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Electrical manipulation of edge states in graphene and the effect on quantum Hall transport
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We investigate the properties of Dirac electrons in a finite graphene sample under a perpendicular magnetic
field that emerge when an in-plane electric bias is also applied. The numerical analysis of the Hofstadter spectrum
and of the edge-type wave functions evidence the presence of shortcut edge states that appear under the influence
of the electric field. The states are characterized by a specific spatial distribution, which follows only partially
the perimeter, and exhibit ridges that connect opposite sides of the graphene plaquette. Two kinds of such states
have been found in different regions of the spectrum, and their particular spatial localization is shown along with
the diamagnetic moments that reveal their chirality. By simulating a four-lead Hall device, we investigate the
transport properties and observe unconventional plateaus of the integer quantum Hall effect that are associated
with the presence of the shortcut edge states. We show the contributions of the novel states to the conductance
matrix that determine the new transport properties. The shortcut edge states resulting from the splitting of the
n = 0 Landau level represent a special case, giving rise to nontrivial transverse and longitudinal resistance.
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I. INTRODUCTION

The spectral and transport properties of graphene, including
the topological aspects, were studied in the presence of the
spin-orbit coupling [1], of the external magnetic field [2–4],
and also considering different geometries, like the ribbon [5–7]
or finite plaquette [8–11]. In geometrically confined systems,
the edge states, of either chiral or helical origin, play an
essential role acting as charge and spin channels for the integer
and spin quantum Hall transport at a given Fermi energy.

In this paper, we introduce as a supplementary ingredient
an in-plane electric bias that allows for the manipulation of
the conducting channels, with immediate consequences on the
quantum Hall effect. The role of the electric bias is to act on
the spatial position of the channels. Then, having in mind a
many-terminal Hall device, it is obvious that the migration
of the channels with the electric field affects the electron
transmittance between different leads, a fact that suffices to
change the quantum Hall plateaus. The modified edge states,
responsible for this effect, will be called shortcut edge states
for reasons that are obvious in Fig. 7.

The possibility to electrically manipulate the edge states
generated by the magnetic field was advanced in Ref. [12] for
the confined 2D electron gas using a tight-binding approach.
We remind that the 2D gas exhibits only conventional Landau
bands, which depend linearly on the magnetic field. However,
the study of graphene looks especially promising due to
specific aspects such as the relativistic range of the energy
spectrum (where the Dirac-Landau bands show the square root
dependence on the magnetic field), and the presence of the flat
(independent of the magnetic field) n = 0 Landau level at zero
energy.

The numerical calculation of the spectral properties of a fi-
nite plaquette subjected to crossed electric and magnetic fields,
corroborated by the calculation of the electron transmittance
through the Hall device (obtained by attaching four leads),
indicate the presence of what we call shortcut edge states. Their
distribution on the plaquette is such that the wave function is

localized mainly along the edges, but shows also a shortcut in
the middle, the position of which being perpendicular on and
controlled by the electric field. We have identified two kinds
of such states, some being spread among the bulk states of
the relativistic Landau bands, and others resulting from the
electrically induced degeneracy lifting of the n = 0 Landau
level.

The zero-energy Landau level attracted much interest, its
splitting being obtained in different ways: by using an external
magnetic field in the quantum extreme limit [13,14], the
internal magnetic field in the magnetic topological insula-
tors [15,16], or by disorder [17]. In all situations, the trans-
verse conductance shows plateaus near E = 0, however, the
longitudinal one is a problem under debate, its behavior being
either dissipative or showing sometimes a tendency towards
nondissipative character. The n = 0 LL is studied intensively
also in the context of the quantum Hall ferromagnetism driven
by the exchange interaction (see Ref. [18] and the references
therein).

In this paper, the degeneracy lifting of the zero-energy
Landau level is ensured by the electric bias applied in the
plane of the graphene plaquette. The result is a Wannier-
Stark ladder composed of a sequence of shortcut edge states
with alternating chirality (meaning that they carry opposite
currents and show opposite diamagnetic moments). Due to
this property, one may assume the presence in the transverse
(Hall) resistance of a quantum plateau RH = 0 in the energy
range about E = 0, and, indeed, this guess is confirmed by
the Landauer–Büttiker-type calculation. In what concerns the
longitudinal resistance, we find that RL may show dissipative
or nondissipative character, as depending on the configuration
of the current and voltage terminals attached to the graphene
plaquette.

We mention that, in order to detect the formation mecha-
nism of the shortcut edge states in the plaquette geometry, it
was very useful to study first the effect of the electric field on
the edge states in the zigzag graphene ribbon. The analysis is
presented in the next section.
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Although our attention is paid to the novel edge states in
crossed electric and magnetic fields and to their influence
on the transport properties, we remark that the effect of the
external electric field in graphene was studied also in some
other contexts. For instance, one may ask how robust should
the Landau spectrum be against the applied electric field. The
problem was addressed in Refs. [19,20], where it was proved
analytically that, in the low-energy range of the graphene
spectrum, the interlevel distance decreases with the electric
field, and, eventually, for a critical value of the ratio β between
the electric field E and the magnetic field B, all Dirac-Landau
levels collapse (β = E/vF B, vF = Fermi velocity). Another
aspect, discussed in Ref. [21], concerns the specific properties
of the Wannier-Stark states in graphene under strong electric
field. It was shown that the mixing between the conduction
and valence bands, induced by the electric field near the
Dirac points, gives rise to an energy spectrum characterized
by anticrossing points when the electric field is varied.

Our paper is organized as follows. In Sec. II, we calculate
the energy spectrum and observe the specific behavior of the
edge states that appear under the effect of the electric bias.
This is done both for the graphene zigzag ribbon and the
plaquette geometry. In Sec. III, we prove the effect of the
shortcut edge states on the electron conductance matrix, and
the unusual aspect of the quantum Hall effect that shows novel
plateaus. These aspects are approached both heuristically and
numerically in the frame of the Landauer-Büttiker formalism.
The conclusions can be found in the last section.

