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The linear and two-dimensional coherent optical spectra of Coulomb-coupled quantum emitters are discussed
with respect to the underlying coupling processes. We present a theoretical analysis of the two different resonance
energy transfer mechanisms between coupled nanostructures: Förster and Dexter interaction. Our investigation
shows that the features visible in optical spectra of coupled quantum dots can be traced back to the nature
of the underlying coupling mechanism (Förster or Dexter). Therefore, we discuss how the excitation transfer
pathways can be controlled by choosing particular laser polarizations and mutual orientations of the quantum
emitters in coherent two-dimensional spectroscopy. In this context, we analyze to what extent the delocalized
double-excitonic states are bound to the optical selection rules of the uncoupled system.
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I. INTRODUCTION

Within the last years, the development of precise and
highly efficient crystal growth techniques has given rise to
the fabrication of high-performance semiconductor devices
with tunable optoelectronic and transport properties. Quantum
confined nanostructures such as semiconductor quantum dots
are used in various applications such as quantum dot lasers [1],
single-photon sources [2], light-emitting diodes [3], and solar
cells [4]. In particular, a detailed, quantitative understanding
of the exciton dynamics in coupled nanostructures driven by
coherent, ultrafast laser pulses is of great interest for quantum
information [5]. The electronic properties and optical spectra
of such coupled quantum systems can be considerably affected
by Coulomb interaction processes induced by optically gener-
ated electron-hole pairs [6–8].

Therefore, investigating the Coulomb induced resonance
energy transfer mechanisms between two nanostructures has
been a central topic of research. There have been several
experimental [9–11] and theoretical studies [12–15] on the
spectroscopic signatures of Förster (dipole-dipole) excitation
transfer between colloidal and self-assembled quantum dots. In
this paper, we also consider direct electronic exciton transfer,
i.e., the Dexter mechanisms [16], and include different spin
states of the interacting electrons. Our goal is to work out
specific signatures of Förster and Dexter transfer in optical
spectra of coupled semiconductor quantum dots: Dexter
transfer describes a direct exchange of electrons between the
nanostructures and thus requires an electronic wave-function
overlap. The spin of the transferred electron is conserved in the
case of Dexter coupling. In contrast, Förster coupling denotes
a dipole-dipole–type interaction which can either transfer or
flip the spin state of the transferred exciton in quantum dot
structures [17]. Since Förster coupling elements depend on the
microscopic interband dipole orientations, spin-preserving and
spin-flipping Förster coupling strengths can be manipulated by
changing the mutual orientation of the two nanostructures [17].
This offers the opportunity to control quantum information
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with respect to the spin state of the transferred exciton, which
is of particular interest for future quantum computational
applications based on the electron spin [18,19].

Both Förster and Dexter coupling processes induce an
excitation energy transfer from an initially excited donor to
an acceptor [16,20–22]. This causes a hybridization of the
excited states of the individual quantum emitters into new
excitonic states potentially delocalized over the hybrid sys-
tem. The characteristic optical resonances of the delocalized
single-exciton states are encoded in linear absorption spectra.
However, a profound insight into the microscopic coupling
mechanisms between higher excitonic states and specific
excitation pathways can be better gained using nonlinear,
multidimensional coherent spectroscopy techniques [23–29].
The method applied in this paper, two-dimensional (2D)
double quantum coherence [30–32], offers a direct access
to the single-exciton and two-exciton resonances and thus
reveals the corresponding excitation pathways and quantum
state correlations. We show that the spectroscopic features
visible in 2D spectra reveal the Förster and Dexter coupling
characteristics and the limitations imposed on the optical
selection rules in the nonlinear response.

This paper is organized as follows: First, the basic Hamilto-
nian is discussed. The coupling elements between the quantum
dot nanostructures are determined by using the effective mass
and envelope function approximation and performing a dipole
approximation on the unit cells. After that, the delocalized
exciton basis is presented and the linear and nonlinear optical
signals are introduced. We finally discuss the characteristic
features of our calculated spectra. All calculations are based
on the Liouville diagrams [30,32], which serve as an elegant
theoretical formulation of the problem.

