∗

0

)(
ckA

ckB

)
,

hAB
k (t) =

∑
i=1,2,3

eia(�k+ �A(t))·�δi . (2)

�δi are the nearest-neighbor unit vectors on the graphene
lattice, �δ1 = ( 1

2 ,
√

3
2 ), �δ2 = ( 1

2 ,−
√

3
2 ), �δ3 = (−1,0). The cir-

cularly polarized laser enters through minimal substitution
�k → �k + �A(t), where

Ax(t) = θ (t)A0 cos �t, Ay(t) = −θ (t)A0 sin �t. (3)

We assume that the laser has been suddenly switched on at time
t = 0. This assumption holds equally well for lasers switched
on over a time which is short as compared to the period 2π/�

of the laser.
The translation vectors �a1,�a2 for graphene are �a1 =

a
2 (3,

√
3) and �a2 = a

2 (3,−√
3), while the reciprocal lat-

tice vectors (�bi · �aj = 2πδij ) are �b1 = 2π
3a

(1,
√

3) and �b2 =
2π
3a

(1,−√
3). As written above, hAB

k is not invariant under trans-

lations by integer multiples of a reciprocal lattice vector, �k →
�k + ni

�bi . In order to recover this symmetry it is convenient to
make the transformation ckB → ckBeia�k·�δ3 [52]. Then, since
a(�δ1 − �δ3) = �a1, a(�δ2 − �δ3) = �a2, after this transformation,
hAB

k becomes

hAB
k (t) = eia �A(t)·�δ3 +

∑
i=1,2

ei�k·�ai+ia �A(t)·�δi . (4)

Dissipation affects the electron distribution and thus the
topological signatures, such as the Hall conductance. Here we
consider dissipation due to coupling to 2D phonons,

Hph =
∑

q,i=x,y

[ωqib
†
qibqi], (5)
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where the electron-phonon coupling is

Hc =
∑

kqσ,σ ′=A,B

c
†
kσ

�Aph(q) · �σσσ ′ckσ ′, (6)

�Aph(q) = [λx,q(b†x,q + bx,−q ),λy,q(b†y,q + by,−q )]. (7)

As is standard practice, we have denoted the sublattice labels
A,B in terms of a pseudospin label σ , a notation that will
be adopted throughout the paper. Above we have made the
assumption that phonon-induced scattering between electrons
with different quasimomenta does not occur. Thus electronic
states at different quasimomenta k are independently coupled
to the reservoir.

Moreover, we will later assume that the phonons have a
broad bandwidth so that inelastic scattering channels between
electrons at all relevant quasienergies and phonons are possi-
ble. While electron quasienergies form an infinite ladder which
may be regarded as photon absorption and emission sidebands,
the matrix elements between different quasienergy bands and
phonons are suppressed very rapidly as the number of photon
absorption and emission processes increase [30]. Thus, for the
laser amplitude and frequencies we will be working with, to
have the most effective inelastic relaxation it will be sufficient
to consider a maximum phonon frequency ωmax

q � 6 �. A
circularly polarized laser also opens up a gap 	 at the Dirac
points, which in the high-frequency limit of A0ath/� � 1 is
	 � 2A2

0a
2t2

h/� [12,18]. Thus we will assume that the lowest
phonon frequency available is ωmin

q � 	 to allow for efficient
relaxation near the Dirac points.

Kubo formula for the Hall conductance

The Kubo formula for the Hall conductance is a linear
response to a weak probe �Apr that is applied over and above
the circularly polarized laser �A. While the Kubo formalism
has been employed before for Floquet systems [12,53,54],
we outline the derivation in order to highlight the main
assumptions, and also in order to generalize the derivation
to open systems such as the one studied in this paper.

The electronic part of the Hamiltonian in the presence of
an external laser �A and a probe field �Apr is

H ′
el =

∑
ijσσ ′

c
†
iσ hσσ ′

ij cjσ ′e
−i

∫ i

j
[ �A(t)+ �Apr(t)]·d�l

. (8)

Since cjσ = 1√
N

∑
k ei�k· �j ckσ , we see that the vector potential

corresponds to replacing �k → �k + �A + �Apr. Taylor expanding
with respect to the weak probe,

H ′
el �

∑
jrσσ ′

c
†
j+r,σ hσσ ′

j+r,j (t)cjσ ′

(
1 − i

∫ j+r

j

�Apr(t) · d�l
)

= Hel +
∑

q

�jq · �Apr
−q, (9)

where �Apr( �j ) = (1/
√

N )
∑

q ei �q· �j �Apr
q and

�jq = 1√
N

∑
k,σσ ′

c
†
k+q/2,σ ck−q/2,σ ′

∂hσσ ′
k (t)