II. SPECTRAL PROPERTIES OF THE ZIGZAG
NANORIBBON AND FINITE GRAPHENE LATTICE IN

THE TIGHT-BINDING MODEL

In this section, our goal is to bring out particular aspects
of spectral properties of finite honeycomb plaquette in the
simultaneous presence of a strong perpendicular magnetic field
and an in-plane electric field. The attention will be focused on
the novel chiral edge states that appear under applied bias in
the relativistic range of the graphene energy spectrum. The
understanding of their specific arrangement on the plaquette
imposed by the electric field is, however, more accessible if
we discuss first the same problem in the ribbon geometry.

Since the honeycomb lattice arises from the overlapping of
two triangular lattices A and B, the tight-binding Hamiltonian
can be written in terms of creation and annihilation operators
a
†
n,m,an,m and b

†
n,m,bn,m, which act on the sites of the two

sublattices, correspondingly. The counting of the atoms can
be done in different ways. Here, in accordance with Fig. 1,
the index n counts the atoms along the horizontal zigzag
chains, and m is the chain index (n ∈ [1,N ], m ∈ [1,M]). It
turns out that for the A sites of the blue sublattice, one has
n + m = odd, while for the red sublattice n + m = even. In
the presence of a perpendicular magnetic field, the hopping
integral t (connecting the two sublattices) acquires a Peierls
phase, which can be calculated by integrating the vector
potential along the A-B bonds. Then, the spinless tight-binding
Hamiltonian that describes the π electrons in the graphene

FIG. 1. (Color online) A piece of honeycomb lattice with two
type of edges: zigzag (along the Ox direction) and armchair (along
the Oy direction). The blue points belong to the sublattice A and the
red points to the sublattice B, t is the hopping amplitude connecting the
nearest neighbor lattice points; the static electric field (blue arrows)
is applied parallel to Oy axis. The number of lattice sites is N × M ,
were N is odd and M is even, in our sketch 7 × 4.

lattice in a perpendicular magnetic field has the form

H =
∑
n,m

n + m = odd

εaa†
n,man,m +

∑
n,m

n + m = even

εbb†n,mbn,m

+ t
∑
n,m

(eπiφ(m− 5
6 )a†

n,mbn−1,m + e−πiφ(m− 5
6 )a†

n,mbn+1,m)

+ t
∑

n=odd

∑
m=even

a†
n,mbn,m−1

+ t
∑

n=even

∑
m=odd

b†n,man,m+1 + H.c., (1)

where φ is the magnetic flux through the hexagonal cell
measured in flux quantum units h/e, and the vector potential
was chosen as �A = (−By,0,0). The first two terms in Eq. (1)
represent the atomic contributions, the next two terms describe
the hopping along the zigzag chains [22], while the last ones
describe the hopping between the neighboring chains.

The in-plane electric field is introduced along the Oy

direction, and it is simulated by replacing in Eq. (1) the
on-site energies εa,b with εa,b

n,m = eE(yn,m − Ly/2), where E
is the electric field, yn,m is the site coordinate, and Ly is
the length of the honeycomb lattice along the Oy direction
[Ly = (3M − 2)a/2, where a is the hexagon side length].

The spectral properties of the Hamiltonian depend on the
boundary conditions imposed to the wave function, and the
most studied case is that of the graphene ribbon, meaning that
periodic conditions are imposed along one direction only. In
the next section, we shall discuss first the effect of the electric
field on the edge states in the zigzag ribbon, and then extend the
analysis to the finite plaquette, obtained by imposing vanishing
boundary conditions all around the graphene lattice. Different
behaviors of the edge states can be identified in three regions of
the Hofstadter spectrum. At the extremities of the spectrum, in
the conventional Landau range, the modifications of the edge
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FIG. 2. (Color online) The energy spectrum of a graphene zigzag nanoribbon: (a) in the presence of perpendicular magnetic field and (b)
in the presence of both magnetic and in-plane electric fields. The black lines correspond to the Fermi level and the red, blue, and green dots
highlight the quantum states whose corresponding conducting channels are represented in Fig. 3. The theoretical simulation is performed
at the following parameters: the number of sites 400 × 100, the magnetic flux φ/φ0 = 1/500, and the electric bias eELy/t = 0.1. [These
values correspond to the width Ly = 10lB = 21 nm, magnetic field B = 158 T, electric field E = 1.3 × 107 V/m, and a parameter β = 0.09;
experimentally accessible values are suggested below by the scaling law (5).]

states are similar to those discussed already in Ref. [12] for
the case of the confined 2D electron gas. Thus, in this paper,
we concentrate on the relativistic Landau range, and also on
the special case of the n = 0 Landau level placed at the energy
E = 0. These two ranges exhibit the specific behavior of the
Dirac electrons in graphene.

A. Zigzag nanoribbon: spectral properties in crossed
magnetic and electric fields

In the ribbon case, the momentum kx is a good quantum
number, and the energy spectrum will be obtained by diagonal-
izing a 2M × 2M matrix for any momentum kx . The resulting
eigenvalues as a function of kx are shown in Fig. 2(a) in the
absence of the electric field and in Fig. 2(b) for a nonvanishing
electric field.

For the already studied case E = 0 [23], the energy
spectrum shows electron-hole symmetry with degenerate flat
Landau bands, whose wave functions are located in the
middle of the stripe, and dispersive states along the edges
[see Fig. 2(a)]. Obviously, the nonzero velocity v(kx) =
1
�
dE(kx)/dkx and its sign indicate the presence of currents

flowing along the edges in opposite directions. For instance,
choosing the Fermi level between n = 1 and n = 2 Landau
levels, we notice three channels with negative velocity (marked
with red dots) and another three channels (marked in blue)
flowing oppositely on the other side of the ribbon. The picture
in the real space is illustrated in Fig. 3(a).

