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Effective-mass theory of collapsed carbon nanotubes
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Band structure is theoretically studied in partially flattened carbon nanotubes within an effective-mass scheme.
Effects of interwall interactions are shown to be important in nonchiral nanotubes such as zigzag and armchair
and can essentially be neglected in chiral nanotubes except in the close vicinity of nonchiral tubes. In fact,
interwall interactions significantly modify states depending on relative displacement in the flattened region in
nonchiral tubes and can convert semiconducting tubes into metallic and vice versa. They diminish rapidly when
the chiral angle deviates from that of the zigzag or armchair tube, although the decay is slower in the vicinity of
armchair tubes.
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I. INTRODUCTION

Carbon nanotubes were first found in the form of multiwall
cylinders, each of which consists of a rolled graphene sheet
[1,2]. A single-wall nanotube, fabricated later [3,4], has a
unique electronic property in that it changes critically from
metallic to semiconducting depending on its tubular circum-
ferential vector. This characteristic feature was first predicted
by means of tight-binding models [5–14] and was successfully
described in an effective-mass approximation [15–17]. Experi-
mental [18–32] as well as computational studies [33–52] have
discovered that large diameter nanotubes have an additional
stable flattened structure. The purpose of this work is to study
the electronic structure of collapsed carbon nanotubes for
arbitrary chirality within the effective-mass approximation.

The observation of fully collapsed multiwall carbon
nanotubes has been reported in transmission electron
microscopy [18–25], atomic force microscopy [25–28],
and scanning tunneling microscopy [29–31]. Multiwall
nanotubes have been shown to exhibit structural deformations
in field-effect-transistor devices [26]. Recently, high-yield
fabrication of high-quality collapsed tubes was reported, using
solution-phase extraction of inner tubes from large-diameter
multiwall tubes [32].

Actually, it has been shown theoretically by first-principles
energy minimization that both flattened and cylindrical nan-
otubes are stable or metastable and the energy of flattened tubes
is lower than that of cylindrical tubes with large diameters [41–
45]. The cylindrical nanotubes collapse into flattened tubes
with a barbelllike cross section under hydrostatic pressure or in
the presence of injected charge shown by molecular dynamics
simulations [36,37]. Electronic states have been studied for
collapsed armchair tubes in a tight-binding model [38] and
for collapsed zigzag tubes by density-functional calculations
[46,47], which demonstrated drastic modification in the energy
region close to the Fermi level due to interwall interaction.

Transport of crossed nanotube junctions results from inter-
acting individual tubes and has been studied both experimen-
tally [53–57] and theoretically [58–61]. The conductance has
been found to depend strongly on the crossing angle with large
maxima at commensurate stacking of lattices of two nanotubes
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[58,59]. A deformation of crossed carbon nanotubes, which
may significantly affect the tunneling conductance between
nanotubes, has been calculated [27,54,60]. Furthermore, a
pseudogap has been predicted to appear for an orientationally
ordered crystal of nanotubes due to intertube transfer [62–65].

Effects of interwall interactions in multiwall nanotubes
have also been studied. In general, the lattice structure of
each nanotube is incommensurate with that of adjacent walls
[66,67]. This makes interwall electron hopping negligibly
small as a result of the cancellation of interwall coupling in
the absence of disorder [68–72]. In fact, interwall hopping
integrals vary quasiperiodically from site to site and their
average over the distance of the order of the circumference
vanishes. This property has been extensively used for theoret-
ical calculations of excitons in double-wall nanotubes [73,74].
Further, it is closely related to very weak interlayer interactions
in twisted bi- and/or multilayer graphenes.

Experimentally, each layer of some epitaxially fabricated
graphenes having many layers is known to behave almost as a
monolayer [75–85]. Further, the electronic structure of twisted
bilayer graphene with nearly incommensurate lattice structure,
both theoretically calculated [80,86–96] and experimentally
observed [81,97–101], shows a linear band dispersion near the
charge neutrality point, suggesting weak interlayer interaction.
On the contrary, the interlayer interaction drastically changes
electronic states in displaced bilayer graphene having a
commensurate lattice structure [102]. The end of bilayer
graphene can be closed and has been observed experimentally
after thermal treatment [103]. The geometry and electronic
structure of bilayer graphene with a closed edge have been
studied using a density functional calculation [104].

This paper is organized as follows. In Sec. II, an effective
potential of interwall interaction is derived in an effective-mass
scheme. In Sec. III, modification of band structure due to
collapse is analyzed by perturbation of interwall interaction
first for armchair and zigzag nanotubes, and its dependence
on nanotube chirality and stacking in the flattened region are
discussed based on dominant terms. Numerical results are
shown in Sec. IV and a short summary is given in Sec. V.

II. COLLAPSED CARBON NANOTUBES

We consider a nanotube partially flattened as illustrated in
Fig. 1(a). The width of the flattened region is denoted by LF /2
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FIG. 1. (a) A schematic illustration of a collapsed carbon nanotube and (b) its development map on a graphene sheet. In panel (b), the
coordinate system (x ′,y ′) and origin O′ are fixed onto the graphene sheet and the coordinate system (x,y) and origin O vary depending on the
structure of the nanotube. The flattened region is denoted by the shaded area.

and that of the curved region by LC/2. We have

LF + LC = L, (1)

where L is the circumference. Figure 1(b) shows the devel-
opment map. The tube is usually specified by chiral vector
L, corresponding to the circumference, i.e., L = |L|. The
direction of L measured from the horizontal direction is called
the chiral angle and denoted by η.

In Fig. 1(b), the right-hand side of the line passing through
the point O at (ζ cos η,ζ sin η) and perpendicular to L is folded
down to form the lower half of the flattened nanotube. The
coordinate of the point in the lower side of the flattened region
corresponding to point r in the upper side is denoted by r̄.
Obviously, r̄ is given by the mirror reflection with respect to the
line perpendicular to L. In the nanotube, we use the coordinates
(x,y) fixed onto the tube and therefore we have r̄ = (−x,y)
for r = (x,y). The coordinates of r and r̄ in the coordinates
(x ′,y ′) fixed onto the graphene sheet can be straightforwardly
obtained.