∂ �k . (10)

The current-current correlation function which quantifies how
an electric field applied in the direction î affects the current
flowing in the direction ĵ is given by

Rij (q,t,t ′) = −iθ (t,t ′)〈�(t0)|[j i
qI (t),j j

−qI (t ′)
]|�(t0)〉, (11)

where |�(t0)〉 is the wave function at a certain reference time t0,
while the current operators are in the interaction representation

�jkI (t) = Uk(t0,t) �jkUk(t,t0), (12)

where Uk(t,t ′) is the time-evolution operator due to the
electronic part of the Hamiltonian (Hel), and is given by

Uk(t,t0) =
∑

α=u,d

e−iεkα (t−t0)|φkα(t)〉〈φkα(t0)|. (13)

Above εkα=u,d are the quasienergies while

|φkα(t)〉 =
(

φ
↑
kα

φ
↓
kα

)
(14)

are the quasimodes that are periodic in time. Thus,
Ukσσ ′(t,t0) = ∑

α e−iεkα (t−t0)φσ
kα(t)φσ ′∗

kα (t0), and in the inter-
action representation ckσ (t) = Ukσσ ′(t,t0)ckσ ′(t0), c

†
kσ (t) =

c
†
kσ ′(t0)Ukσ ′σ (t0,t). The quasienergies εkα represent an infinite

ladder of states where εkα and εkα + m�, for any integer
m, represent the same physical state corresponding to the
Floquet quasimodes |φkα(t)〉 and eim�t |φkα(t)〉, respectively.
Confusion due to this overcounting can be easily avoided by
noting that in all physical quantities and matrix elements,
it is always the combination e−iεkα t |φkα(t)〉 = |ψkα〉 that
appears, where |ψkα〉 are the solutions to the time-dependent
Schrödinger equation. There are only two distinct solutions
for |ψkα〉 which we label as α = u,d, while we adopt the
convention that the corresponding quasienergies lie within a
Floquet Brillouin zone (BZ) −�/2 < εkα < �/2.

Expanding the fermionic operators in the quasimode basis
at t0,

ckb′ (t0) =
∑
α′

φb′
kα′(t0)γkα′ , (15)

where γ
†
kα,γkα are the creation and annihilation operators for

the quasimodes at time t0, and the response function at q = 0
is found to be

Rij (q = 0,t,t ′)

= −iθ (t − t ′)
1

N

∑
k,αβγ δ

e−i(εkα−εkβ )(t−t0)e−i(εkγ −εkδ)(t ′−t0)

×〈φkβ(t)|
[
∂hk(t)

∂ki

]
|φkα(t)〉〈φkδ(t ′)|

[
∂hk(t ′)

∂kj

]
|φkγ (t ′)〉

×〈�(t0)|[γ †
kβγkα,γ

†
kδγkγ ]|�(t0)〉. (16)

Since the Floquet quasimodes at any given time form a
complete basis that obey

[hk − i∂t ]|φkα〉 = εkα|φkα〉, (17)

the following relation holds,

〈φkβ |∇hk|φkα〉 = i∂t [〈φkβ |∇φkα〉] + δαβ∇εkα

+ (εkα − εkβ)〈φkβ |∇φkα〉. (18)
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Rij (t,t ′) depends not only on the time difference t − t ′ but also on the mean time (t + t ′)/2. In what follows, we will make some
approximations that are equivalent to averaging over the mean time.

The first approximation we make is to retain only diagonal components of the average below, since the off-diagonal terms
will be accompanied by oscillations of the kind e−i(εku−εkd )(t+t ′)/2,

〈[γ †
kβγkα,γ

†
kδγkγ ]〉 = δα,δδβ,γ [〈γ †

kβγkβ〉 − 〈γ †
kαγkα〉]. (19)

Thus we obtain

Rij (q = 0,t,t ′) = −iθ (t − t ′)
∑
k,α,β

e−i(εkα−εkβ )(t−t ′)
[

(εkα − εkβ)

〈
φkβ(t)

∣∣∣∣ ∂

∂ki

φkα(t)

〉
+ i∂t

〈
φkβ(t)

∣∣∣∣ ∂

∂ki

φkα(t)

〉]

×
[

− (εkα − εkβ)

〈
φkα(t ′)

∣∣∣∣ ∂

∂kj

φkβ(t ′)
〉
+ i∂t ′

〈
φkα(t ′)