The additional electric field induces qualitatively new
features. The former flat Landau bands get a tilt, which
indicates the degeneracy lifting and a finite velocity 1

�
dE/dkx

[positive in Fig. 2(b) for the chosen direction of the electric
field]. One may observe that a partial degeneracy lifting occurs
also to the band n = 0, suggesting new effects around the
energy E = 0. However, the most significant observation at
E �= 0 is that, because of the tilt of the spectrum, the number of
edge channels on the two sides of the zigzag ribbon becomes

different, and current carrying channels appear also in the
middle of the stripe at the expense of the edge channels.
The number and position of the channels can be observed

FIG. 3. (Color online) Schematic representation of conducting
channels in the zigzag nanoribbon geometry corresponding to the
three situations discussed in Fig. 2. (a) At E = 0, there are three edge
channels on each side of the ribbon, running in opposite directions.
(b) At E �= 0 and EF = 0.15, due to the tilt of the former flat band,
two channels are pushed in the middle of the stripe. (c) The special
case E �= 0 and EF = 0 shows only four channels: unusually, the
edge channels run in the same direction, while the two bulk channels
run oppositely.
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by counting the intersections of the Fermi level with the
spectrum branches in Fig. 2(b). Different situations may occur
depending on the position of the Fermi level in the spectrum,
and two specific cases can be highlighted. (i) At Ef = 0.15,
we notice three edge channels on the left (stemming from
n = 0 and n = 1 Landau levels, and marked with red dots), one
edge channel on the right (stemming from n = 0, marked in
blue, and running in opposite direction), but also two channels
(marked with green dots) coming from the inclination of the
former flat band. The numerical calculation of the eigenvectors
reveals that the “green” channels are located in the middle of
the stripe as shown in Fig. 3(b).

(ii) At Ef = 0, a very interesting case occurs. Figure 2(b)
puts into evidence two edge states (marked in red and blue),
which show this time the same (negative) derivative, i.e., the
same direction of the current, while the “green” doublet in
the middle shows the opposite sign. The distribution of the
channels in the real space turns out to be unusual in this case
as shown in Fig. 3(c).

The three situations discussed for the ribbon geometry show
that the location of the channels along the Oy axis depends on
the presence/absence of the electric field and on the position
of the Fermi level. We are left now with the question how
the channels will be distributed in the actual case of a finite
rectangular plaquette.

The energy spectrum of the graphene ribbon in crossed
electric and magnetic fields apparently shows in Fig. 2(b)
the symmetry E(k0

x + kx) = −E(k0
x − kx) around a point k0

x ,
which was also noticed in Ref. [24] in the frame of the
continuum model. In Appendix, we prove the existence and
calculate the value of k0

x . The proof indicates that the spectrum
symmetry relies on the specific inversion symmetry of the
honeycomb lattice that moves the atoms A in atoms B and vice
versa. The position of k0

x is defined modulo π and depends on
the magnetic field B and the ribbon width M .

We continue the discussion on the graphene ribbon with
considerations concerning finite size aspects and scaling
properties of the energy spectrum. One knows that the two-
dimensional electron gas in a perpendicular magnetic field
shows the degenerate Landau spectrum and quantum transport
properties if the linear dimension L is much larger than the
magnetic length lB = √

�/eB (L � lB). In other words, at a
given B, the system enters the Landau quantization regime
only if L is sufficiently large. For the graphene ribbon,
the gradual formation of the Dirac-Landau spectrum with
increasing width was noticed already in Ref. [25]. We return to
this problem in Fig. 4(a) where we keep the magnetic flux fixed
at φ/φ0 = 0.0005 (corresponding to B = 39.5T ) and observe
the formation of the degenerate Dirac-Landau levels when the
width Ly increases. The only level that is always present, no
matter the ribbon width, is the level n = 0. In what concerns the
others n = 1,2, . . . , one can see that, for instance, at M = 100
[when the ribbon width Ly = ( 3M

2 − 1)a = 21 nm = 5.2lB],
the specific degenerate levels do not manifest themselves (the
red curve). However, such states appear at the larger widths
corresponding to M = 200 and 400 (Ly = 42.4 nm ≈ 10.5lB
and Ly = 85 nm ≈ 21lB , respectively).

We make now a step further proving the finite size scaling
behavior of the spectrum in the relativistic domain. To this
aim, one calculates the energy spectrum for different widths

and magnetic fields and finds a scaling function that allows the
superposition of all curves into a single one as in Fig. 4(b). One
makes first the scaling hypothesis that the relativistic Landau
eigenvalues En are homogeneous functions of B and Ly :

λEn(B,Ly) = En(λs1B,λs2Ly). (2)

The parameter λ is arbitrary and, with the choice λ = B−1/s1 ,
one gets

B−1/s1En(B,Ly) = En(1,B−s2/s1Ly). (3)

The scaling behavior shown in Fig. 4(b) occurs for s1 = 2 and
s2 = −2, resulting the following scaling law:

En(B,Ly) =
√

Bf (BLy). (4)

In Fig. 4(c), we detected also the scaling behavior of the low-
energy spectrum in the presence of both magnetic and electric
fields. In this case, repeating the above arguments, the resulting
scaling law is the following:

En(B,E,Ly) =
√

Bf̃
(
BLy,EL3/2

y

)
. (5)

The finite size scaling, besides being intrinsically inter-
esting, helps to overcome technical problems met in the
numerical simulations of the physical effects. Since the
computer simulation of finite but large systems pretends
much memory and running time, one has to consider smaller
systems subjected, however, to external (magnetic, electric)
fields higher than available experimentally. Then, the scaling
law says that the same behavior is expected at smaller fields
but at larger size. For instance, the data in Fig. 2(b) are
obtained at B = 158 T and E = 1.3 × 107 V/m for a width
of Ly = 21 nm, but the scaling law (5) shows that the same
value of the scaling function would be obtained at B = 15 T
and E = 4 × 105 V/m, if the width were Ly = 221 nm. We
note that the analysis of the finite size scaling for the graphene
plaquette is technically more difficult than for the ribbon, and
it will not be addressed here.

