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We investigate the spin-dependent thermoelectric effects in magnetic graphene in both diffusive and ballistic
regimes. Employing the Boltzmann and Landauer formalisms we calculate the spin and charge Seebeck
coefficients (thermopower) in magnetic graphene varying the spin splitting, temperature, and doping of the
junction. It is found that while in normal graphene the temperature gradient drives a charge current, in the case
of magnetic graphene a significant spin current is also established. In particular we show that in the undoped
magnetic graphene in which different spin carriers belong to conduction and valence bands, a pure spin current
is driven by the temperature gradient. In addition it is revealed that profound thermoelectric effects can be
achieved at intermediate easily accessible temperatures when the thermal energy is comparable with Fermi
energy kBT � μ. By further investigation of the spin-dependent Seebeck effect and a significantly large figure of
merit for spin thermopower ZspT , we suggest magnetic graphene as a promising material for spin-caloritronics
studies and applications.
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I. INTRODUCTION

Thermoelectric effects, although known for almost two cen-
turies, have received great attention in recent years due to their
crucial relevance in meso- and nanoscopic systems [1,2]. Not
only can the studies be helpful technologically in managing
the generated heat in nanoelectronic devices, however; inves-
tigations about thermoelectric effects in mesoscopic regimes
are of fundamental interest for condensed matter physicists [1].
Starting in the late 1980s the field of spintronics emerged which
focuses on the spin-dependent transport and its coupling to that
of charge [3–5]. Along with the fast growing interest in this
field, the pioneering work of Johnson and Silsbee showed that
in spintronic and magnetic systems, heat currents can couple
to spin currents as well as charge currents [6]. In recent years
some successive unexpected experimental observations of
spin Seebeck effects [7–10] have attracted a great deal of
attention in investigating the thermoelectric and spintronic
effects in combination with each other, which has lead to the
introduction of a new research field, spin caloritronics [11,12].
Besides many promising applications, some fundamental
questions have arisen in this field, particularly about the origin
of the spin Seebeck effect in different types of materials
varying from metals to insulators.

Graphene, as a leading material among recently synthesized
two-dimensional atomic monolayers, has received a tremen-
dous amount of interest mostly due to its peculiar electronic
structure described by the massless Dirac model [13,14]. A
large number of possible applications in electronics, optics,
nanoscale resonators, and even chemistry were suggested and
implemented immediately after its discovery a decade ago.
One of the main lines of investigation in graphene from
the very beginning has been the electronic transport in a
variety of regimes from ballistic to diffusive, and also in the
extreme regimes of low density or high magnetic fields [15,16].
The experimental observation of linear dependence of the
conductivity on the carrier density initiated a debate in
the theoretical community which guided them to include
long-ranged charged scatterers for an adequate description of
electron transport (Ref. [17] and references therein provide a

thorough review on this topic). Intriguingly the thermoelectric
properties of graphene have been also investigated both
theoretically and experimentally with special focus on the
neutrality or Dirac point [18–22]. One of the key findings
has been the sign change of the thermoelectric power across
the charge neutrality point when the carrier type switches from
electron to hole, accompanied by the divergent behavior of the
Seebeck coefficient [20].

Besides many other promising applications recently
graphene has been suggested for use in spintronics devices
in particular due to the long spin relaxation lengths up to
a few microns [23,24]. Pioneering works of Tombros et al.
have verified the effective spin injection into graphene via
nonlocal magnetoresistance measurements. In addition it has
been suggested that spin qubits based on graphene can be used
as building blocks for quantum computing [25]. Interestingly
a variety of methods have been suggested to create magnetic
graphene, besides some theoretical predictions about intrinsic
ferromagnetism in it [26,27]. In practice one can use an insu-
lating ferromagnetic substrate or, alternatively, add a magnetic
material or magnetic impurities on top of the graphene sheet to
induce spin imbalance (for a review on magnetism in graphene,
see Ref. [28]). In addition very recently the proximity-induced
ferromagnetism in graphene/YIG heterostructure has been
revealed which indicates a large exchange interaction [29].
In contrast to common magnetic materials due to the gapless
excitation spectrum of graphene, and the fine tunability of its
chemical potential μ, the spin-splitting energy between the
up- and down-spin carriers can be even comparable with μ.
So there exists a regime in which majority and minority spins
belong to different bands, conduction and valence. We have
called this phase as spin-chiral due to the coupling of the
real spin and the chirality and already some of its transport
characteristics have been explored [30–34]. We should note
that based on Zeeman splitting such a spin-chiral graphene
has been experimentally realized which shows the spin Hall
effect without spin-orbit interaction [35].