Figure 2(a) shows the lattice structure of graphene, two
primitive translation vectors a and b, and three vectors �τl (l =
1,2,3) connecting nearest-neighbor atoms. A unit cell contains
two carbon atoms denoted by A and B. In a tight-binding
model, the wave function is written as

ψ(r) =
∑

R=RA

ψA(R)φ(r − R) +
∑

R=RB

ψB(R)φ(r − R), (2)

where φ(r) denotes a π orbital. The amplitude ψ at atomic
sites R = RA or RB satisfies

εψA(RA) = −γ0

3∑
l=1

ψB(RA − �τl) +
∑
R′

A

V (RA,R′
A)ψA(R′

A)

+
∑
R′

B

V (RA,R′
B )ψA(R′

B), (3)

εψB(RB) = −γ0

3∑
l=1

ψA(BA + �τl) +
∑
R′

A

V (RB,R′
A)ψA(R′

A)

+
∑
R′

B

V (RB,R′
B)ψB(R′

B), (4)

where γ0 is the hopping integral between nearest-neighbor
atoms within the wall and interwall hopping integral V (R,R′)
is nonzero only when carbon atoms at sites R and R′ are very
closely located in the opposite side of the flattened region.
Since π orbitals are symmetric within the wall, V (R,R′) is a
function of the |R − R′| well inside the flattened region.

In a monolayer graphene the conduction and valence bands
consisting of π orbitals cross at K and K ′ points of the
Brillouin zone shown in Fig. 2(b), where the Fermi level is
located [105,106]. For states in the vicinity of the Fermi level
ε = 0, the amplitudes are written as

ψA(RA) = eiK·RAFK
A (RA) + e+iηeiK′ ·RAFK ′

A (RA), (5)

τ

ττ
Γ

FIG. 2. The lattice structure of graphene (a) and the first Brillouin
zone (b). The primitive translation vectors are denoted by a and b
(|a| = |b| = a) and the vectors connecting nearest-neighbor atoms
are denoted by �τ1, �τ2, and �τ3 in panel (a). The reciprocal lattice
vectors are denoted by a∗ and b∗, and K = (2π/a)(1/3, 1/

√
3) and

K′ = (2π/a)(2/3, 0) in panel (b).
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ψB(RB) = −ωe+iηeiK·RB FK
B (RB) + eiK′ ·RB FK ′

B (RB), (6)

with ω = exp(2πi/3) [17]. Envelope functions FK
A , FK

B , FK ′
A ,

and FK ′
B are assumed to be slowly varying in the scale of

the lattice constant. The effective-mass approximation is valid
and well reproduces electronic properties as well as the band
structure for the energy range given by |ε| � 3γ0 [15–17].

In the absence of interwall interactions, the envelope
functions for the K point satisfy

ĤK (k̂)FK (r) = εFK (r), (7)

ĤK (k̂) = γ

(
0 k̂−
k̂+ 0

)
, (8)

FK (r) =
(

FK
A (r)

FK
B (r)

)
, (9)

where k̂± = k̂x ± ik̂y , k̂ = −i �∇, and γ = √
3aγ0/2 is the

band parameter with lattice constant a = 0.246 nm. Here,
wave vector k is measured from the K point denoted by
K. For the K ′ point, we should exchange k̂+ and k̂− in the
Hamiltonian, i.e.,

ĤK ′
(k̂) = γ

(
0 k̂+
k̂− 0

)
, (10)

where k is measured from the K ′ point, i.e., K′.
We construct a nanotube in such a way that the hexagon

at L = naa + nbb with integers na and nb is rolled onto the
origin. For translation r → r + L, the Bloch function at the K

and K ′ points acquires the phase

exp(iK · L) = exp

(
+2πiν

3

)
, (11)

exp(iK′ · L) = exp

(
−2πiν

3

)
, (12)

where ν = 0 or ±1, determined by

na + nb = 3N + ν, (13)

with integer N . Correspondingly, the boundary conditions for
F(r) are given by

FK (r + L) = exp

(
−2πiν

3

)
FK (r), (14)

FK ′
(r + L) = exp

(
+2πiν

3

)
FK ′

(r). (15)

Let T be the primitive lattice translation vector in the axis
direction,

T = maa + mbb, (16)

with integers ma and mb. We have

pma = na − 2nb, pmb = 2na − nb, (17)

where p is the greatest common divisor of na − 2nb and 2na −
nb. For translation r → r + T, the Bloch function at the K and

K ′ points acquires the phases

exp(iK · T) = exp

(
+2πiμ

3

)
, (18)

exp(iK′ · T) = exp

(
−2πiμ

3

)
, (19)

where μ = 0 or ±1, determined by

ma + mb = 3M + μ, (20)

with integer M . This shows that the K and K ′ points are
mapped onto kK

μ and kK ′
μ , respectively, with

kK
μ ≡ +2πμ

3T
, kK ′

μ ≡ −2πμ

3T
, (21)

within the one-dimensional first Brillouin zone [−π/T ,

+π/T ], with T = |T|.
For the K point, the energies and corresponding wave

functions are given by [15–17]

εK
ns(k) = sγ

√
κK

ν (n)2 + (
k − kK

μ

)2
, (22)

FK
nks(r) = 1√

AL
FK

nks exp
[
iκK

ν (n)x + i
(
k − kK

μ

)
y
]
, (23)

with

κK
ν (n) = 2π

L

(
n − ν

3

)
, (24)

FK
nks = 1√

2

(
bK

μ,ν(n,k)
s

)
, (25)

bK
μν(n,k) = κK

ν (n) − i
(
k − kK

μ

)
√

κν(n)2 + (
k − kK

μ

)2
, (26)

where k is the wave vector in the axis direction, measured
from the center of the one-dimensional Brillouin zone, n is
an integer, s = +1 and −1 for the conduction and valence
bands, respectively, and A is the tube length. For the K ′ point,
we should replace ν with −ν, μ with −μ, and bK