∣∣∣∣ ∂

∂kj

φkβ(t ′)
〉]

[〈γ †
kβγkβ〉 − 〈γ †

kαγkα〉]. (20)

Let us define 〈
φkβ(t)

∣∣∣∣ ∂

∂ki

φkα(t)

〉
=

∑
m

eim�tCm
βiα, (21)

then

Rij (q = 0,t,t ′) = −iθ (t − t ′)
∑

k,α,β,m,m′
eim�t+im′�t ′e−i(εkα−εkβ )(t−t ′)Cm

βiαCm′
αjβ[εkα − εkβ − m�][−(εkα − εkβ) − m′�]

× [〈γ †
kβγkβ〉 − 〈γ †

kαγkα〉]. (22)

Now we average over the mean time (t + t ′)/2 over one cycle of the laser. This is equivalent to keeping only m′ = −m terms so
that the results become time-translationally invariant,

Rij (q = 0,t,t ′) = −iθ (t − t ′)(−1)
∑

k,α,β,m

eim�t−im�t ′e−i(εkα−εkβ )(t−t ′)Cm
βiαC−m

αjβ [εkα − εkβ − m�]2[〈γ †
kβγkβ〉 − 〈γ †

kαγkα〉]. (23)

Denoting α = u,β = d, and setting m → −m in one of the terms, we obtain

Rij (q = 0,t,t ′) = −iθ (t − t ′)(−1)
∑
k,m

[εku − εkd − m�]2
(
e−i(εku−εkd−m�)(t−t ′)Cm

diuC
−m
ujd − e−i(εkd−εku+m�)(t−t ′)C−m

uid Cm
dju

)

× [〈γ †
kdγkd〉 − 〈γ †

kuγku〉]. (24)

Fourier transforming this expression,

Rij (q = 0,ω) =
∑
k,m

[εku − εkd − m�]2

[
C−m

uid Cm
dju

ω + iδ + εku − εkd − m�
− Cm

diuC
−m
ujd

ω + iδ − (εku − εkd − m�)

]
[〈γ †

kdγkd〉 − 〈γ †
kuγku〉].

(25)

For the Hall conductance, we need the combination

Rij (q = 0,ω) − Rji(q = 0,ω) =
∑
k,m

[εku − εkd − m�]2
(
C−m

uid Cm
dju − C−m

ujd Cm
diu

) 2(ω + iδ)

(ω + iδ)2 − (εku − εkd − m�)2

× [〈γ †
kdγkd〉 − 〈γ †

kuγku〉]. (26)

Thus the dc Hall conductance is

σij (ω = 0) = Rij − Rji

2iω

∣∣∣∣
ω=0

= i
∑
k,m

(
C−m

uid Cm
dju − C−m

ujd Cm
diu

)
[〈γ †

kdγkd〉 − 〈γ †
kuγku〉]. (27)

Denoting the laser period as T� = 2π/�,

i
∑
m

(
C−m

uid Cm
dju − C−m

ujd Cm
diu

) = i
1

T 2
�

∫ T�

0
dt1

∫ T�

0
dt2

∑
m

e−im�(t1−t2)

(〈
φkd (t1)

∣∣∣∣ ∂

∂kj

φku(t1)

〉〈
φku(t2)

∣∣∣∣ ∂

∂ki

φkd (t2)

〉

−
〈
φkd (t1)

∣∣∣∣ ∂

∂ki

φku(t1)

〉〈
φku(t2)

∣∣∣∣ ∂

∂kj

φkd (t2)

〉)
. (28)
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Using
∑

m eim�t = δ(t/T�), we obtain

i
∑
m

(
C−m

uid Cm
dju − C−m

ujd Cm
diu

) = i
1

T�

∫ T�

0
dt

(〈
φkd (t)

∣∣∣∣ ∂

∂kj

φku(t)

〉〈
φku(t)

∣∣∣∣ ∂

∂ki

φkd (t)

〉
−

〈
φkd (t)

∣∣∣∣ ∂

∂ki

φku(t)

〉〈
φku(t)

∣∣∣∣ ∂

∂kj

φkd (t)

〉)

= i
1

T�

∫ T�

0
dt(〈∂iφkd (t)|∂jφkd (t)〉 − 〈∂jφkd (t)|∂iφkd (t)〉) = 1

T�

∫ T�

0
dtFkd (t), (29)

where above we have used the orthonormality of the Floquet
states at any given time. Thus the dc Hall conductance is