In this paper we investigate the combination of charge,
heat, and spin transport in graphene in the context of spin
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FIG. 1. (Color online) The spin band structure of magnetic
graphene for two regimes of Vex > μ (left panel) and Vex < μ

(right panel). Small filled (empty) circles and the arrow attached to
them show the thermally excited electrons (holes) and their velocity
directions.

caloritronics and spin-dependent thermoelectric phenomena.
We consider a magnetic graphene sheet in both ballistic and
diffusive regimes when thermal gradients and bias voltages
are applied to it. Employing the Landauer-Büttiker scattering
method and Boltzmann transport equation for the two regimes
we obtain the spin-dependent Seebeck and Peltier coefficients
and the spin-dependent figure of merit which is a measure
of thermoelectric efficiency. Our findings show that while in
the absence of exchange splitting the temperature gradients
drive only a charge current, in the case of magnetic graphene
a spin current is also established which can be very large
in comparison with charge current. In fact our key finding
is for the case of undoped spin-chiral magnetic graphene in
which different spin carriers are electrons and holes having
the same density (see left panel of Fig. 1): a pure spin current
(without charge current) is driven by the imposed temperature
gradient. An explanation of this effect can be provided noting
that the temperature gradient in spin-chiral graphene drives
electrons from up-spin subband and holes from down-spin
subband. Remembering the fact that holes carry opposite spin
and charge of the corresponding electron, both types of carriers
(electron and holes) carry the same spin but opposite charges
which leads to the pure spin current. However for weakly
magnetized and doped graphene when both spins belongs to
the conduction or valence bands (right panel in Fig. 1), both
spin and charge currents exist while the second dominates the
first one. Adding the facts that spin relaxation is very weak in
graphene and its electronic properties can be easily tuned, these
results show that magnetic graphene could be promising for the
spin-caloritronic applications rather than common magnetic
metals.

II. THEORETICAL MODEL AND BASIC FORMALISM

In order to study the spin and charge thermoelectric
properties of magnetic graphene we work in the linear response
regime where the relation between driving forces and the
resulting generalized currents are linear. In a thermoelectric
device the driving forces are temperature gradient ∇rT ,
external electric field E, and density gradients ∇rn where
the two last ones can be combined in an effective field
E = E + 1

e

∂μ

∂n
∇rn with μ indicating the chemical potential.

These fields can drive carriers leading to the charge and heat
currents which can differ for different spin channels in general.
It is believed that in graphene spin relaxation time is so long
that in mesoscopic samples we can treat the two spin channels

almost independently. As a result the charge and heat currents
carried by spin s electrons which can be denoted by js and j

q
s ,

respectively, are linearly related to the effective electric field
E = E + 1

e

∂μ

∂n
∇rn and the temperature gradient as(
js

j
q
s

)
=

(
L11

s L12
s

L21
s L22

s

)(
E

−∇T

)
. (1)

By definition the first component L11
s is the conductance

G and the two off-diagonal components are thermoelectric
coefficients which are related to each other with Onsager
relation (L21

s = T L12
s ). The last component L22

s contributes
in the s-electron thermal conductivity defined by

Ks = L12
s L21

s − L11
s L22

s

L11
s

. (2)

In the upcoming subsections we will give the explicit relations
for the matrix elements L

ij
s in the diffusive and ballistic

regimes.
The spin-dependent Seebeck and the Peltier coefficients

which, for each spin channel, describe the voltage generation
due to the temperature gradient and heat current induction due
to the charge current, respectively, are then given by

Ss = L12
s

L11
s

, �s = L21
s

L11
s

. (3)

From these relations one can define the charge and spin
Seebeck and the Peltier coefficients which are as follows,

Sch = (S↑ + S↓)/2, Ssp = S↑ − S↓,
(4)

�ch = (�↑ + �↓)/2, �sp = �↑ − �↓.

The ability of a material to efficiently produce thermoelec-
tric power is usually described by a dimensionless figure of
merit denoted by ZT . In spin caloritronics we can generalize
this concept for the resulting charge and spin currents due to
the temperature gradients separately. So the charge and spin
figures of merit for a magnetic system can be defined versus
Seebeck coefficients as

Zch(sp)T = σch(sp)S2
ch(sp)T

K . (5)

Here, σch = σ↑ + σ↓ (σsp = |σ↑ − σ↓|) denotes the charge
(spin) conductivity of the system and the the electron thermal
conductivity is given by K = K↑ + K↓. We concentrate on
low enough temperatures where only electrons contribute
effectively in thermal transport. In Sec. III C based on some
estimations, we will discuss how this assumption is verified
and what are its limitations.