μ,ν(n,k) with
bK ′

μ,ν(n,k) = bK
−μ,−ν(n,k)∗. The band structure is illustrated in

Fig. 3 in the vicinity of ε = 0.
In the presence of interwall coupling, the envelope functions

satisfy the Schrödinger equation,

Ĥ(k̂)F(r) +
∫

dr′V̂(r,r′)F(r′) = εF(r), (27)

with

Ĥ(k̂) =
(
ĤK (k̂) 0

0 ĤK ′
(k̂)

)
, (28)

F(r) =
(

FK(r)
FK ′

(r)

)
. (29)

The (4,4) matrix effective-potential of the interwall interaction
is given by

V̂(r,r′) = V̂ (r)δ(r′ − r̄), (30)
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+kμ

+(2πμ/3T)
K

−kμ

−(2πμ      /3T)
K’

k

ε

−π/T +π/T
n=0

n=+1, −1

n=+1, −1
ν=0(a)

k

ε

K, K’

n=0

n=+1, −1

n=+1, −1
ν=0(b)

k

ε

K, K’

n=0

n=+1(K), −1(K’)

n=−1(K), +1(K’)

n=0

n=+1(K), −1(K’)

ν=+1(c)

FIG. 3. Schematic illustration of energy bands for (a) an armchair tube kμ 	= 0 and (b) metallic and (c) semiconducting zigzag nanotubes
with kμ = 0.

with

V̂ (r) =
(

V̂ KK (r) V̂ KK ′
(r)

V̂ K ′K (r) V̂ K ′K ′
(r)

)
, (31)

where V̂ KK (r), etc., are (2,2) matrices given by

V̂ KK (r) =
(

V KK
AA (r) V KK

AB (r)

V KK
BA (r) V KK

BB (r)

)
, (32)

etc. Explicit expressions for the effective potential are more
easily written down in terms of

Ṽ (r) =
(

ṼAA(r) ṼAB(r)
ṼBA(r) ṼBB(r)

)
, (33)

where ṼAA(r), etc., are (2,2) matrices given by

ṼAA(r) =
(

Ṽ KK
AA (r) Ṽ KK ′

AA (r)

Ṽ K ′K
AA (r) Ṽ K ′K ′

AA (r)

)
, (34)

etc. We can obtain Ṽ from V̂ (r) by a simple unitary
transformation.

Then, the effective potential of the interwall interaction is
explicitly given by

ṼAA(r) =
∑

RA,R′
A

1

2
[g(r − RA) + g(r̄ − R′

A)]V (RA,R′
A)

×
(

eiK·(R′
A−RA) eiηei(K′ ·R′

A−K·RA)

e−iηei(K·R′
A−K′ ·RA) eiK′ ·(R′

A−RA)

)
, (35)

ṼAB(r) =
∑

RA,R′
B

1

2
[g(r − RA) + g(r̄ − R′

B)]V (RA,R′
B)

×
(−ωeiηeiK·(R′

B−RA) ei(K′ ·R′
B−K·RA)

−ωei(K·R′
B−K′ ·RA) e−iηeiK′ ·(R′

B−RA)

)
, (36)

ṼBA(r) =
∑

RA,R′
A

1

2
[g(r − RB) + g(r̄ − R′

A)]V (RB,R′
A)

×
(−ω−1e−iηeiK·(R′

A−RB ) −ω−1ei(K′ ·R′
A−K·RB )

ei(K·R′
A−K′ ·RB ) eiηeiK′ ·(R′

A−RB )

)
,

(37)

ṼBB(r) =
∑

RB,R′
B

1

2
[g(r − RB) + g(r̄ − R′

B)]V (RB,R′
B)

×
(

eiK·(R′
B−RB ) −ω−1e−iηei(K′ ·R′

B−K·RB )

−ωeiηei(K·R′
B−K′ ·RB ) eiK′ ·(R′

B−RB )

)
.

(38)

We should note that RA and RB and also K and K′ are in the
coordinate system (x ′,y ′) fixed onto the development map and
r and r̄ are in the coordinate system (x,y) fixed onto carbon
nanotubes. Thus, r and r̄ should be converted into the (x ′,y ′)
system in the above equations.

We have introduced the smoothing function g(r) which
varies smoothly in the range |r| � a and decays rapidly and
vanishes for |r| 
 a [17]. It should satisfy the following
conditions: ∑

RA

g(r − RA) =
∑
RB

g(r − RB) = 1, (39)

∫
dr g(r − RA) =

∫
dr g(r − RB) = �0, (40)

where �0 is the area of a unit cell given by �0 = √
3a2/2. The

function g(r − R) can be replaced by a δ function when it is
multiplied by a function such as F(r) varying smoothly in the
scale of the lattice constant, i.e., g(r − R) ≈ �0δ(r − R).

The effective potential satisfies

V̂ (r̄) = V̂ (r)†, (41)

and therefore

V̂(r,r′)† = V̂ (r̄)δ(r′ − r̄) = V̂ (r′)δ(r − r̄′) = V̂(r′,r), (42)

which ensures that V̂(r,r′) is a Hermitian operator. The
Hamiltonian should satisfy the time-reversal invariance under
the operation given by [107,108]

FT = e−iψ

(
0 σz

σz 0

)
F∗, (43)

where σx is the Pauli spin matrix and ψ is an arbitrary phase
factor. Thus, the interwall potential V̂ (r) should satisfy(

0 σz

σz 0

)
V̂ (r)∗

(
0 σz

σz 0

)
= V̂ (r) (44)
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or (
σx 0
0 −σx

)
Ṽ (r)∗

(
σx 0
0 −σx

)
= Ṽ (r). (45)

Further, the effective potential has the following transla-
tional properties:

V̂ KK (r + L) = V̂ KK (r) e−4πiν/3,

V̂ KK ′
(r + L) = V̂ KK ′

(r),
(46)

V̂ K ′K (r + L) = V̂ K ′K (r),

V̂ K ′K ′
(r + L) = V̂ K ′K ′

(r) e+4πiν/3,

and

V̂ KK (r + T) = V̂ KK (r),

V̂ KK ′
(r + T) = V̂ KK ′

(r) e−4πiμ/3,
(47)

V̂ K ′K (r + T) = V̂ K ′K (r) e+4πiμ/3,

V̂ K ′K ′
(r + T) = V̂ K ′K ′

(r).