B. Shortcut edge states in finite plaquette geometry

The finite size plaquette can be obtained from the ribbon
by imposing vanishing boundary conditions also along the Ox

direction. The resulting structure we shall consider will be
like in Fig. 1, the rectangular geometry showing two zigzag
and two arm-chair boundaries. Then one can assume that the
channels, described above for the ribbon case, will give rise
to closed circuits in the confined system. The main question is
how the channels located in the middle of the stripe [shown in
Figs. 3(b) and 3(c)] will get closed in the plaquette geometry.
Intuitively, they should generate channels that touch all the four
edges, but also channels that get closed through the middle of
the plaquette. However, the analysis performed in the previous
subsection cannot be adopted now in a straightforward manner
since the momentum kx is no more a good quantum number.
So, we shall discuss the effect of the applied electric field
in terms of the changes induced to the Hofstadter energy
spectrum, to the bulk and edge quantum states, and to the
diamagnetic response of the system.

Before discussing the energy spectrum of the confined
system in crossed magnetic and electric fields, it is useful
to remind some spectral peculiarities of the infinite graphene

155409-4



ELECTRICAL MANIPULATION OF EDGE STATES IN . . . PHYSICAL REVIEW B 91, 155409 (2015)

FIG. 4. (Color online) (a) The gradual formation of the Dirac-Landau levels with increasing width of the graphene ribbon at
φ/φ0 = 0.0005(B = 39.5 T): M = 100 (red), 200 (blue), and 400 (green). (b) The eigenenergies scaled according to Eq. (4); the
three superimposed curves correspond to M = 100,φ/φ0 = 0.002(B = 158 T) (red), M = 200,φ/φ0 = 0.001(B = 79 T) (blue), and M =
400,φ/φ0 = 0.0005(B = 39.5 T) (green). (c) The scaled eigenenergies according to Eq. (5) when both magnetic and electric fields are present;
the sequence of curves is the same as in (b), the electric bias being eELy/t = 0.1(E = 1.3 × 107 V/m),eELy/t = 0.1/

√
2(E = 4.5 × 106 V/m),

and eELy/t = 0.05(E = 1.6 × 106 V/m), correspondingly.

sheet in perpendicular magnetic field. In this case, the spectrum
is composed of two Hofstadter butterflies containing both
conventional Landau levels (which depend linearly on the
magnetic field B) and relativistic Landau levels (which depend
on the magnetic field as B1/2). Also specific to graphene
is a flat Landau level n = 0 that appears in the middle of
the spectrum (at E = 0). On the other hand, in the case of
the finite size graphene, the confinement induces edge states,
which fill the interlevel gaps, and a slight lifting of the level
degeneracy. These aspects can be noticed in Fig. 5(a), where
the eigenvalues, obtained by the numerical diagonalization of
the Hamiltonian (1) with vanishing boundary conditions, are
shown as function of the magnetic flux for the relativistic
(low-energy) range of the spectrum. The additional effect of
the in-plane electric field can be seen by inspection of Fig. 5(b),
but, an easier examination can be done by observing the
diamagnetic moments Mn of the individual states n in Fig. 6.
Since the sign of Mn reveals the chirality of the state |n〉, the
diamagnetic moment is a convenient tool for probing the bulk
and, respectively, the edge states, which are distinguished by
their opposite chirality. The calculation of Mn can be easily
performed following the recipe described in Ref. [26].

The following aspects can be noticed by comparing the two
panels in Fig. 6. (i) The energy range occupied by the bulk
states at E �= 0 is more extended than in the case of vanishing
electric field. This is understandable since the electric field
lifts the quasidegeneracy of any Landau band, giving rise to a
Stark fan with increasing field.

(ii) The presence among the bulk states at E �= 0 of several
states of reverse chirality, mentioned with arrows in Fig. 6(b);
their chirality indicates that the states are of edge-type,
nevertheless, they behave unusually. Indeed, the calculation
of the charge density |�(�r)|2 proves that all these states keep
the localization along the edges, but exhibits also a ridge in the
middle of the plaquette, which is perpendicular on the direction
of the electric field, and shortcuts two opposite sides. For a
given magnetic field, the position of the ridge on the plaquette
depends on the energy En and can be modified by changing the
electric field. Such states generated by the application of the
electric field, are shown in Fig. 7, and will be called shortcut
edge states.

In the classical picture, the normal edge states are assimi-
lated to skipping cyclotron orbits along an equipotential line
near the hard walls. In the same line of thinking, one may
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FIG. 5. (Color online) (a) The relativistic range of the Hofstadter spectrum for a graphene plaquette in the absence of the electric field. Edge
states fill the gaps as an effect of the finite size. (b) The in-plane electric field lifts the quasidegeneracy of the Landau bands; the most visible
effect concerns the n = 0 band in the middle of the spectrum. The number of lattice sites is 35 × 20, and the electric bias is eELy/t = 0.2.
(The energy is measured in units of hopping integral t , and the magnetic flux through the hexagonal cell in flux quanta h/e.)

assume that the applied electric bias creates an internal barrier
that limits the electron motion and compels the skipping orbit
to close along the equipotential line along the electric barrier.
This would be the classical picture of a shortcut edge state.

The diamagnetic current carried by a shortcut edge state
flows along the plaquette edges, but part of it closes through
the middle. When leads are attached to the plaquette, the
shortcut obviously affects the electron transmittance between
the different leads, with consequences for the quantum Hall
effect that will be discussed in Sec. III.

One cannot disregard the presence also in the left panel
of Fig. 6 (at E = 0) of a state of reversed chirality in the
first Landau band. We checked it by calculating the charge
distribution, and it turned out that the state is a usual edge state
going around all four edges of the sample. We assume that
it appears accidentally among the bulk states as a finite size
effect for the given plaquette, at the given magnetic field, due
to some specific hidden symmetry.

At this stage, one has to discuss the question of the electric
field strength. It is known from the continuous approximation

used in Refs. [19,20] that, with increasing value of the
parameter β, the gaps between the relativistic Landau levels
diminish, and there is a critical value β = 1 at which all the
gaps vanish. We need to say that our results, obtained in the
finite lattice model are generated for values of β that are lower
than those used in Lukose et al. [19] and much lower than the
critical β.