In the remaining of this section, the theoretical frameworks
to calculate the spin and charge thermoelectric coefficients
in the diffusive and ballistic transport regimes employing
Boltzmann and Landauer formalisms, respectively, will be
presented.

A. Diffusive regime: Boltzmann transport

In this section we give the semiclassical Boltzmann
equation to establish the transport coefficients in the diffusive
regime. In particular, we take into account two important cases
of short-range (SR) impurities with Dirac delta potentials and
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long-range (LR) Coulomb impurities in our investigation. The
spin-dependent thermoelectric properties due to the presence
of both electric fields and temperature gradient will be found
in the scheme of relaxation time approximation.

In the diffusive regime, the transport coefficients can be
calculated from the following general expression for electron
current and energy flux density,[

js

jqs

]
=

∫
d2k

(2π )2

[ −e

εs(k) − μ

]
vs(k)gs(k), (6)

in which vs(k) is the semiclassical velocity of the spin
s carriers. The nonequilibrium distribution function gs(k)
describes the evolution of the electron distribution in the
presence of external perturbations. The Boltzmann formalism
in the relaxation time approximation scheme and in the
linear response leads to the following expression for disturbed
function gs(k) as

gs(k) = τs(k)

(
∂f0

∂ε

)
vs(k) ·

[
eE + εs(k) − μ

T
∇T

]
(7)

with τs(k) denoting the spin-dependent relaxation time and
f0(ε) the equilibrium-state Fermi-Dirac distribution at tem-
perature T . We note that since graphene has an isotropic
dispersion relation, the relaxation time τ depends only on the
energy of electrons ε.

By invoking the above expression for gs(k) into Eq. (6)
for spin-dependent charge and heat currents, the matrix coef-
ficients L

ij
s can be expressed in terms of some spin-dependent

kinetic coefficients Lα
s as the following,(

L11
s L12

s

L21
s L22

s

)
=

(
L0

s −L1
s /eT

L1
s /e −L2

s /e
2T

)
. (8)

All of the coefficients obey the relation

Lα
s =

∫
dε(−∂f0/∂ε)(ε − μ)ασs(ε), (9)

with spin-dependent conductivity given by

σs(ε) = e2τs(ε)
∫

d2k

(2π )2
δ[ε − εs(k)]vs(k)vs(k)

= e2v2
s (ε)τs(ε)ρs(ε), (10)

with spin-dependent density of states (SDOS) ρs(ε). The
formalism introduced so far is general for any isotropic
magnetic material and all of the thermoelectric properties
described by L

ij
s can be found as functions of spin-dependent

relaxation time τs and SDOS ρs . Now we switch to the case of
our investigation, magnetic graphene.

A monolayer graphene sheet at the presence of induced spin
splitting can be described by a low-energy Dirac Hamiltonian
of the form

H = �vF ŝ0 ⊗ σ̂ · p − Vexŝz ⊗ σ̂0 (11)

with Fermi velocity vF , momentum p = (px,py), and
exchange splitting Vex. Pauli matrices σ̂i and ŝi (i =
0, . . . ,3) operate on the subspaces of pseudospin (origi-
nating from two different trigonal sublattices A and B of
the graphene’s hexagonal structure) and real spin, respec-
tively. The spin-dependent band dispersion then follows

εs(k) = α�vF k − sVex with s = ±1 corresponding to the two
spin directions and α = ±1 indicating the chirality of states.
Since the velocity of carriers in graphene is constant and
the SDOS is given by ρs(ε) = |ε + sVex|/π (�vF )2 the spin-
dependent Boltzmann conductivity of magnetic graphene takes
the Drude form as

σs(ε) = e2

h

|ε + sVex|τs(ε)

�
. (12)

Early investigations of quantum transport in graphene at
the presence of impurities have shown that the relaxation
time for the SR impurities varies inversely with the DOS
as τ (ε) ∝ 1/ρ(ε) while the LR Coulomb impurities result
in τ (ε) ∝ ρ(ε) [17,36]. Therefore in magnetic graphene, the
conductivity becomes constant when only SR scatterers are
present while the conductivity caused by scattering from LR
impurities is proportional to the square of density of states
as σs(ε) ∝ (ε + sVex)2. In the next section we will use the
relations of conductivities to obtain the Seebeck coefficients
and corresponding figures of merit.