II. MODEL SYSTEM

The system considered in our work contains two nanostruc-
tures labeled 1 and 2 that are coupled via Coulomb interaction.
As an example, Fig. 1(a) shows a coupled quantum dot system.
In the following, we will focus on the energetically lowest
light-induced transitions between the highest occupied and
the lowest unoccupied electronic states of each structure such
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(a) (b)

FIG. 1. (Color online) (a) Two coupled QDs as spin-degenerate
two-level systems. (b) Three-band model containing the ground state
(|g〉) and single-exciton (|e〉) and two-exciton states (|f 〉).

that both quantum emitters can be described as two-level
systems. In the case of a quantum dot (QD), the energetically
lowest allowed electronic transition occurs between its highest
occupied valence (v) and lowest unoccupied conduction (c)
band state. This transition constitutes the lowest bound exciton.

The single particle electronic wave functions of a dou-
ble quantum dot system are described using the effective
mass and envelope function approximation [33,34]. Here,
the wave functions are written as products of the lattice
periodic Bloch function uλnσ,k≈0(r) and the envelope function
ξλn(r) of an electron with spin σ ∈ {↑,↓} in the valence
or conduction band λ ∈ {v,c} of nanostructure n ∈ {1,2}:
ψ(r) = ∑

λ,n,σ ξλn(r)uλnσ (r)aλnσ . ξλn(r) solves the single-
particle Schrödinger equation for the confinement potential
UC(r) of the QD structure: [−�

2∇2/(2m∗) + UC(r)]ξλn(r) =
Eλnξλn(r). m∗ denotes the valence or conduction band effective
mass, respectively. For InAs/GaAs QD systems, they are well
described by the GaAs bulk effective masses due to the strong
strain and confinement conditions affecting the InAs dots
[35,36].

For our analysis, we choose a model system consisting of
two self-organized ellipsoidal InAs/GaAs QDs as shown in
Fig. 1(a). However, our results are not limited to a specific QD
system and similar coupling identifying absorption patterns
are expected for other coupled nanostructures such as excitons
in inorganic sheets coupled to molecular excitons. UC(r) is
separated into the three spatial directions UC(r) = UC(x) +
UC(y) + UC(z). The potentials in the y and z directions
are assumed to be harmonic (minima at y,z = 0) [37]. The
ground-state dynamics of the envelope functions ξ

y

λn(y) and
ξz
λn(z) is thus given by Gaussian wave functions of widths b in

the y direction and h in the z direction [cf. Fig. 1(a)]. The con-
finement potential in the x direction exhibits two minima at the
QD centers with center-to-center distance R12. Its shape is de-
scribed by two Gaussian functions [37] for our model system:

UC(x) = −U0 exp

[
−1

2

(
x + R12/2

l0,x

)2
]

− (U0 + �U ) exp

[
−1

2

(
x − R12/2

l0,x

)2
]

(1)

with depth U0 and width l0,x = b/(2
√

2 ln 2). Due to its
continuity, this model potential allows an exchange of elec-
trons between the two nanostructures. The corresponding
one-dimensional (1D) Schrödinger equation for ξx

λn(x) is
solved numerically using eighth-order finite differences [38].

TABLE I. Material and quantum dot model parameters.

Medium relative permittivity [39] εr 10,9
Conduction band eff. mass m∗

e 0,07 m0

Heavy-hole valence band eff. mass m∗
h 0,45 m0

Conduction band confinement depth [40] Uc
0 770 meV

Conduction band potential offset �Uc −0.5 meV
Valence band confinement depth [40] Uv

0 330 meV
Valence band potential offset �Uv −0.05 meV
QD lateral extension b 5 nm
QD height h 2.5 nm

For small interdot separations, the resulting single-particle
wave functions are not well localized at a particular QD due
to the wave-function tunneling. Nevertheless, the two lowest
eigenstates ξx

λ1 and ξx
λ2 represent the single-particle states

predominantly localized at the lower-energy QD 1 and the
higher-energy QD 2, respectively. Consequently, the index n

labels the single-particle states that, strictly speaking, do not
entirely reside within a particular QD. The full envelope func-
tion is given by the product ξλn(r) = ξx

λn(x)ξy

λn(y)ξz
λn(z). As

both Förster and Dexter coupling strengths are very sensitive to
the interdot separation, it is preferable to choose small QDs for
an increased coupling strength since the distance between the
two QD volumes can be relatively small compared to their size.
All material and model system parameters are given in Table I.