Therefore, it can be expanded into a Fourier series, such that

V̂ KK (r) =
∑
n,m

V̂ KK
n,m exp

[
2πi

L

(
n − 2ν

3

)
x + 2πim

T
y

]
,

V̂ KK ′
(r) =

∑
n,m

V̂ KK ′
n,m exp

[
2πin

L
x + 2πi

T

(
m − 2μ

3

)
y

]
,

V̂ K ′K (r) =
∑
n,m

V̂ K ′K
n,m exp

[
2πin

L
x + 2πi

T

(
m + 2μ

3

)
y

]
,

V̂ K ′K ′
(r) =

∑
n,m

V̂ K ′K ′
n,m exp

[
2πi

L

(
n + 2ν

3

)
x + 2πim

T
y

]
,

(48)

with integers n and m. This shows that the interwall coupling
gives rise to interactions among bands with the same k value
in the one-dimensional Brillouin zone.

We expand the wave functions in terms of those of the
corresponding cylindrical nanotube:

F(r) = 1√
AL

∑
m,n

exp[i(k + Gm)y]

(
exp

[
iκK

ν (n)x − ikK
μ y

]
0

0 exp
[
iκK ′

ν (n)x − ikK ′
μ y

]) Fnm, (49)

with Gm = 2πm/T . Then, we have

Ĥ[n,k + Gm]Fnm +
∑
n′m′

V̂n+n′,m−m′Fn′m′ = εFnm, (50)

with

Ĥ[n,k] =
(
ĤK

[
κK

ν (n),k − kK
μ

]
0

0 ĤK ′[
κK ′

ν (n),k − kK ′
μ

])
(51)

and

V̂n+n′,m−m′ =
(

V̂ KK
n+n′,m−m′ V̂ KK ′

n+n′,m−m′

V̂ K ′K
n+n′,m−m′ V̂ K ′K ′

n+n′,m−m′

)
. (52)

For actual numerical calculations, the interwall hopping
integral V (R1,R2) is chosen as [58,92,93,109–113]

V (R1,R2) = −
[
α

γ1

|t|2 exp

(
−|t| − c/2

δ

)
(p1 · t)(p2 · t)

−γ0 exp

(
−|t| − b

δ

)
[(p1 · u)(p2 · u)

+(p1 · v)(p2 · v)]

]
, (53)

where b is the distance between neighboring carbons in
graphene, i.e., b = a/

√
3, c is the lattice constant along the

c axis in graphite given by c/a = 2.72, and δ is the decay rate
of the π orbital. Further, γ1 is the hopping integral between
nearest-neighbor sites of neighboring layers in graphite.
Vectors p1 and p2 are unit vectors directed along the π orbitals
at R1 and R2, respectively, t is a vector connecting the two
sites, and u and v are unit vectors perpendicular to t and
to each other. In the following numerical calculations, we

use parameters γ0 = 2.7 eV, γ1 = 0.4 eV, δ/a = 0.185, and
α = 1.4.

The negative sign appearing in V (R1,R2) is due to the fact
that the π orbitals in the top and bottom sides of the nanotube
have signs opposite to each other because of the tube geometry.
Further, we choose the following smoothing function:

g(r) = �0

πd2
exp

(
− r2

d2

)
, (54)

with smoothing length d. This d is of the order of lattice
constant a, but can be regarded as zero in the scale of the
effective-mass approximation. In the following, we choose
2 <∼ d/a <∼ 5, for which the results are independent of this
parameter.

As shown by molecular dynamics simulations, coupling in
the flattened region is slowly turned on in the vicinity of its
edge [42]. When the coupling suddenly appears at a boundary,
extra coupling terms may appear, being strongly localized at
edges. In order to avoid such unphysical effects, we multiply
the interwall hopping by the following function:

θ (x − xedge,�edge) = 1

2

[
1 − erf

(
x − xedge

�edge

)]
, (55)

with erf(t) being the error function defined by

erf(t) = 2√
π

∫ t

0
e−s2

ds. (56)

The parameter �edge describes the width of the region where
coupling increases from zero to the value well in the flattened
region. Actual calculations show that an extra effective
potential localized at edges appears for �edge/a � 1, but turns
out to be negligibly small except in very narrow wires and
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ζ ζ<ζ< ζ

FIG. 4. (Color online) Some examples of the structure of the double-wall region of a flattened zigzag nanotube. The A and B sites remain
the same, but the K and K ′ points are exchanged between the upper (red) region and the lower (green) region. (a) ζ = na corresponding to an
AA-stacked bilayer, (b) na < ζ (n + 1

4 )a, (c) ζ = (n + 1
4 )a, and (d) ζ = (n + 1

2 )a corresponding to another AA-stacked bilayer.

therefore can safely be neglected for thick wires with collapsed
structures.

III. WEAK INTERWALL COUPLING

A. Interwall potential in zigzag and armchair

Figure 4 shows some examples of the structure of the
flattened region in a collapsed zigzag tube (η = 0). In zigzag
tubes, A and B sublattices remain the same, but intravalley
components of interwall potentials identically vanish, because
the K point is mapped onto the K ′ point and the K ′ point
onto the K point by the mirror reflection with respect to a
line parallel to the axis. The effective potential in the flattened
bilayer region becomes independent of position and is periodic
as a function of ζ with period a/2.

We have in general

ṼAA = −ṼBB = −v1

(
0 eiϕ1

e−iϕ1 0

)
,

(57)

ṼAB = −ṼBA = −v2

(
0 −eiϕ2

e−iϕ2 0

)
,

with real coefficients v1 and v2 and phases ϕ1 and ϕ2

varying with ζ . Actually, the difference ϕ2 − ϕ1 is a relevant
parameter changing the band structure, because a relative
phase difference between the wave functions associated with
the K and K ′ points can be chosen arbitrarily and is not
important.

For the above potential, the band structure in the bilayer
region generally consists of two conelike bands with crossing
points displaced in the wave vector space and have different
energies. These two conelike bands repel each other when they
cross. For ζ = ja/2 with j being an integer, in particular,
we have a bilayer with AA stacking and v1 = γ1, v2 = 0,
and eiϕ1 = ω−j−1. In this case, the two conelike bands have
different energies by ±γ1 and do not interact each other. For
ζ = ja/4, we have ϕ2 = ϕ1, for which two conelike bands
displaced from each other both in wave vector and energy
become independent. No AB-stacked bilayer is formed.