σxy(ω = 0) = e2

2πh

∫
BZ

d2kF kd [ρkd − ρku], (30)

where Fkd is the time average of the Berry curvature over one
cycle,

Fkd = 1

T�

∫ T�

0
dt 2 Im[〈∂yφkd (t)|∂xφkd (t)〉], (31)

and, as expected, the Hall conductance depends on the
occupation probabilities

ρkα=u,d = 〈γ †
kαγkα〉. (32)

The “ideal” quantum limit corresponds to the case where
|ρkd − ρku| = 1, so that the Hall conductance is

σ ideal
xy = C

e2

h
, (33)

with

C = 1

2π

∫
BZ

d2kFkd (34)

the Chern number. It is important to note that while the Berry
curvature is time dependent, its integral over the BZ is time
independent, and a topological invariant. However, once the
population ρkd − ρku becomes dependent on momentum, the
integral of the Berry curvature weighted by the population is
no longer a topological invariant, and depends on time. The
averaging procedure outlined above corresponds to replacing
the time-dependent Berry curvature by its average over one
cycle.

In this paper we will study the time-averaged dc Hall
conductance defined in Eq. (30) for two cases. One is when the
occupation probabilities ρkd,u are for the closed system with
a quench switch-on protocol for the laser (Sec. III), while the
second is for the open system coupled to a reservoir, where
the ρkd,u will be determined from solving a kinetic equation
(Sec. IV). In order to compute the Berry curvature Fkd , we will
employ the numerical approach of Ref. [55].

III. HALL CONDUCTANCE FOR THE CLOSED SYSTEM
FOR A QUENCH SWITCH-ON PROTOCOL

Suppose that at t � 0 there is no external irradiation, and
the electrons are in the ground state of graphene. Thus the

wave function right before the switching on of the laser is

|�in(t = 0−)〉 =
∏
k

|ψin,k〉,

|ψin,k〉 = 1√
2

(
eiθk

1

)
, (35)

where

tan θk = sin(�k · �a1) + sin (�k · �a2)

1 + cos(�k · �a1) + cos (�k · �a2)
. (36)

The time evolution after switching on the laser is

|�(t > 0)〉 =
∏
k

Uk(t,0)|ψin,k〉, (37)

where Uk(t,t ′) is the time-evolution operator given in Eq. (13).
In practice, in order to determine the Floquet states, it is

convenient to solve the problem in Fourier space,

|φkα(t)〉 =
∑
m

eim�t |φ̃mkα〉, (38)

where |φ̃mkα〉 is a two-component spinor which obeys∑
m

[
Hnm

el + m�δnm

]|φ̃mkα〉 = εkα|φ̃nkα〉,

Hnm
el = 1

T�

∫ T�

0
dte−i(n−m)�tHel

=
(

0 hnm
σσ ′(k)

hnm
σ ′σ (k) 0

)
. (39)

For graphene in a circularly polarized laser,

hnm
σσ ′(k) = −thi

m−nJm−n(A0a)
∑

j=1,2,3

ei�k·�aj e−i(m−n)αj ,

hnm
σ ′σ (k) = −th(−i)m−nJm−n(A0a)

∑
j=1,2,3

e−i�k·�aj e−i(m−n)αj ,

(40)

where α1 = −α2 = π
3 , α3 = π and �a1 = a

2 (3,
√

3), �a2 =
a
2 (3,−√

3), �a3 = 0.
We are interested in the time-averaged Hall conductance

defined in Eq. (30). For this we need the overlap between the
initial state before the quench and the Floquet quasimodes
since they control the occupation probabilities,

ρ
quench
kα=u,d = |〈φkα=u,d (0)|ψin,k〉|2. (41)

Figure 1 shows the Hall conductance for the ideal case
where only one Floquet band is occupied (ρkd = 1, σ ideal

xy =
Ce2/h), and compared with the Hall conductance for the
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FIG. 1. (Color online) Hall conductance for the ideal case
(σxy = Ce2/h) and for a closed system after a quench, for different
strengths of the circularly polarized laser of frequency: (a) � = 10th.
(b) � = 5th.

quench. Thus each point in the plot corresponds to a situation
where initially the system was in the ground state of graphene,
and then at time t = 0 a laser of strength A0a and frequency
� was suddenly switched on. Notice that there are a number
of topological phase transitions corresponding to jumps in
the Chern number as A0ath/� is varied. These topological
transitions can be quite complex, with the Chern number
changing by ±2,±3. As discussed in Ref. [24], this occurs
because when linearly dispersing Dirac bands cross, the Chern
number exchanges between ±1, while quadratically dispersing
band crossings cause the Chern number to exchange between
±2, and their combined effect can lead to the topological
transitions observed here and in Ref. [24].