The closing of the gaps with increasing electric field
obviously occurs also in the lattice model due to the broadening
of the Dirac-Landau bands provided by the above mentioned
formation of the Stark fan [27]. In this way, the gaps disappear
together with the normal edge states located inside. However,
an interesting question concerns the fate of the shortcut edge
states at high values of β, beyond the gap closure. One has to
remember [see Fig. 6(b)] that the shortcut edge states appear
in the bands (not in the gaps), so that one may suppose that
they will survive even at high values of β, when the gaps
disappear and the mixing of the adjacent bands occurs. This
situation, if true, should be seen in the quantum Hall effect,
which is no more carried by the normal edge states, but only
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FIG. 6. (Color online) The orbital magnetization Mn of the eigenstates vs the eigenenergies En for a graphene plaquette of dimension
41 × 40, with no electric field (a), and with an in-plane electric field eELy/t = 0.2 (b), φ/φ0 = 0.03,β = 0.03. In (b), the shortcut edge states
located in the first relativistic band (see text) are marked with arrows. Alternate magnetizations are to be noticed in the zero-energy range.
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(a) (b)

FIG. 7. (Color online) |�(�r)|2 for two shortcut edge states from
the first relativistic Landau band corresponding to the energies E =
0.5306 (a) and 0.5786 (b). The number of lattice sites is 105 × 40,
φ/φ0 = 0.03, and eELy/t = 0.2, corresponding to β = 0.03.

by the shortcut edge states. Indeed, the calculation of the Hall
resistance shows in Fig. 11 that for eELy/t = 0.5 the normal
plateaus disappear (except the first one corresponding to the
largest first gap, which is not yet closed), but the intermediate
plateaus at RH = 2/3 and 4/16, supported by the shortcut
edge states, still exist.

One may also ask the question whether the shortcut edge
states are present at any small electric field or there is a
threshold above which these states appear. The question is
conceptually interesting since it can give a physical hint,
beyond the numerical result, for the formation of the shortcut
edge states. The answer is based on the discrete character of
the energy spectrum of the finite plaquette and on the different
response of the two types of states (band and edge) to the
presence of the electric field. As we already noticed, the band
states are linearly shifted on the energy scale (giving rise
to the Stark fan), while the edge-type energies are robust.
Consequently, there is an E for which a bulk state becomes
resonant with the first edge state met in the gap. Up to this
value of the electric field, the separate character of the edge
and bulk states is maintained [28], however, they hybridize
with each other at the resonance. It turns out that the new
state is a shortcut edge state, as it is proved by the numerical
calculation of the charge density distribution on the plaquette.
So, one concludes that for the existence of the shortcut edge
states, the electric field should be higher than a minimal value
determined by the edge states level spacing (call it δ), i.e.,
eEL > δ, where L is the length of the sample in the direction
of the field. Obviously, δ depends on the plaquette dimension
and is different in different gaps. Since δ vanishes in the limit
L → ∞, the critical electric field goes to zero in the limit
of large systems. In the case of the plaquette considered in
Fig. 6 (41 × 40 sites corresponding to 4.9 × 8.4 nm2 and
φ/φ0 = 0.03), the estimated critical β is 0.006 in the first
gap.

C. The special case around the energy E = 0

One may notice in Fig. 5(b) that the additional in-plane
electric field lifts the degeneracy of the n = 0 Landau level
and gives rise to a broad splitting in the energy range (−0.1,
0.1). Obviously, the splitting depends on the strength of the

(a) (b)

FIG. 8. (Color online) |�(�r)|2 for two consecutive shortcut edge
states from the central Landau band (n = 0) in the presence of
the in-plane electric field. The states show alternate chiralities
(magnetizations), which are illustrated by blue and red loops. The
number of lattice sites is 105 × 40, φ/φ0 = 0.03, eELy/t = 0.2, and
β = 0.03.

applied electric field. The resulting states that fill this range
appear in pairs of opposite chirality [29], a fact that can be
observed either looking at the derivative dEn/dφ in Fig. 5(b)
or at the sign of the magnetic moments in Fig. 6(b). The small
values of the magnetic moments in the energy range close to
E = 0 suggest that the surface encircled by the diamagnetic
currents might be also small. In order to check this idea, we
calculated the charge distribution |�n(�r)|2 on the plaquette,
and a somewhat surprising result came out. Namely, all the
states shortcut the plaquette, looking as in Fig. 8, where
two eigenstates, consecutive on the energy scale, are shown.
One observes that they encircle complementary areas on the
plaquette, which are controlled by the electric field intensity.
This behavior, regarding both the chirality and the arrangement
on the plaquette, is assigned to all states that appear in the
central energy range.

The states described above represent a second kind of
shortcut edge states to be found in the finite size graphene
plaquette. We expect them to give new features to the transport
properties near the zero energy. We advance already the idea
that the asymmetric positioning of the states on the plaquette
should manifest itself in the dependence of the transport
properties on the configuration of the current and voltage
leads in the Hall device. The topic will be explored in the
next section.

III. PECULIAR IQHE OF THE GRAPHENE PLAQUETTE
IN THE PRESENCE OF THE IN-PLANE ELECTRIC FIELD

In order to reveal the specific transport proprieties of the
graphene plaquette in crossed electric and magnetic fields,
we simulate a quantum Hall device by attaching four leads
to the graphene plaquette. In this way, we investigate the
modifications produced by the in-plane electric field to the
already familiar picture of the IQHE in graphene, which
in the relativistic energy range shows plateaus at RH =
± h

e2
1

2n+1 (with n = 0,1,2, . . . and forgetting about the spin
degeneracy). The basic idea is that the novel edge states,
due to their specific properties induced by the applied bias
(and discussed in the previous section), affects the electron
transmittance between different leads, and, implicitly, the
plateaus of the quantum Hall resistance.
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It is of interest to note that the quantum Hall behavior in the
two distinct domains occupied by the shortcut edge states can
be guessed heuristically by exploiting the qualitative features
of the edge states and the way in which they shortcut the
plaquette and interconnect the leads. This approach suggests
the presence of some new, specific quantum Hall plateaus,
which, however, should be checked numerically.