B. Ballistic regime: Landauer-Büttiker formula

Within the Landauer-Büttiker approach the electric and
thermal currents carried by electrons with spin s are obtained
from the transmission probabilities Ts(ε,φ) integrated over the
energy ε and the angle φ,[

Is

I
q
s

]
= W

π2�

∫ π/2

−π/2
dφ cos φ

∫ ∞

−∞
dε

[ −e

ε − μ

]
× ρs(ε)Ts(ε,φ)[fL(ε) − fR(ε)], (13)

where W is the sample width and fL(ε) and fR(ε) are
the Fermi-Dirac distribution functions of the left and right
electronic leads, respectively. Assuming the linear response
regime, we can expand the difference of Fermi-Dirac functions
in the above formula up to linear terms in a small bias voltage V

and temperature difference �T between two reservoirs. This
results in a relation very similar to Eq. (1) with thermoelectric
conductances L

ij
s related to the kinetic coefficients according

to Eq. (8). These coefficients for the ballistic transport regime
are obtained after some straightforward algebra,

Lα
s = G0

∫ π/2

−π/2
dφ cos φ

×
∫ ∞

−∞
dε

(
− ∂f

∂ε

)
(ε − μ)αρs(ε)Ts(ε,φ), (14)

in which G0 = (e2/�)(W/π2) denotes the ideal conductance of
the junction. It is easy to note that this relation is in complete
accordance with Eq. (9) in which only the conductivity is
replaced with the conductance of the ballistic system given by
the Landauer-Büttiker formula. So the only thing we need is
to determine the transmission probabilities Ts(ε,φ).

In the ballistic regime we consider a magnetic graphene
sheet between two electrodes in which their chemical po-
tentials despite a very small bias are kept at μ0 while the
central region’s μm doping can be varied. Diagonalizing
the Hamiltonian (11) results in eigenstates ψkαs = |s〉 ⊗
(αeiφk ,1)T , where α = sgn(μ + sVex) indicates the band index
and φk = arctan(ky/kx) specifies the propagation direction.
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The total scattering wave function, corresponding to an
incoming excitation coming from the left reservoir, inside each
region, can be written as

ψL
s = eiksxψ(ks ,ky )αs + rse

−iksxψ(−ks ,ky )αs,

ψm
s = a+

s eiqsxψ(qs ,ky )α′s + a−
s e−iqsxψ(−qs ,ky )α′s , (15)

ψR
s = tse

iksxψ(ks ,ky )αs,

with qs = √
(ε + μm + sVex)2 − (�vF ky)2/�vF and ks =√

(ε + μ0 + sVex)2 − (�vF ky)2/�vF (for the sake of simplic-
ity the overall factor eikyy is dropped in all components of wave
functions). The transmission ts and rs reflection amplitudes are
determined by matching the wave functions at the interfaces
x = 0 and x = L and subsequently used to calculate the total
transmission probability |ts |2 as

Ts(ε,φk) = 1

cos2(qsL) + sin2(qsL)
( 1−α′ sin φk sin φq

cos φk cos φq

)2 . (16)

We recall that there is no mechanism that couples states with
opposite spin indices so no off-diagonal spin channel mixing
terms will appear in our calculations.

III. RESULTS AND DISCUSSION

In this section our numerical and analytical results will
be presented. We focus on the charge and spin Seebeck
coefficients (Sch, Ssp) and their corresponding figures of merit
ZchT and ZspT . We can also find the Peltier coefficients
�ch and �sp in both diffusive and ballistic regimes. However
according to the so-called Thomson relation � = T S, which is
originated from the symmetry properties of the coefficients L

ij
s

demanded by Onsager reciprocity, there is no new information
on the Peltier coefficients. We divide this section into two
parts concentrating on the diffusive and ballistic systems,
respectively.

A. Diffusive transport

It is well known that electron-hole asymmetry around the
Fermi level in the band structure or transport properties is
responsible for the thermoelectric effects. In fact the key role
in thermoelectric effects is played by L(1)

s which according to
Eq. (9) vanishes when σ (ε) is a symmetric (even) function
of ε − μ. In the case of graphene, at very first glance, the
Dirac dispersion relation and linear energy dependence of DOS
suggest a possible source of asymmetry in σ (ε) away from the
neutrality point which can lead to thermoelectric phenomena.
However as we have seen in the previous section when
only short-range scatterers are present the conductivities σs(ε)
become constant. Therefore diffusive transport caused by SR
impurities leaves magnetic graphene with no thermoelectric
effects with vanishing charge and spin Seebeck and Peltier
coefficients.