Figure 1 shows that the Hall conductance for the closed sys-
tem after a quench is smaller than that for the ideal case. This is
not surprising as a quench creates a nonequilibrium population
of electrons which, for a closed system of noninteracting
electrons, has no means to relax. The symmetry of the system
dictates that the quasienergies are located symmetrically about
zero. An intriguing effect that can occur is a reversal of
the sign of the Hall conductance due to a laserlike situation
where the population in the “upper” quasiband is higher. These
populations are determined by the overlap of the initial wave
function and the Floquet modes. Thus, as A0ath/� is varied,
this overlap can be higher with one quasiband or the other,
leading to a reversal in the sign of the Hall conductance that
does not necessarily follow the sign of C. This phenomenon
was also noticed in Ref. [36].

FIG. 2. (Color online) Excitation density ρkd − ρku in the closed
system for a quench switch-on protocol for a laser of frequency
� = 10th and amplitude: (a) A0a = 1.0. (b) A0a = 5.0.

To highlight this effect, the excitation density ρkd − ρku

that enters in the Hall conductance is plotted in Fig. 2 for
two different cases. The upper panel of Fig. 2 is for the case
where the initial wave function has the higher overlap with
the lower (or negative energy) Floquet band so that the Hall
conductance is the same sign as the ideal case, while the lower
panel is for a case when the initial wave function has a larger
overlap with the upper (positive energy) Floquet band so that
the Hall conductance has the opposite sign to the ideal case.
Also, a very general feature of the excitation density is spikes
or enhanced excitations at the Dirac points. We will show in
the next section that this feature will persist even for the open
system, though the spikes will broaden as the temperature of
the reservoir is increased.

Another feature one finds is that the Hall conductance after a
quench shows jumps that sometimes, but not always, follow the
topological transitions governed by jumps in C. For example,
in the upper and lower panel of Fig. 1, one finds a topological
transition at A0a ∼ 2.5, where the Chern number changes very
rapidly from 1 → −2 → 1. The Hall conductance after the
quench, on the other hand, is sensitive to the first transition
from 1 → −2, but not to the second from −2 → 1. A similar
effect is seen in the lower panel in Fig. 1, where σ

quench
xy does

not follow the topological transition at A0a ∼ 1.
The quench results presented here are relevant to the

experimental setup in Ref. [45], where a Floquet topological
system was realized in a closed cold-atomic gas, and where
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transport measurements were performed by tilting the system
and observing the magnitude of the transverse drift in time-
of-flight measurements. Another relevant situation is ultrafast
pump probe measurements in solids using pulse lasers, when
measurements are done faster than phonon relaxation times.

IV. HALL CONDUCTANCE FOR THE OPEN SYSTEM

We now present results for the Hall conductance when the
system is coupled to an ideal reservoir of phonons that is al-
ways in thermal equilibrium at a temperature T . Inelastic scat-
tering between electrons and phonons will cause the electron
distribution function to relax, affecting topological properties
such as the Hall conductance. We employ a rate or kinetic
equation approach within the Floquet formalism [51,56,57] to
study how the electron distribution evolves from an initial state
generated by a quench switch-on protocol, and present analytic
results for the resulting steady state. A similar treatment was
carried out for 2D Dirac fermions irradiated by a circularly
polarized laser and coupled to phonons [30]. We generalize
the approach of Ref. [30] to graphene.

For completeness, we first briefly outline the derivation of
the kinetic equation. Let W (t) be the density matrix obeying

dW (t)

dt
= −i[H,W (t)]. (42)

It is convenient to be in the interaction representation,
WI (t) = eiHphtU

†
el(t,0)W (t)Uel(t,0)e−iHpht , where Uel(t,t ′) =∏

k Uk(t,t ′) is the time-evolution operator for the electrons
under a periodic drive [see Eq. (13)]. To O(H 2

c ), the density
matrix obeys the following equation of motion,

dWI

dt
= −i[Hc,I (t),WI (t0)]

−
∫ t

t0

dt ′[Hc,I (t),[Hc,I (t ′),WI (t ′)]], (43)

where Hc,I is in the interaction representation. We assume that,
at the initial time t0, the electrons and phonons are uncoupled so
that W (t0) = W el

0 (t0) ⊗ W ph(t0), and that initially the electrons
are in the postquench state |�(t)〉 described in Sec. III, while
the phonons are in thermal equilibrium at temperature T . This
is justified because phonon dynamics is much slower than
electron dynamics, so that the quench state of Sec. III can
be achieved within femtosecond time scales [46], while the
phonons do not affect the system until picosecond time scales.