The numerical calculation is performed in the Landauer-
Büttiker formalism, the basic formulas being reminded here.
In a four lead device, the charge current through the lead α can
be written in the linear regime as

Iα =
4∑

β=1

gαβVβ, (6)

where gαβ is the conductance matrix, Vβ is the potential at the
contact β, and the lead indices α,β = 1,. . . . ,4. The current
conservation and the possibility to choose arbitrarily the origin
of the potential impose the conservation rules:

4∑
α=1

gαβ =
4∑

β=1

gαβ = 0. (7)

For α �= β, the conductance gαβ can be expressed in terms
of the transmission coefficients Tαβ between the leads α and β

as gαβ = e2

h
Tαβ . On the other hand, the diagonal term gαα can

be obtained either from the above conservation law or using
the recipe gαα = e2

h
(Tαα − Mc

α), where Mc
α is the number of

channels in the lead α. The second recipe can be immediately
deduced from the Datta’s formalism in Ref. [30].

The transmission coefficients Tαβ can be calculated using
the Green function approach. The method pretends to know
the full Hamiltonian consisting of the sample Hamiltonian HS

given in our case by Eq. (1) and supplementary terms, which
describe the leads HL and the sample-lead coupling HSL:

H = HS + HL + τHSL. (8)

We consider many-channel perfect leads similar to those
introduced in Ref. [31], the strength of the lead-sample
coupling used in the numerical calculation being τ = 2t . The
role of the leads is to inject and collect the current flowing
through the graphene plaquette; in the considered tight-binding
model, each lead consists of Mc semi-infinite one-dimensional
conducting chains, which are attached to consecutive sites
of the plaquette. In terms of creation (annihilation) operators
acting on the lead sites, the Hamiltonian HL reads [12]

HL =
∑

α

HL
α , HL

α = t

Mc∑
ν=1

∑
n�1

c†α,ν,ncα,ν,n+1 + H.c., (9)

where ν counts the chains, n counts the sites along any semi-
infinite chain, and t is the hopping integral on the chain.

The transmission coefficient Tαβ , which describes the
electron propagation from the lead β to the lead α at the Fermi
energy EF , is given by the expression:

Tαβ(EF ) = 4τ 4
∑
ν,ν ′

|G+
αν,βν ′(EF )|2ImgL

α,ν(EF )ImgL
β,ν ′ (EF ),

α �= β, (10)

FIG. 9. (Color online) The sketch of the current carrying chan-
nels when four leads are attached to the graphene plaquette. The
involved shortcut edge states are those from Fig. 7 in (a) and those
from Fig. 8 in (b).

where G+ is the retarded Green function of the system in
the presence of the coupled leads, and gL is the lead Green
function [so that ImgL

α,ν(EF ) represents the density of states at
the Fermi energy of the chain ν in the lead α].

Next, if Vαβ(α �= β) is the voltage drop measured between
the contacts α and β when the current Iδγ flows between the
contacts (δ,γ ), with the notation Rγδ,αβ = Vαβ/Iδγ (introduced
by van der Paw [32] for many terminal devices), the transverse
(Hall) resistance of the four-terminal device sketched in Fig. 9
is given by

RH = (R13,24 − R24,13)/2 = (g23g41 − g21g43

− g32g14 + g12g34)/2D, (11)

where D is a 3 × 3 subdeterminant of the conductance matrix
defined in Eq. (6). We note that, since the conductance
matrix satisfy the conservation rules Eq. (7), all the 3 × 3
subdeterminants are equal (up to a sign which is irrelevant
here) and different from zero.

The first kind of shortcut edge states was identified in
Fig. 6(b) as being dispersed among the bulk states in the
relativistic Landau band broadened by the electric field. Then,
we may argue that, instead of observing the expected drop
of the Hall resistance between two consecutive plateaus, one
may find an uncommon plateau supported by the new type
of edge states located here. Such a state looks like in Fig. 7,
while the way it interconnects the leads is shown in Fig. 9(a).
The distribution of the channels and their chirality (shown in
Fig. 9(a) for a given direction of the magnetic field) help in
specifying Tαβ . For instance, one notices that the leads 1 and
2 are interconnected by one channel, while the leads 2 and
3 are interconnected by three channels, meaning that T21 =
1,T32 = 3,T12 = 0, etc. Then, using also the conservation rules
mentioned above, the whole 4 × 4 conductance matrix g can
be easily built up as

g = e2

h

⎛
⎜⎝

−1 0 0 1
1 −3 2 0
0 3 −3 0
0 0 1 −1

⎞
⎟⎠. (12)

The Hall resistance RH can be calculated now according
to the Landauer-Büttiker recipe Eq. (11), the result being
RH = 2/3(h/e2). This value represents a new plateau placed
in the relativistic domain at half the distance between the usual
plateaus RH = 1(h/e2) and RH = 1/3(h/e2). This plateau is
clearly evidenced by the numerical calculation in Fig. 11. (We
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remind once again that the spin degeneracy is not taken into
account.)

The second kind of shortcut edge states, resulting from the
degeneracy lifting of the n = 0 Landau level, are located in
the middle of the spectrum. When calculating numerically the
quantum Hall resistance, we noticed in this range some unusual
features of the conductance matrix, which are listed below:

T12 = T21 = 0, T34 = T43 = 0, (13a)

T41 = T32 = 1, (13b)

T41 = T14 + T13, T32 = T23 + T24. (13c)

These relations are quite different from the usual conditions
for the realization of the conventional IQHE, which (for a
single channel and a given orientation of the perpendicular
magnetic field) read simply Tα,α+1 = 1 and Tα+1,α = 0 (for
any lead α), all the other elements being zero. Equations (13a)
and (13b) are corroborated by the properties of the edge
states already observed in Fig. 8, where the two states cover
complementary areas of the plaquette and have opposite
chirality. These features of the quantum states suggest the
configuration of the channels on the plaquette sketched in
Fig. 9(b). One may notice that the contacts 1 and 2 are not
connected, meaning that both T12 and T21 vanish (similarly,
T34 = T43 = 0), and that the blue state connects the leads 1
and 4 in the direction providing T41 = 1 (similarly, T32 = 1
for the red state).