Figure 5 shows some examples of the structure of the
flattened region for armchair tubes (η = π/6). Intervalley
components identically vanish, because the K and K ′ points
are mapped onto themselves after folding. An A site, however,
turns into a B site and a B site turns into an A site, respectively.
The effective potential is again independent of the position
well inside the flattened region, but varies periodically as a

function of ζ with period 3b/2, where b = a/
√

3. We can set
ζ = b(3j + p)/2, with integer j and 0 � p < 3.

Numerical calculations show

ṼAA = −vA

(
1 0
0 1

)
, ṼBB = −vB

(
1 0
0 1

)
,

(58)

ṼAB = Ṽ
†
BA = i vAB

(
1 0
0 1

)
,

with real vA, vB , and vAB varying as functions of ζ . For p = 0
and 1, we have a bilayer with AB stacking, and for p = 2,
we have a bilayer with AA stacking. In fact, for p = 0 we
have vA = vAB = 0 and vB = γ1, for p = 1 we have vA = γ1

and vB = vAB = 0, and for p = 2 we have vA = vB = 0 and
vAB = −γ1.

In the following, we consider effects of interwall interac-
tions in the case of the narrow flattened region LF /L � 1 by
perturbation analysis. This analysis is useful for understanding
qualitative features of interwall interactions appearing in
numerically obtained band structure as shown in the next
section.

Because the effective interwall potential is independent of
position, the spatial part of the matrix element is given by an
overlapping integral. For KK elements, for example, we have

SKK
nn′ = 1

L

[∫ (L+LF )/4

(L−LF )/4
+

∫ (−L+LF )/4

(−L−LF )/4

]
ei[κν (n)+κν (n′)]xdx

= 2

π

1

n + n′ − 2
3ν

sin

[
π

2

LF

L

(
n + n′ − 2

3
ν

)]

× cos

[
π

2

(
n + n′ − 2

3
ν

)]
, (59)

which for LF /L � 1 becomes

SKK
nn′ = LF

L
cos

[
π

2

(
n + n′ − 2

3
ν

)]
. (60)

The matrix element SK ′K ′
nn′ can be obtained from SKK

nn′ by
replacing ν with −ν. Further, SKK ′

nn′ and SK ′K
nn′ for different

valleys can be obtained by setting ν = 0 in the above.

B. Weak interwall coupling: Zigzag tube

For zigzag tubes, the effective interwall potential causes
coupling between the K and K ′ points. In the following, we
consider the case where the flattened region has the structure
of an AA-stacked bilayer, i.e., ζ = j (a/2) with integer j .

155420-6



EFFECTIVE-MASS THEORY OF COLLAPSED CARBON . . . PHYSICAL REVIEW B 91, 155420 (2015)

ζ ζ< ζ< ζ

FIG. 5. (Color online) Some examples of the structure of the double-wall region of a flattened armchair nanotube. The K and K ′ points
remain the same, but A and B sites are exchanged between the upper (red) region and the lower (green) region. (a) 2ζ = 3nb corresponding to
the AB-stacked bilayer, (b) 3nb < 2ζ < (3n + 1

2 )b, (c) 2ζ = (3n + 1
2 )b corresponding to AB stacking, and (d) 2ζ = (3n + 1)b corresponding

to AA stacking, with distance b = a/
√

3 between neighboring carbon atoms within the plane.

In the case of semiconducting tubes (ν = ±1), degenerate
states associated with the K and K ′ points are characterized by
s ′ = s and |κν(n)| = |κ−ν(n′)|, giving n′ = −n or κ−ν(n′) =
−κν(n), as shown in Fig. 3(c). The matrix elements are
calculated as

[V KK ′
]ns,−ns = [V K ′K†]ns,−ns = ω−j−1 γ1LF

L
, (61)

independent of n. This shows that the two degenerate states
split into two by the amount ±γ1LF /L independent of bands.
As shown in the next section, this can convert the tube into
metallic for sufficiently large LF /L.

In the metallic case ν = 0, there are two degenerate metallic
linear bands for n = n′ = 0 as shown in Fig. 3(b). The matrix
elements become

[V KK ′
]0s,0s ′ = [V K ′K†]0s,0s ′ = ω−j−1(1 + ss ′)

γ1LF

2L
. (62)

This shows that two degenerates states associated with the
K and K ′ points split into two by the amount ±γ1LF /(2L)
independent of bands and there is no band-gap opening.

For parabolic bands n = ±n0 and n′ = ±n0 with n0 > 0
and s ′ = s, the matrix elements are calculated up to linear order
in k, and the effective Hamiltonian within the four degenerate
states becomes

Heff = −γ1LF

L

⎛
⎜⎝

+n0K −n0K +n0K
′ −n0K

′

0 0 iω−j−1δ −ω−j−1

0 0 −ω−j−1 −iω−j−1δ

−iωj+1δ −ωj+1 0 0
−ωj+1 iωj+1δ 0 0

⎞
⎟⎠,

(63)
with δ ≈ (−1)n0k/κ0(n0). With the use of the unitary matrix

U = 1√
2

⎛
⎜⎝

1 1 0 0
0 0 1 1
0 0 −ωj+1 ωj+1

−ωj+1 ωj+1 0 0

⎞
⎟⎠ , (64)

the effective Hamiltonian is converted into

U †HeffU = −γ1
LF

L

⎛
⎜⎝

+1 0 −iδ 0
0 −1 0 +iδ

+iδ 0 +1 0
0 −iδ 0 −1

⎞
⎟⎠ . (65)

This shows that the two bands, each doubly degenerate,
are split by the amount ±γ1LF /L, and then the remaining
degeneracy is further lifted by δ, which is proportional to the
wave vector and 1/|n|.