Thus,

W el
0 (t) = |�(t)〉〈�(t)| =

∏
k

W el
k,0, (44)

where

W el
k,0(t) =

∑
α,β=u,d

e−i(εkα−εkβ )t |φkα(t)〉〈φkβ(t)|ρquench
k,αβ , (45)

with

ρ
quench
k,αβ = 〈φkα(0)|ψin,k〉〈ψin,k|φkβ(0)〉. (46)

Defining the electron reduced density matrix as the one
obtained from tracing over the phonons, W el = TrphW , and
noting that Hc is linear in the phonon operators, the trace

vanishes, and we need to solve

dW el
I

dt
= −Trph

∫ t

t0

dt ′[Hc,I (t),[Hc,I (t ′),WI (t ′)]]. (47)

We assume that the phonons are an ideal reservoir
and stay in equilibrium. In that case, WI (t) = W el

I (t) ⊗
e−Hph/T /Tr[e−Hph/T ] (we set kB = 1).

The most general form of the reduced density matrix for
the electrons is

W el
I (t) =

∏
k

∑
αβ

ρk,αβ (t)|φkα(t)〉〈φkβ(t)|, (48)

where, in the absence of phonons, ρk,αβ = ρ
quench
k,αβ and are

time independent in the interaction representation. The last
remaining assumption is to identify the slow and fast variables,
which allows one to make the Markov approximation [51].
We assume that ρk,αβ are slowly varying as compared to the
characteristic time scales of the reservoir. We also make the
so-called modified rotating wave approximation [56], where it
is assumed that the density matrix ρk,αβ varies slowly over one
cycle of the laser. The last approximation is not necessary, and
was not made in Ref. [30], where it was observed that indeed
the density matrix varies slowly over one cycle of the laser for
sufficiently weak coupling to the reservoirs.

We only study the diagonal components of ρk,αα , which,
after the Markov approximation, obey the rate equation

ρ̇k,αα(t) = −
∑

β=u,d

Lk
αα;ββρk,ββ(t). (49)

Lk
αα,ββ are the in-scattering and out-scattering rates which,

due to conservation of the particle number, obey
∑

α=u,d

Lk
αα,ββ = 0.

Thus, to summarize, the main approximations made in
deriving Eq. (49) are as follows [57]: (a) The phonon bath is
always in thermal equilibrium. (b) The system-bath coupling
is weak as compared to the laser frequency as well as the bath
relaxation rates. (c) The bath correlation times are short as
compared to the time scales over which the reduced density
matrix for the electrons varies. (d) A modified rotating wave
approximation has been made where the scattering matrix
elements are replaced by their average over one cycle of the
laser. This is valid when the reduced density matrix varies
slowly over one cycle of the laser, which is typically the
case when the system-bath coupling is weak in comparison
to the laser frequency [30]. The Floquet kinetic equation fully
takes into account the time-periodic structure of the Floquet
states. The reduced density matrix components ρk,αα are the
occupation probabilities of these Floquet states, and it is these
probabilities that are assumed to be sufficiently slowly varying
in time.

While the physical initial condition corresponds to a quench
switch on protocol for the laser where ρk,αα(t = 0) = ρ

quench
k,α=u,d ,

the steady-state solution is independent of this initial state and
corresponds to ρk,αα(t = ∞) = ρkα , where

ρku =
∣∣Lk

uu,dd

∣∣∣∣Lk
uu,dd

∣∣ + ∣∣Lk
uu,uu

∣∣ , ρkd = 1 − ρku. (50)
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Expanding 〈φkα(t)|c†kσ ckσ ′ |φkβ(t)〉 in a Fourier series such that 〈φkα(t)|c†k↑ck↓|φkβ(t)〉 = ∑
n ein�tCn

1k,αβ , and Cn
2k,αβ = (C−n

1k,βα)∗,
we find the following in-scattering and out-scattering rates for a uniform phonon density of states Dph,

Lk
uu,uu = Dph

[
λ2

x

∑
n

(
Cn

1k,udC
−n
1k,du + Cn

2k,udC
−n
2k,du + Cn

1k,udC
−n
2k,du + Cn

2k,udC
−n
1k,du

)

+ λ2
y

∑
n

(−Cn
1k,udC

−n
1k,du − Cn

2k,udC
−n
2k,du + Cn

1k,udC
−n
2k,du + Cn

2k,udC
−n
1k,du

)]

×[θ (−εkd + εku + n�)(1 + N (−εkd + εku + n�)) + θ (εkd − εku − n�)N (εkd − εku − n�)], (51)