However, we are still left with the intriguing relation T41 =
T14 + T13, where T13 �= 0, although the contacts 1 and 3 are
apparently disconnected as in Fig. 9(b). Thus the transmission
coefficient T13 breaks the expected symmetry T14 = T41, and
plays the role of a “leakage” between the two (red and blue)
circuits. A plausible explanation for this effect might be that the
states, being very close on the energy scale, can be hybridized
easily by the perturbation introduced in the system by the
lead-plaquette coupling τ [see Eq. (8)]. In this way, the two
circuits become interconnected if τ ∼ , where  is the mean
interlevel distance in the corresponding energy range. Then,
using this conjecture, with the notation T13 = T24 = δ, and
observing in Fig. 9(b) the manner the contacts are bridged, the
corresponding matrix reads

g = e2

h

⎛
⎜⎝

−1 0 δ 1 − δ

0 −1 1 − δ δ

0 1 −1 0
1 0 0 −1

⎞
⎟⎠. (14)

By using again Eq. (11), we get this time the plateau RH = 0
that should become visible in the middle of the spectrum about
the energy E = 0. This value obtained by the heuristic method
is also confirmed by the numerical calculation in Fig. 11. The
numerical values obtained for T12, T21, and T13 are shown in
Fig. 10. The unusual behavior can be noticed indeed about
E = 0, where both T12 and T21 vanish, while T13 is different
from zero. Outside this energy range, T13 vanishes (and also
T42), while T12 and T21 take the normal values that charac-
terize the first relativistic gaps in the graphene Hofstadter
spectrum.

The result of the numerical investigation of the Hall
resistance as function of the energy in the relativistic range
of the spectrum, in both the presence and absence of the

FIG. 10. (Color online) Transmission coefficients vs energy for a
mesoscopic graphene in the presence of both perpendicular magnetic
and in-plane electric fields. Around the zero energy, T21 = T12 =
0 and T13 �= 0 evidencing the “leakage” between the two circuits
illustrated in Fig. 9(b). The number of lattice sites is 51 × 100, the
magnetic flux φ/φ0 = 0.03, electric field eELy/t = 0.25 and β =
0.015.

applied electric bias, is shown in Fig. 11. At vanishing bias,
the red curve exhibits the well-known plateaus of the IQHE in
graphene at 1,1/3,1/5 (in units h/e2). However, at E �= 0, the
blue curve shows supplementary unconventional plateaus that
appear in-between at 2/3 and 4/15, and also a very specific
plateau at RH = 0.

In what concerns the longitudinal resistance, an interesting
result comes from the possibility to define (and measure) it in

FIG. 11. (Color online) Hall resistance as a function of energy
with no electric field (red curve) and with electric filed eELy/t = 0.25
(blue) and 0.5 (green). We notice the appearance of the intermediate
Hall plateaus in the presence of the electric field. At strong E (green
curve), the normal plateaus at RH = 1/5 and 1/3 disappear due to
closing of the corresponding gaps in the spectrum. [The number
of lattice sites 51 × 100 and φ/φ0 = 0.03, β = 0.015 (blue) and
β = 0.03 (green).]
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two different ways, depending on the chosen configuration for
the voltage and current terminals, namely,

RA
L = (R23,14 + R14,23)/2 = (g12g43 − g13g42

+ g21g34 − g24g31)/2D, (15)

RB
L = (R12,34 + R34,12)/2 = (g31g42 − g32g41

+ g13g24 − g14g23)/2D. (16)

Using again Eq. (14), valid in the energy range near
E = 0, one finds that the longitudinal resistance shows a
dissipativeless behavior RA

L = 0 in the configuration A, but
gets a finite value, which depends on the leakage parameter δ,
in the configuration B, namely, RB

L = (1 − δ)/δ.
Since the numerical calculation refers to the Hall resistance

of the finite graphene plaquette, it is opportune here to make
some comments concerning the effect of the finite size on the
structure of the Landau bands. The discussion is prompted
by the fact that the Hall resistance described by the red
curve in Fig. 11 does not drop abruptly (as one may expect)
between the plateaus RH = 1 and 1/3, separated by the
first Dirac-Landau band, but even shows an oscillation. The
confinement represents a perturbation which, on one hand,
introduces edge states in the spectrum, and, on the other hand,
slightly lifts the degeneracy of the Landau states giving rise
to a small band broadening. Obviously, as in any mesoscopic
problem, the effect of the surface depends on the dimension
of the plaquette, and, more precisely, the smaller the plaquette,
the larger the broadening of the Landau bands is. However,
the splitting occurs differently at different magnetic fluxes,
so that, the overall aspect of the broadened band is a bunch
of states exhibiting numerous anticrossing points when the
magnetic field is varied. Our preliminary observations, based
on the numerical calculation of the Hofstadter spectrum,
indicate that the relativistic Landau bands, placed in the central
part of the spectrum, are more sensitive to the confinement
then the conventional Landau bands, placed at the spectrum
extremities. This discussion is actually beyond the aim of the
present paper and we only want to give a hint for possible
unanticipated behavior of RH between the quantum plateaus.

As a last comment, we observe that in the presence
of the electric bias, over the slight broadening due to the
confinement, the broadening produced by the electric field is
added (the so-called Stark ladder). Then, the transition between
the successive plateaus of the Hall resistance becomes more
gradual, as it can be noticed in Fig. 11 (blue and green curves).

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have proved the presence of shortcut
edge states in the relativistic energy range of the mesoscopic
graphene subjected to crossed magnetic and electric fields,
and their influence on the transport properties denoted by
new, unconventional, plateaus of the quantum Hall resistance.
The novel states are defined as being only partially extended
along the edges, and getting closed through the middle of the
plaquette, the shortcut being controlled by the electric field.

In order to get insight on the emergence of the electrically
induced shortcut states, it was helpful to study first the case

of the zigzag graphene ribbon. By applying the electric field
perpendicularly to the zigzag edges, we found that the Landau
levels get tilted and, as a consequence, some of the edge
channels located along the zigzag edges are pushed by the
electric field into the middle of the ribbon [as in Fig. 3(b)].
Interestingly, even the zero-energy band states respond to the
electric field, turning into current carrying states, some being
located near the edges, and others in the middle of the ribbon
[as in Fig. 3(c)]. For the graphene ribbon, we prove the scaled
dependence of the low-energy Dirac-Landau spectrum on the
external parameters BLy and EL

3/2
y in Eqs. (4) and (5).