In contrast at the presence of long-range Coulomb im-
purities, which are in fact the dominant scatterers in most
graphene samples, the spin-dependent conductivities have
explicit energy dependence. Invoking the quadratic energy
dependence of conductivities σs in Eq. (9) and performing
the integrations over energies we find a simple form for the
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FIG. 2. (Color online) (a) Charge and (b) spin Seebeck coeffi-
cients of magnetic graphene as functions of normalized exchange
field and temperature kBT /μ0 at the presence of long-range Coulomb
impurities. The dashed lines indicate the curves in which the Seebeck
coefficients vanish. The scale of Seebeck coefficients in all plots is
kB/e.

Seebeck coefficient of spin-s carriers,

Ss = −kB

e

2kBT (μ + sVex)

(3/π2)(μ + sVex)2 + (kBT )2
, (17)

in which μ = μ(T ,Vex) depends explicitly on temperature and
exchange splitting. The method of the calculation of μ(T ,Vex)
and the behavior of chemical potential as a function of ex-
change and temperature will be presented in the Appendix. As
one can see from Eq. (17) two spin-dependent Seebeck coeffi-
cients Ss reach their maximum absolute values (π/

√
3)(kB/e)

at temperatures kBT = (
√

3/π )(μ + sVex), respectively. In
addition we see that each of the coefficientsSs passes from zero
and changes sign when the Fermi level of the corresponding
spin subband lies at the Dirac point μ + sVex = 0. This is
similar to the well-known effect in semiconductors in which
the thermopower for n and p types has opposite sign and
based on this effect devices made of p-n junctions are used
for electronic cooling. However a big advantage in the case
of graphene is provided by the fine-tunability of doping in
it. So in real experimental situations one can play with μ0,
exchange splitting, and also temperature to cover a wide range
of parameter space.

Now we turn the discussion toSch,sp which are more feasible
quantities in real experiments. Using Eq. (17) charge and spin
Seebeck coefficients can be easily obtained,

Sch = −kB

e

2kBT μ
[

3
π2

(
μ2 − V 2

ex

) + (kBT )2
]

∏
s

[
3
π2 (μ + sVex)2 + (kBT )2

] , (18)

Ssp = −kB

e

4kBT Vex
[

3
π2

(− μ2 + V 2
ex

) + (kBT )2
]

∏
s

[
3
π2 (μ + sVex)2 + (kBT )2

] . (19)

Inserting the numerically calculated μ(T ,Vex) in the above
relations, the variation of thermopowers Sch,sp with tem-
perature and spin splitting is obtained as shown in Fig. 2.
As we expect at very low temperatures, kBT 
 μ0, charge
and spin Seebeck effects are very weak and go to zero
linearly with kBT . On the other hand at some intermediate
temperatures when the thermal energy kBT is comparable
with the spin-dependent Fermi levels measured from the Dirac
points (μ ± Vex) profound Seebeck effects can be observed.
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When the spin splitting is small (Vex � μ0) both up-
and down-spin Fermi levels lie in the conduction band
and thermally activated electrons of both spins move along
temperature gradient which result in a charge accumulation
gradient in the opposite direction due to the negative charge
of the electrons. Therefore a negative charge thermopower is
obtained for (Vex � μ0). By further increase in the exchange
splitting Vex � μ0 then one of the spin subbands’ Fermi level
goes to the valence band and then the holes from the spin-down
subband will be thermally activated. Such excitations carry
positive charge current and as a result their contribution in
the charge Seebeck effect has positive sign while spin-up
electrons from the conduction band still have a negative
contribution, which means the excitations from two spin
subbands compete with each other. By further increase of the
exchange the contribution of minority spin carriers from the
hole band dominates and as one can clearly see from Eq. (18)
at Vex =

√
μ2 + (πkBT )2/3 (indicated by the dashed line in

Fig. 2) the charge thermopower changes its sign.
The spin Seebeck effect behaves in a somehow opposite

way with the variation of exchange field. At low Vex electrons
carrying different spins compete with each other to result in a
spin accumulation caused by the temperature gradient. As we
see in the right panel of Fig. 2 for not so high temperatures
kBT /μ0 the minority spins are dominant and as a result unlike
Sch a positive spin Seebeck effect is observed. But at higher
temperatures Ssp becomes all negative dominated by majority
up spins. Upon increasing the exchange splitting when the
down spins’ Fermi level goes to the valence band both up-spin
electrons and down-spin holes, which carry the same intrinsic
angular momentum, accompany each other to give a strong
spin signal. In fact as one can immediately see from Eq. (19) for
when V 2

ex = μ2 − (πkBT )2/3 the sign of the spin thermopower
changes and for higher exchanges Ssp becomes negative.