−Lk
uu,dd = Dph

[
λ2

x

∑
n

(
Cn

1k,udC
−n
1k,du + Cn

2k,udC
−n
2k,du + Cn

1k,udC
−n
2k,du + Cn

2k,udC
−n
1k,du

)

+ λ2
y

∑
n

(−Cn
1k,udC

−n
1k,du − Cn

2k,udC
−n
2k,du + Cn

1k,udC
−n
2k,du + Cn

2k,udC
−n
1k,du

)]

×[θ (εkd − εku − n�)(1 + N (εkd − εku − n�)) + θ (−εkd + εku + n�)N (−εkd + εku + n�)]. (52)

Above, N (x) = 1/(ex/T − 1) is the Bose function. In pre-
senting our results we also consider an isotropic electron-
phonon coupling λx = λy so that the steady-state electron
distribution function becomes independent of the electron-
phonon coupling.

Equations (51) and (52) imply that the population of the two
quasibands ρkd,u is determined by a sum over phonon-induced
inelastic scattering between many quasienergy levels (denoted
by the sum over n). These complicated scattering processes
imply a nonequilibrium (non-Gibbsian) steady state for the
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FIG. 3. (Color online) Hall conductance for the ideal case (σxy =
Ce2/h) and at steady state with a phonon reservoir, for different
strengths of the circularly polarized laser and for laser frequencies:
(a) � = 10th. (b) � = 5th.

electrons even when the phonons are in thermal equilibrium,
unless the frequency of the laser is so high that only a single
term in the sum over n survives [30,31]. As we shall show, in
such a high-frequency limit the Hall conductance approaches
a thermal result, and, in particular, will approach Ce2/h as the
reservoir temperature is lowered. For lower laser frequencies,

FIG. 4. (Color online) Excitation density ρkd − ρku at steady
state with phonons. The parameters are A0a = 1.0,� = 10th, with
the phonons at temperature (a) T = 0.01th and (b) T = 1.0th.
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on the other hand, significant deviations from Ce2/h will be
found even when the phonons are at a very low temperature.

Figure 3 shows the steady-state Hall conductance for three
different reservoir temperatures (T = 0.01th,0.1th,1th), and
for the same laser parameters as the ones for which the quench
results were discussed. These results are plotted with those
for the “ideal” case. Figure 3(a) is for a fairly high frequency
(� = 10th) and shows that the steady-state Hall conductance
approaches the ideal limit of Ce2/h as the temperature
of the reservoir is lowered, with the topological transitions
characterized by a thermal broadening. The excitation density
for the same laser frequency is shown in Fig. 4, and is
characterized by sharp spikes at the Dirac points at low
temperatures which then show thermal broadening as the
temperature of the reservoir is raised.

Figure 3(b) is for a lower laser frequency of � = 5th. In this
case, while for large laser amplitudes (A0a > 1) the results are
similar to Fig. 3(a), with the Hall conductance approaching
Ce2/h as the temperature of the bath is lowered, marked
deviations are seen for smaller laser amplitudes (A0a < 1).
For this case, the Hall conductance, even with low-temperature
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FIG. 5. Floquet spectrum over two Floquet BZs for laser fre-
quency � = 5.0th and for laser amplitudes and Chern numbers:
(a) A0a = 0.5, C = 3. (b) A0a = 1.5, C = 1. Additional edge states
at the Floquet zone boundaries appear for (a).

phonons, saturates at a value very different from Ce2/h—in
fact, almost approaching zero.

Even though we have a large sample in mind, where the role
played by the edges does not explicitly enter the calculation,
it is still instructive to study the quasienergy spectrum in a
finite geometry (Fig. 5) to understand the difference between
the case of A0a > 1 and A0a < 1, but at the same laser
frequency � = 5th. One observes that A0a > 1 is also the
case where the laser frequency is large as compared to the
electron bandwidth (which is strongly influenced by A0a),
and all the edge states reside at the center of the Floquet BZ
(ε = 0), with the number of chiral edge modes equaling the
Chern number C. In contrast, for laser frequencies comparable
to or smaller than the bandwidth (A0a < 1), additional edge
modes appear in the Floquet zone boundaries (ε = ±�/2),
and the number of chiral edge modes no longer equals the
Chern number C, which is no longer a good or sufficient
topological index. A modified topological invariant has been
introduced that correctly counts the number of edge modes at
the center and edges of the zone boundary [38,39], however,
we find that the distribution function at low frequencies is so
far out of equilibrium that the Hall conductance is unrelated to
this topological invariant, and almost approaches zero. Thus,
highly nonequilibrium steady states for small laser frequencies
prevent one from achieving Hall conductances of O(e2/h).