C. Weak interwall coupling: Armchair tube

Armchair nanotubes have ν = 0 and μ = ±1 and therefore
are always metallic in the absence of interwall interaction,
as shown in Fig. 3(a). Thus, dominant interwall coupling
is present only within each of the K and K ′ points and
SKK

nn′ = SK ′K ′
nn′ . For p = 0 with AB-stacking structure, the

matrix elements are calculated as

[V KK ]ns,n′s ′ = [V K ′K ′
]ns,n′s ′ = − ss ′

2
γ1S

KK
nn′ . (66)

For n = n′ = 0, there are two degenerate states s = ±1 at k =
kμ corresponding to the K point, and the effective Hamiltonian
becomes

Heff =
(

+γ |k − kμ| − γ1LF

2L
+ γ1LF

2L

+ γ1LF

2L
−γ |k − kμ| − γ1LF

2L

)
, (67)

which gives the bands

ε = −γ1

2

LF

L
±

√
γ 2(k − kμ)2 +

(
γ1LF

2L

)2

. (68)

This shows that the bottom of the conduction band remains at
zero energy while the top of the valence band is lowered by
γ1LF /L.

Because parabolic bands ±n0 with n0 > 0 and s ′ = s are
degenerate, the effective Hamiltonian becomes

Heff = −γ1LF

2L

(
(−1)n0 1

1 (−1)n0

)
, (69)

giving an energy shift of −[(−1)n0 ± 1]γ1LF /(2L). This
results in an alternate upward or downward shift by
(−1)n0+1γ1LF /L for one band and no shift for another. For
p = 1 with another AB-stacking structure, exactly the same
results can be obtained by changing the phase of the wave
functions in an appropriate manner.
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FIG. 6. (Color online) Some examples of the potential amplitude in the dominant-term approximation as the function of chiral angle η with
family index f = 144 defined in Eq. (74), i.e., (na,nb) = (72,0), (73,2), . . . , (96,48). The average of the absolute values of each element of V̂

are shown for V̂ KK and V̂ K ′K ′
by (blue) solid lines and for V̂ KK ′

and V̂ K ′K by (red) dotted lines. The size of the one-dimensional unit cell T is
also shown in units of L by (green) dashed lines. We chose relative displacement ζ/a = 0, 1/4, and 1/

√
3 = 0.5774 . . . defined in Fig. 1 for

three panels and a parameter �edge is defined in Eq. (55).

For the case of AA stacking (p = 2) shown in Fig. 5(d),
the matrix element for the K point becomes

[V KK ]ns,n′s ′ = − i

2
γ1

(
s ′[κ0(n) + i(k − kμ)]√

κ0(n)2 + (k − kμ)2

− s[κ0(n′) − i(k − kμ)]√
κ0(n′)2 + (k − kμ)2

)
SKK

nn′ . (70)

For n′ = −n including n = 0, we have κ0(n′) = −κ0(n), and
therefore,

[V KK ]ns,−ns ′ = − i

2
(s + s ′)

κ0(n) + i(k − kμ)√
κ0(n)2 + (k − kμ)2

γ1LF

L
.

(71)

For the metallic linear bands (n = 0), there are two degenerate
states s = ±1. Off-diagonal elements s ′ = −s in Eq. (71)
vanish, showing that there is no splitting. The bands are shifted
by diagonal elements

[V KK ]0s,0s = + s(k − kμ)

|k − kμ|
γ1LF

L
. (72)

This corresponds to a parallel shift in the negative k direction.
In contrast, the linear bands at the K ′ point shift in the positive
k direction.

For parabolic bands s ′ = s, off-diagonal elements n′ =
−n 	= 0 in Eq. (71) cause the splitting of ±γ1LF /L inde-
pendent of the bands. For small k, diagonal elements for
n′ = n 	= 0 become

[V KK ]ns,ns ≈ (−1)n
s(k − kμ)

|κ0(n)|
γ1LF

L
, (73)

corresponding to a parallel shift in the k direction with the
amount decreasing with |n| as |n|−1. The sign of the parallel
shift is positive for odd n and negative for even n.

D. Chiral tubes: Dominant terms

It is known that essential properties of carbon nanotubes
can be specified by the family index f given by

f = 2na − nb. (74)

For L having f , we have L · a = 1
2f a2, which means that

the chiral vector lies on the line vertical to the horizontal
axis with distance (1/2)f a from the origin. From Eq. (74),
we have na + nb = 3na − f , meaning that the value of ν is
determined by f . Therefore, tubes with a given value of f have
the same value of ν and are always metallic or semiconducting
independent of individual values of na and nb.

The dominant contribution of the effects of interwall
coupling in the flattened region may be estimated from the
Fourier coefficients of small n and m [91,95]. It is natural
to choose n = 0 for both intra- and intervalley terms. For
intravalley terms we choose m = 0 and for intervalley terms
we choose m = +μ for V KK ′

and m = −μ for V K ′K .
In the following, in order to show the magnitude of the

effective potential, we plot (L/LF )V KK
n,m , etc., instead of V KK

n,m ,
etc., themselves. Figure 6 shows the average of the absolute
value of each element V̂ separately for intravalley (KK and
K ′K ′) and intervalley elements (KK ′ and K ′K) as a function
of the chiral angle η for tubes with family number f = 144,
i.e., (na,nb) = (72,0), (73,2), . . ., (96,48). These tubes have
ν = 0 and therefore are metallic. We have chosen the cases of
ζ/a = 0, 1/4, and 1/

√
3 = 0.5774 . . .
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FIG. 7. (Color online) Calculated band structure of collapsed tubes with family index f = 144 having zigzag structure (a), its neighboring
structures (b), armchair structure (f), and its neighboring structures (e), (d), and (c). Parameters are defined in Eqs. (13), (16), and (20) and are
illustrated in Fig. 1.
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The intervalley coupling is significant only in the extreme
vicinity of a zigzag tube η = 0. On the other hand, the
intravalley term gradually increases with η, with behavior
strongly dependent on the width of the flattened region, LF /L.
In fact, it oscillates with period roughly proportional to L/LF

(L is a smooth and slowly increasing function of η), but is not
correlated with T that oscillates over a wide range as shown
in the figures. Further, we notice that the interwall interaction
is essentially independent of relative displacement ζ except at
η = 0 (zigzag) and π/6 (armchair). This can be seen in the
band structure itself as shown in the next section.