Now the key finding of our work is the fact that by moving
along the curve V 2

ex = μ2 + (πkBT )2/3, we can completely
turn off the charge Seebeck effect, while a spin Seebeck effect
can be observed. This is clear if we compare two plots in Fig. 2
and notice that along the line of Sch = 0 a large negative spin
Seebeck coefficient is obtained which is given by

Ssp = −kB

e

2π√
3

√
1 −

(
μ

Vex

)2

. (20)

As a result a maximum value |Ssp| = (2π/
√

3)kB/e can be
reached in the absence of corresponding charge signal.

In order to see the exchange dependence of the thermopow-
ers more clearly, Fig. 3 shows the charge and spin Seebeck
coefficients and the corresponding figures of merit as functions
of Vex/μ0 for some different temperatures. We see that
although charge thermopower always shows sign change at the
vicinity of Vex ∼ μ0, spin thermopower becomes all negative
at higher temperatures, irrespective of spin splitting strength
Vex. This is again a clear manifestation of the possibility of pure
spin current caused by temperature gradient. In fact at higher
Vex this is easily understood from the fact that conduction
band spin-up electrons and valence band spin-down holes
accompany each other to give rise to a negative Ssp. At lower
Vex as we mentioned above by increasing temperature majority
up spins dominate the thermoelectric effect and since they

FIG. 3. (Color online) Charge and spin thermopower and cor-
responding figures of merit are given as functions of normalized
exchange splitting for different dimensionless temperatures kBT /μ0.

carry negative current, the spin Seebeck coefficient remains
still negative. In addition as expected the spin (charge) figure
of merit reaches its maximum value for some splitting above
(below) the chemical potential μ0. The figures of merit for
both spin and charge Seebeck effects becomes large (of the
order of 1) at some intermediate temperatures kBT � μ0

where the thermoelectric effect is very strong while the heat
transport is not. On the other hand at higher temperatures the
thermopowers decrease as the inverse of T and subsequently
the figures of merit show decline with temperature. These
effects can be seen from Fig. 4 where the variations of Sch,sp

andZch,spT are shown with temperature kBT /μ0. These results
again clearly show that the strong thermoelectric effects can be
seen at the intermediate temperatures when kBT is comparable
with Fermi levels μ ± Vex measured from neutrality point.

FIG. 4. (Color online) The variations of thermopowers and corre-
sponding figures of merit are given but as functions of dimensionless
temperature kBT /μ0 for different exchange splittings Vex/μ0.
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FIG. 5. (Color online) (a) Charge and (b) spin Seebeck coef-
ficients of clean magnetic graphene as functions of normalized
exchange field and temperature kBT /μ0 in the ballistic regime. The
doping of magnetic graphene μm is assumed to be 1/2 of the two
nonmagnetic leads’ doping μ0. The dashed lines indicate the curves
in which the Seebeck coefficients vanish.

It is worth noting again that in graphene the doping can be
varied easily and as a result one can even reach the regimes in
which the Fermi energy is comparable to thermal energy kBT .
So unlike conventional metals with very large Fermi energy
in comparison with kBT , it is reasonable to reach the most
efficient values for thermoelectric responses.

B. Ballistic transport

Now we turn to the spin-dependent thermoelectric proper-
ties of ballistic graphene. Unlike the diffusive case due to the
complicated energy dependence of transmission coefficients
we cannot obtain simple analytic relations. Figure 5 shows the
numerically obtained results for spin and charge thermopowers
in ballistic regimes. Fascinatingly the overall behavior is
almost the same as the diffusive regime in the presence of
long-range Coulomb impurities. In fact, comparing diffusive
and ballistic results, we only see that they are only slightly
different in quantitative manner. For instance the possible
maxima of thermopowers Sch,sp and also the lines in which
they vanish are different for two cases which is related to
details originating from scattering mechanisms of two regimes.
In other words, our results show that despite the details of
scattering phenomena, the band structure and dispersion of
graphene play a main role in the spin-dependent thermoelectric
effects. Of course we know that in the case of diffusive
transport the presence of long-range impurities is crucial
for thermoelectric effects. Nevertheless when the Seebeck
effect does exist, the dependence on the temperature and spin
splitting is more or less universal and despite the transport
regime we see the same features. It should be noted that such
universal behavior is partly related to the definition of Seebeck
coefficients themselves and generally we find |S| ∼ kB/e.