Figures 6 shows how the Hall conductance depends upon
the frequency of the laser for the closed as well as for the open
system, where for the latter the reservoir temperature is fairly
low (T = 0.01th). As the laser frequency is increased, the Hall
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FIG. 6. (Color online) Hall conductance for the closed system
after a quench, for the open system at steady state with phonons at
T = 0.01th, and for the ideal case (Ce2/h), plotted for different
laser frequencies and for the laser amplitudes: (a) A0a = 1.0.
(b) A0a = 5.0.
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conductance for the open system approaches the ideal quantum
limit, and the results become more and more as an equilibrium
system where the Floquet bands are occupied by the Gibbs dis-
tribution [30,31]. The closed system of course corresponds to a
nonequilibrium situation as there is no mechanism for thermal-
ization, with the steady state depending on the overlap between
the initial state and the Floquet state, resulting in a Hall conduc-
tance that can have the opposite sign to that of the open system.

V. CONCLUSIONS

We have studied the dc Hall conductance derived from
the Kubo formula, for graphene irradiated by a circularly
polarized laser. Results are presented for two situations: One
is for a closed system for a quench switch-on protocol for
the laser, while the second is for an open system coupled to
an ideal phonon reservoir. For the closed system, the electron
distribution function retains memory of the initial conditions,
which can lead to Hall conductances (Fig. 1) that are not only
smaller in magnitude than the ideal limit of Ce2/h, but also
sometimes do not follow the topological transitions in C as
the laser parameters are varied, and can be of the opposite
sign to the ideal result. The latter occurs when the initial state
has a larger overlap (Fig. 2) with the “upper” Floquet band,
which has a Berry curvature of the opposite sign to that of the
“lower” Floquet band. The results for the closed system are
most relevant for experiments in cold-atomic gases, such as
the one of Ref. [45].

For the open system, as long as the laser frequencies are
larger than the electron bandwidth (for small laser amplitudes
A0a < 1, this condition is � > 6th), the main effect of the
reservoir is to cause an effective cooling that allows the Hall
conductance to eventually approach Ce2/h as the reservoir
temperature is lowered (Fig. 3, upper panel, and Fig. 6), with
the Hall conductance following the topological transitions with
a characteristically thermal broadening.

For the open system, surprises occur for laser frequencies
lower or comparable to the bandwidth (Fig. 3 lower panel).
In this case, strong deviations of the Hall conductance from
Ce2/h occur, with the Hall conductance almost approaching
zero. This may be related to the Hall transport measured in
graphene irradiated by a THz laser [48,49], where the observed
Hall effect was very small compared to the quantum limit, and
was accounted for by a semiclassical Boltzman analysis.

Interestingly enough, these strong deviations from the
quantum limit are also accompanied by the appearance of edge
states in the BZ edges so that C is no longer a good topological
index. However, the result we obtain cannot be accounted
for by any modified topological index that takes into account
these edge modes. This is because the electron distribution
function for low laser frequencies is highly out of equilibrium
even when the reservoir is ideal, with the resultant steady
state determined from solving a rate equation that accounts for
laser-induced photoexcitation of carriers and phonon-induced
inelastic scattering between many different quasienergy
levels.

These results also suggest that, due to the inherent
nonequilibrium nature of the problem, especially for low
laser frequencies, the Hall conductance will depend upon
the dominant inelastic scattering mechanism, and hence the
Hall conductance in large samples where electron-phonon
scattering is dominant will differ from the Hall conductance
in smaller samples [29], where for the latter the relaxation
mechanism is determined by the location of the Fermi levels of
the leads [24,27,29]. It is of course interesting to also consider
samples of intermediate size where both the leads as well as
the phonons play a role in the inelastic scattering [58].

For the experimental feasibility of observing a large Hall
response of O(e2/h), one therefore needs laser frequencies
larger than the electron bandwidth as this suppresses photoex-
cited carriers, and eliminates edge states at the Floquet BZ
boundaries, making C the relevant topological index. However,
one needs to keep in mind that the maximum voltage drop
across a lattice site due to the applied laser (∼A0a�) cannot be
too large in order to avoid dielectric breakdown across orbital
subbands, and at the same time the laser amplitude A0a should
be large enough so that the dynamical gap 	 at the Dirac
points is larger than the temperature of the reservoir. With
current day experiments, one may realize these conditions in
artificial graphene lattices, such as in cold-atomic gases [45]
and photonic waveguides [26].
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