In the case of the mesoscopic graphene plaquette, we found
two kinds of shortcut edge states located differently in the
relativistic range of the Hofstadter spectrum. Some of them
are dispersed among the bulk states in the relativistic Landau
bands, while the second type of such states arises in the middle
of the spectrum due to the splitting of the n = 0 Landau
band induced by the electric field. In order to determine the
chirality of the states, we calculated the diamagnetic moment
of all quantum states in the relativistic range, with and without
electric field, as shown in Fig. 6.

The shortcut of the edge states created by the electric field
modifies the conductance matrix in the four-lead Hall device,
and gives rise to novel plateaus of the quantum Hall resistance.
We presented heuristic arguments and numerical calculations
for identifying the position of the new plateaus. The shortcut
edge states of the first kind generate intermediate plateaus
between the usual ones at RH = ± 1

2 ( 1
2n+1 + 1

2n+3 ) with n =
0,1,2, . . . (in h/e2 units for the spinless case).

In the central part of the spectrum, the second kind of
shortcut edge states come into play. They appear in pairs with
different chiralities and exhibit current loops that encircle
complementary areas of the plaquette, as being depicted in
Fig. 8. These specific properties generate the plateau RH = 0,
and dissipative or nondissipative behavior of the longitudinal
resistance RL, depending on the leads configuration.

The presented results put forward a mechanism for manip-
ulating the transport channels in the quantum Hall regime by
using an in-plane electric bias, and extend the understanding
of the edge states in the relativistic energy range of the
mesoscopic graphene.
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APPENDIX

As we already observed in Sec. II A, the eigenenergies of the
graphene ribbon in crossed electric and magnetic fields have
the symmetry Ek0

x+kx
= −Ek0

x−kx
around a reflecting point k0

x .
In order to prove this property and find the value of k0

x , it is
appropriate to express the Hamiltonian in terms of the Fourier
transforms of the creation and annihilation operators as in
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Ref. [23]:

H =
∑
kx ,m

εa
ma

†
kx ,m

akx,m + εb
mb

†
kx ,m

bkx,m + t(eiφ(m)a
†
kx ,m

bkx,m

+ eiφ(m)e−ikx b
†
kx ,m

akx,m + b
†
kx ,m+1akx,m + H.c.), (A1)

where m labels the unit cells along the Oy direction (m =
1, . . . ,M). The magnetic field manifests itself in the Peierls
phases φ(m), while the electric field enters the atomic energies
εa,b
m . Applying the electric bias symmetrically on the width

of the ribbon, and using the known inversion symmetry with
respect to the middle of the hexagonal lattice (which moves the
atoms A in the atoms B and vice versa), the atomic energies
satisfy the relation

εa
M+1−m = −εb

m. (A2)

Let us measure the momentum kx from a not yet specified
origin k0

x , and let the function

�k0
x−kx

=
∑
m

α
(
k0
x − kx,m

)
a
†
k0
x−kx ,m

|0〉

+β
(
k0
x − kx,m

)
b
†
k0
x−kx ,m

|0〉 (A3)

be an eigenfunction of the Hamiltonian, such that

H�k0
x−kx

= Ek0
x−kx

�k0
x−kx

. (A4)

The objective is now to find an unitary operator P with two
properties: (i) to anticommute with H , i.e., PHP −1 = −H ,
and (ii) to move the function �k0

x−kx
into another function

depending on k0
x + kx , i.e., P�k0

x−kx
= �̃k0

x+kx
. Then, applying

the operator P to the left of Eq. (A4), and using the first
property, one gets obviously

H�̃k0
x+kx

= −Ek0
x−kx

�̃k0
x+kx

, (A5)

meaning that Ek0
x+kx

= −Ek0
x−kx

.

Taking advantage of the mentioned inversion symmetry of
the lattice, we may guess the operator P as

P =
∑
kx ,m

e−iλb(k0
x−kx ,m)b

†
k0
x−kx ,M+1−m

ak0
x+kx ,m

−
∑
kx ,m

e−iλa (k0
x−kx ,m)a

†
k0
x−kx ,M+1−m

bk0
x+kx ,m. (A6)

The phases λa,b and the reflecting point k0
x result from

the condition [H,P ]+ = 0. After lengthy but straightforward
calculations one obtains the value k0

x = φ(M) + φ(1) (modulo
π ), which depends on the magnetic field B and the width of
the ribbon M .

It is interesting to notice that performing the inverse
Fourier transformation of the operators in Eq. (A6), namely,
a
†
kx ,n

= 1√
N

∑
n eikxna

†
n,m (and similarly for the b operators),

one obtains an operator P , which acts in the direct space as an
inversion operator with respect to middle of the sample:

Pa†
n,m|0〉 = e−i(2n+m)k0

x b
†
N+1−n,M+1−m|0〉,

(A7)
Pb†n,m|0〉 = −e−i(2n+m−1)k0

x a
†
N+1−n,M+1−m|0〉,

where n and m are the cell indexes n ∈ [1,N ] and m ∈ [1,M].
Thus one may say that the symmetry of the spectrum about
k0
x is the consequence of the inversion symmetry in the direct

space of the hexagonal lattice.
Finally, we remark that the symmetry Ek0

x+kx
= Ek0

x−kx

shown by Fig. 2(a) in the absence of the electric field (but
at nonzero magnetic field) can be proved in a similar way,
looking for an operator P that this time commutes with the
Hamiltonian. In this case, P looks like in Eq. (A6) but with the
plus sign between the two terms. We also note that at E = 0 all
the atomic energies are equal εa,b

m = 0, fact that helps to attain
the commutation relation [H,P ]− = 0 (for which the relation
εa
M+1−m = εb

m is needed). The resulting reflecting point k0
x is

the same as in the previous case.
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