Calculations are performed also for semiconducting tubes
with family number f = 142, although not shown here. The
behavior is qualitatively the same as in the case of f = 144,
but the absolute value of the effective interwall coupling is
smaller except in the case of η = 0.

In collapsed zigzag tubes with η = 0, interwall interaction
is present only between the K and K ′ points. This corresponds

to the fact that phase factors, such as ei(K′ ·R′
A−K·RA) and

ei(K·R′
A−K′ ·RA) appearing in the off-diagonal elements of ṼAA

given in Eq. (35) and the corresponding terms in ṼAB , etc., in
Eqs. (36)–(38), do not cancel out even after summation over
RA, R′

A, etc. When η slightly deviates from zero, however,
these phase factors start to rapidly oscillate in a quasiperiodic
manner because they involve K and K′ considerably different
(∼2π/a) from each other. Thus, the effective interwall
potential vanishes due to cancellation.

In collapsed armchair tubes with η = π/6, on the other
hand, the relevant phase factors involve the same K or K′.
When η slightly deviates from π/6, the phase factors start
to oscillate in a quasiperiodic manner but the oscillation
is relatively slowly varying. Thus, the effective potential
remains nonzero for small LF because of incomplete can-
cellation. Further, it decreases with the deviation of η from
π/6 more rapidly for wider flattened regions, as shown
in Fig. 6.
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FIG. 8. (Color online) Calculated band structure of collapsed tubes with f = 144 having zigzag and armchair structures. (a) and (b)
ζ/a = 1/4. (c) and (d) ζ/a = 1/

√
3.
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IV. NUMERICAL RESULTS

For actual calculations, we choose γ1 as the energy
unit. Further, we choose n = 0,±1, . . . ,±nmax and for m =
0,±1, . . . ,±mmax, with nmax = mmax = 10–15. This choice
of the basis set gives convergent results at least for the bands
lying in the zero-energy region in which we are interested. In
the following, results for ζ/a = 0, 1/4, and 1/

√
3 are shown.

Calculated band structure will be compared with that in the
dominant-term approximation in which only the dominant
term is taken as discussed in the previous section.

Figure 7 shows examples of the band structure in the
metallic case with f = 144 for ζ = 0. Figures 7(a) and 7(b)
present those in the vicinity of the zigzag structure, i.e.,
(na,nb) = (72,0) and (73,2) corresponding to η(π/6)−1 = 0
and 0.046, respectively. The dominant-term approximation can
describe the essential features of the bands near the Fermi level
consisting of metallic linear bands, although wave vectors

corresponding to zero energy are shifted and the velocity is
lowered if we go beyond the dominant-term approximation.

In zigzag nanotubes, the band structure is strongly modified
by collapsing due to the strong interwall couplings, although
the tube remains metallic because of the presence of linear
bands at the Fermi level. In fact, the metallic linear bands
associated with the K and K ′ points are split in energy or
shifted in the positive and negative k direction due to the
interwall coupling as shown in Eq. (62) in the perturbation
treatment in the previous section. The excited parabolic bands
which are fourfold degenerate are first split into two sets at
k = 0 and then the remaining degeneracy is lifted by the k

linear term as shown in Eq. (65).
With the increase of η, i.e., when the structure deviates

from the zigzag case, effects of interwall interaction rapidly
diminish. In fact, for (na,nb) = (73,2), shown in Fig. 7(b), the
band structure is modified due to the collapse in such a way that
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FIG. 9. (Color online) Calculated band structure of collapsed zigzag tubes with f = 144 and η = 0. With the increase of LF /L, the band
structure gradually approaches that of an AA-stacked bilayer with appropriately discretized wave vectors in the circumference direction.
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the effective velocity in the axis direction is slightly reduced.
This velocity reduction is in qualitative agreement with that
observed experimentally [75,80–83,97–100] and calculated
theoretically [80,86–91] in twisted bilayer graphene. With the
increase of η, however, the band rapidly becomes unaffected
by collapsing, although the results are not shown here. For
chiral tubes, μ takes a nonzero value and therefore the K and
K ′ points become different in the one-dimensional Brillouin
zone as denoted by short vertical dotted lines near zero energy.

Figure 7 also shows results for tubes having a structure
close to η = π/6 (armchair) and for ζ = 0, i.e., (c) (na,nb) =
(94,42), (d) (96,44), (e) (95,46), and (f) (96,48) corresponding
to (c) η(π/6)−1 = 0.893, (d) 0.930, (e) 0.965, and (f) 1. In the
armchair tube, the figure shows results only for the K point
and those for the K ′ point are obtained by mirror reflection
with respect to k = 0.

In an armchair tube shown in Fig. 7(f), the metallic band
structure is strongly modified by collapsing and the tube
becomes semiconducting due to band-gap opening. In fact,
the bottom of the conduction band with n = 0 remains at zero
energy, while the top of the valence band with n = 0 is lowered
roughly in proportion to LF /L due to interwall coupling.
This is in qualitative agreement with Eq. (67) obtained by
the perturbation analysis. For excited parabolic bands, the
qualitative features of effects of interwall coupling are in
agreement with the perturbation analysis given in Eq. (69).

In chiral nanotubes, effects of interwall interactions are
considerably reduced and diminish with the decrease of η from
π/6, although their decay is more gradual than in the vicinity
of the zigzag tube. This has already been demonstrated in
the behavior of the dominant terms shown in Fig. 6. The
dominant-term approximation gives quite accurate results near
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FIG. 10. (Color online) Calculated band structure of collapsed armchair tubes with f = 144 and η = π/6. With the increase of LF /L, the
band structure gradually approaches that of an AB-stacked bilayer with appropriately discretized wave vectors in the circumference direction.
The tube becomes semiconducting due to interwall interaction in such a way that the bottom of the conduction band is fixed at zero energy,
while the top of the valence band is lowered, forming a band gap.
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zero energy, but starts to become less valid away from zero
energy.

The corresponding results for ζ/a = 1/4 and 1/
√

3 are
shown in Fig. 8. Because the band structure is not affected by
displacement ζ in chiral nanotubes, only the results for zigzag
and armchair nanotubes are shown. In zigzag and armchair
nanotubes, the band structure depends significantly on ζ/a.