In the case of ballistic devices we also investigate the effect
of gate voltage in the middle region. This could be of great
importance in real applications since the gate voltages can be
easily tuned. Subsequently one can control the spin-dependent
thermoelectric properties by changing the chemical potential
μm of middle graphene between the two electrodes and
can tune the spin-caloritronic properties. The dependence of

FIG. 6. (Color online) The variations of thermopowers and cor-
responding figures of merit are depicted as functions of normalized
exchange splitting for different values of μm/μ0. We set the length
of the junction Lμ0/�vF = 10 and also fix the dimensionless
temperature at kBT /μ0 = 0.1.

spin and charge thermopowers and corresponding figures of
merit on the exchange splitting scaled by the leads’ chemical
potential at zero temperature μ0 are shown in Fig. 6 for a
variety of μm. First of all we see that changing μm results
in shifts in the dependencies of Sch,sp and Zch,spT which
can be easily understood due to the fact that the middle
magnetic graphene doping plays the main role in transport
properties rather than the leads’ doping μ0. Second it is
clear that the overall amplitude of the Seebeck coefficients
and figures of merit also vary by changing the gate voltages.
This is related to the fact that when the chemical potential
of electrodes and middle graphene are different the energy-
dependent transmission coefficient Ts(ε,φ) changes. However
unless μm 
 μ0 these changes do not affect the magnitude
of thermopowers since both L0

s and L1
s scale with overall

transparency of the scattering region (middle graphene) and
only the shift as a function of Vex/μ0 is observable.

C. On the experimental reliability

We close our discussion with commenting on the possible
experimental realization of the results we find. First of all
we should recall that in all our models we have ignored
spin relaxation and spin-flip scattering which is verified until
the device size is smaller than spin relaxation length. So in
order to have a strong spin Seebeck effect and usage for
spin-caloritronics application, we need devices of length L �
�sp ∼ 1 μm which is easily accessible in current experimental
devices [37]. On the other side an important step is to combine
already existing experimental spintronic and thermoelectric
setups based on graphene. This is apparently an easy task
since on one side nonlocal magnetoresistance measurements
are proven to be very useful to detect spin injection and spin
currents in graphene-based spintronic devices. On the other
hand the thermoelectric effects themselves have been already
observed with significant precision [18,19] which suggests that
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FIG. 7. (Color online) The charge and spin thermopower depen-
dence on chemical potential for various temperatures from 10 K to
room temperature. The exchange splitting is assumed to be Vex = 5
meV in agreement with theoretical prediction of proximity-induced
magnetism in graphene.

spin-dependent thermoelectric properties, in principle, could
be detected with high feasibility.

In order to reveal the relevance of our finding to the
experimental situations, in Fig. 7 the variations of charge and
spin thermopowers with chemical potential (μ) for different
temperatures are shown in the case of the diffusive regime. In
this figure unlike previous ones instead of scaled dimensionless
parameters we use reliable numerical values of parameters in
electronvolts, kelvins, etc., and in particular the temperatures
are exactly the same as in Ref. [18]. In addition we assume the
predicted value for exchange splitting Vex ∼ 5 meV [38]. We
see that the numerical values of thermopowers reach values on
the order of a hundred μV/T which is consistent with previous
experimental results for nonmagnetic graphene. In fact when
the temperature is large enough in comparison with exchange
splitting (kBT � Vex) the qualitative behavior of Sch is very
close to that obtained by Zuev et al. [18]. But very interestingly
close to the Dirac point (μ = 0) the spin Seebeck coefficient
becomes very large especially for intermediate temperatures
(kBT ∼ Vex) as discussed before.