As shown in Fig. 4, the zigzag tube with η = 0 has the
structure of an AA-stacked bilayer graphene in the flattened
region for ζ/a = 0 and varies as a function of ζ with period
a/2. For ζ/a = 1/4, the two layers are displaced from each
other in a symmetric way, resulting in the symmetric band
structure as shown in Fig. 8(a). A small band gap appears
for LF /L = 1/4, but disappears for sufficiently large LF /L,
although explicit results are not shown here.

The displacement ζ/a = 1/
√

3 = 0.5774 . . . in the zigzag
case, shown in Fig. 8(c), corresponds to the case where the

top and bottom layers are slightly displaced from an AA-
stacked bilayer. This slight displacement results in repulsion
between some bands of Fig. 7(a), giving rise to the band-gap
opening. This gap due to symmetry breaking is always present
independent of LF /L.

As shown in Fig. 5, for the armchair nanotube, the
structure takes the form of AB stacking at ζ/a = 0 and ζ/a =
1/(2

√
3) = 0.2886 . . . and then the form of AA stacking at

ζ/a = 1/
√

3. This change repeats itself with period a/
√

3.
Thus, in an armchair tube with ζ/a = 0.25, the structure is
slightly displaced from the AB stacking. As shown in Fig. 8(b),
this slight displacement results in some distortion of the band
structure of Fig. 7(f) in such a way that the energy becomes
asymmetric around the K point. Despite the asymmetry, the
tube remains semiconducting due to a nonzero gap.

For ζ/a = 1/
√

3, the flattened region has the structure
of an AA-stacked bilayer, and nanotubes become metallic
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FIG. 11. (Color online) Calculated band structure of collapsed tubes with f = 142 (semiconducting) having (a) zigzag structure and
(b) its neighboring structure, and (c) and (d) near-armchair structure. The zigzag tube turns into metallic from semiconducting due to collapse
as in panel (a).

155420-13



TAKESHI NAKANISHI AND TSUNEYA ANDO PHYSICAL REVIEW B 91, 155420 (2015)

independent of the width of the flattened region, as shown
in Fig. 8(d), because linear bands cross the Fermi level. In
agreement with Eq. (72), the metallic linear bands are shifted
in the negative k direction. The parabolic bands are split
and shifted in different k directions depending on band n

qualitatively in agreement with Eq. (73).
In Fig. 9, the dependence on LF /L is shown for zigzag

tubes with ζ/a = 0. With the increase of LF /L, the spectrum
gradually takes the form of that of an AA-stacked bilayer with
appropriately discretized wave vectors perpendicular to the
axis. The tube remains metallic independent of LF /L. The
dependence on the width of the flattened region for armchair
nanotubes is shown in Fig. 10 for ζ/a = 0. The band structure
again gradually approaches that of an AB-stacked bilayer. The
band gap increases, takes a maximum, and then decreases with
LF /L, but always remains nonzero.

As some examples for semiconducting nanotubes, we
consider the case of f = 142 corresponding to (na,nb) =
(71,0), (72,2), . . . , (94,46). In this case we always have
ν = −1 and μ = 0; i.e., the K and K ′ points are both mapped
onto the center of the one-dimensional Brillouin zone. Because
the qualitative feature of the dependence on the chiral angle is
the same as that in metallic nanotubes, we present results in
the vicinity of the zigzag and armchair structures in Fig. 11.
In fact, interwall interactions rapidly become small with the
increase of η from η = 0. The same is true for η ∼ π/6; i.e.,
interwall effects are most important for (na,nb) = (94,46) for
which η = 0.977 × (π/6) closest to the armchair structure and
decrease with the decrease of η, although more slowly.

One of the most significant effects of collapse is to
convert the zigzag tube from semiconducting to metallic.
This arises due to the splitting of two bands degenerate
between the K and K ′ points due to interwall coupling as has
been shown in the perturbation analysis, Eq. (61). All chiral
tubes remain semiconducting independent of LF /L, although
explicit results are not shown.

V. SUMMARY AND CONCLUSION

We have theoretically studied effects of interwall interac-
tion in collapsed carbon nanotubes within an effective-mass
scheme. Interwall interactions in the flattened region are
represented by an effective potential connecting a point on
the flattened region to its counter point. Effects of interwall

interactions are most important in nonchiral nanotubes such as
zigzag and armchair. In zigzag and armchair tubes, the band
structure varies sensitively with the displacement, correspond-
ing to the sensitive change of the band structure in bilayer
graphene. In zigzag nanotubes, in particular, the collapsed
tubes become metallic for a sufficiently wide flattened region
independent of whether the uncollapsed tube is metallic or
semiconducting.

In chiral nanotubes, interwall interactions can essentially be
neglected except in the close vicinity of zigzag and armchair
tubes. Interwall interactions diminish rapidly when the chiral
angle deviates from 0 (zigzag) or π/6 (armchair), although
the decay is slower in the vicinity of the armchair tube. In
fact, in chiral tubes closest to a zigzag and armchair tube, the
semiconducting tube remains semiconducting even for a very
wide flattened region. Such qualitative features of the chiral
angle dependence can be understood through the magnitude
of dominant terms corresponding to long-wavelength Fourier
coefficients of the effective interwall potential.

A small band gap is inversely proportional to diameter in
thick chiral semiconducting nanotubes and is smaller than
γ1 = 0.4 eV in nonchiral nanotubes, when the band gap
opens due to interlayer interaction. Observation of these
band gaps is required by means of precise measurement
such as infrared transmission spectroscopy and scanning
tunneling microscopy. Slightly reduced velocity due to the
interlayer interaction may be observed with scanning tunneling
microscopy, angle-resolved photoemission spectroscopy, and
Raman spectroscopy in the same way as in twisted bilayer
graphene [75,80–83,97–100].

With the increase in the width of the flattened region,
the band structure approaches that of a bilayer ribbon in
which the electron motion in the ribbon-width direction is
discretized under appropriate boundary conditions. Therefore,
the band structure of collapsed nanotubes can be obtained
from a bilayer graphene by introducing appropriate boundary
conditions corresponding to the curved monolayer region. This
problem is left for future study.
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