Finally, we should comment on the possible influences of
phonons in our result which we have not considered. The
main effect of phonons is their contribution in the thermal
conductivity K and the charge and spin thermopower are
not affected with the presence of phonons. Therefore it is
clear that the thermal conductivity of phonons Kph can only
affect the figures of merit in our results and since it does not
depend on chemical potential or exchange splitting it will only
increase K depending on temperature. This will decrease ZT

but dependence on μ and Vex will not be changed qualitatively,
whatsoever. Second, the thermal conductivity of phonons will
decrease according to some power-law behavior Kph ∝ T α

with α = 1.68 upon decreasing temperature [21], while the
electrons contribution (Kel) in the thermal conductivity varies
linearly with T at low temperatures. This can be easily seen
from the exact formula which can be obtained in the diffusive
regime,

Kel = k2
BT

2π�nimpe4

[
14

15
(πkBT )2

+
∑

s

(μ + sVex)2 − (πkBT )2

3(μ + sVex)2 + (πkBT )2
(μ + sVex)2

]
, (21)

with impurity concentration nimp. From the experimen-
tal results on phonon thermal conductivity in suspended
graphene [39], we can estimate values on the order of Kph ∼
10−1,10−2,10−3 μW/K at temperatures T ∼ 300,60,20 K,
respectively. Then from Eq. (21) and assuming typical values
nimp = 0.2 × 1010 cm−2, μ = 0.1 eV, Vex = 5 meV we see
that for T � 100 thermal conductivity of electrons decreases
linearly with T and for instance at T = 20 K, we get Kel ∼
10−9 W/K which is the same as the phonon contribution.
So we can conclude that for low temperatures T � 10 K
the electrons dominate the thermal conductivity in graphene.
At higher temperatures phonons becomes important but as
we mentioned before it only results in the overall decline of
predicted figures of merit, without affecting their qualitative
behavior.

IV. CONCLUSIONS

In this study we reveal that magnetic graphene could be
very promising for spin-caloritronics studies and applications.
Employing Boltzmann and Landauer formalisms, the spin-
dependent thermoelectric properties of graphene in both
diffusive and ballistic regimes are obtained. The main finding
is that while in the absence of spin splitting the temperature
gradient drives a charge current in graphene, by imposing
spin splitting a significant spin current is established, too.
Very intriguingly when we consider an undoped magnetic
graphene in which different spin carriers belong to conduction
and valence bands, we will have a pure spin thermopower
without charge thermopower. This pure spin current generation
by temperature gradient can be achieved in the temperature
and spin splitting of the order of the unpolarized state Fermi
energy which is accessible in current experiments. So based on
this study, we believe that besides the suggested applications
of graphene for spintronic devices due to long spin relaxation,
magnetic graphene can be used as a base material to investigate
spin-thermoelectric phenomena.
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APPENDIX: TEMPERATURE DEPENDENCE OF THE
CHEMICAL POTENTIAL

In this Appendix we will present the results of chemical po-
tential μ variations with temperature T and spin splitting Vex.
The conventional way to obtain the temperature dependence
of chemical potential is to enforce the following quantity to be
constant, ∫

dερ(ε)fμ(T )(ε) = const., (A1)
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FIG. 8. (Color online) Temperature dependence of chemical po-
tential μ(T ) for different spin splittings Vex. All energies are scaled
with respect to μ0, the chemical potential at zero temperature T = 0.

with Fermi distribution function

fμ(T )(ε) =
[

1 + e
ε−μ(T )
kB T

]−1

, (A2)

which is nothing but the total number of electrons in the
system. However in the case of the massless Dirac model
for graphene in which there is no lower band for energy
the integration over energy diverges. However we can easily
overcome this difficulty by subtracting the infinite number of
negative energy states. So we define the excess number of
charge carriers instead of all electrons,

Nexc =
∫ ∞

−∞
dερ(ε)fμ(T )(ε) −

∫ 0

−∞
dερ(ε), (A3)

which must be a constant irrespective of temperature varia-
tions. Inserting the density of states ρ(ε) of magnetic graphene
and equating the finite-temperature value of the above expres-
sion with its zero-temperature correspondence, we will have∫ ∞

0
dε ε

∑
s

[fμ(T )(ε + sVex) − f−μ(T )(ε + sVex)]

= 1

2

∑
s

(μ0 + sVex)2sgn(μ0 + sVex). (A4)

It is worth noting that here the chemical potential
will depend on Vex as well. Scaling all the energies with
zero-temperature doping μ0, by solving Eq. (A4) numerically
we could obtain μ(T )/μ0 as a function of normalized
temperature kBT /μ0 and spin splitting Vex/μ0. The results
can be seen in Fig. 8.
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