III. HAMILTON OPERATOR

The full Hamilton operator consists of three contributions:
H = H0 + HC + He-L. The free-electron part H0 contains the
undisturbed electronic eigenenergies ελnσ :

H0 =
∑
λ,n,σ

ελnσ a
†
λnσ aλnσ . (2)

aλnσ and a
†
λnσ denote the annihilation and creation operators

of an electron with spin σ in level λ of the nth single-particle
state. Since the spin-orbit coupling is often weak compared
to the homogeneous linewidth (which is typically in the
order of few μeV for the zero phonon line [41,42]), the
spin-up and -down states of the same band within one QD
are considered degenerate in this paper: ελn↑ = ελn↓. The
Coulomb Hamiltonian HC is given by

HC =
∑

λa . . . λd

na . . . nd

σa . . . σd

Vabcd a
†
λanaσa

a
†
λbnbσb

aλdndσd
aλcncσc

(3)

with the Coulomb-coupling matrix element

Vabcd = e2

8πε0εr

∫
d3r

∫
d3r ′ u∗

λanaσa
(r)u∗

λbnbσb
(r ′)

× ξ ∗
λana

(r)ξ ∗
λbnb

(r ′)ξλdnd
(r ′)ξλcnc

(r)

|r − r ′|
× uλdndσd

(r ′)uλcncσc
(r)δσaσc

δσbσd
, (4)

where e is the elementary charge, ε0 the vacuum permittivity,
and εr the medium relative permittivity. The two Kronecker
deltas ensure spin conservation for the Coulomb interaction.
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The Coulomb coupling contains contributions within each
single nanostructure and between the two nanostructures.
Here, we focus on the discussion of the coupling between the
nanostructures (na �= nb). However, all inner QD couplings
are included in an analogous way. A Taylor expansion around
the center of each elementary cell of the Green’s function
G(r,r ′) = 1

4πε0εr|r−r ′| in Eq. (4) gives three types of matrix
elements (cf. Appendix): the zeroth-order contribution leads to
the so-called monopole-monopole shifts and Dexter elements,
the dipole-dipole terms describe the Förster elements. The
corresponding coupling elements are derived in detail in the
Appendix.

The diagonal monopole-monopole part of the Coulomb
Hamiltonian has the form

H mono
C =

∑
λa,λb,na,

nb,σa,σb

V mono
abab a

†
λanaσa

a
†
λbnbσb

aλbnbσb
aλanaσa

. (5)

It represents the electrostatic Coulomb interaction between
two charge densities of the electronic states [cf. Eq. (A4)]. The
monopole-monopole shifts induce an energy renormalization
with respect to the isolated system due to Coulomb interaction.
However, monopole-monopole shifts do not describe excita-
tion transfer [14]. All monopole-monopole shifts are included
in the calculations of the electronic Hamilton matrix. (There-
fore, also single-exciton and biexciton shifts are included
in the monopole-monopole part.) The shifts do not strongly
alter the eigenstates and are diagonal in the exciton states
constructed from the single-particle states. When speaking of
the uncoupled system and interaction shifted system energies
throughout this paper, we thereby refer only to the off-diagonal
couplings such as Förster and Dexter interaction. The diagonal
Coulomb couplings are always included in the “uncoupled
basis.”

The off-diagonal dipole-dipole part of the Coulomb Hamil-
tonian has the form (na �= nb)

H Förster
C =

∑
σa,σb

V F
σaσb

a
†
v1σa

a
†
c2σb

av2σb
ac1σa

+ H.c. (6)

with the matrix elements

V F
σaσb

= 1

4πε0εr

∫
d3r

∫
d3r ′

(
d1σa

vc · d2σb
cv

|r − r ′|3

− 3

[
d1σa

vc · (r − r ′)
] [

d2σb
cv · (r − r ′)

]
|r − r ′|5

)

× ξ ∗
v1(r)ξ ∗

c2(r ′)ξv2(r ′)ξc1(r). (7)

These dipole-dipole terms represent Förster excitation transfer
between the two nanostructures [20]. For this dipole-dipole
mediated interaction mechanism, no electronic wave-function
overlap is required. As can be seen in Eq. (7), the value of
a Förster matrix element is determined by the orientation
and magnitude of the microscopic interband dipole moments
dnσ

λμ of the elementary cells. As stated in Refs. [13,39], the
expression is beyond the simple point-dipole approximation
often used for Förster transfer [12,43] since the dipole
approximation is carried out on every unit cell. Furthermore,
the distance between the nanostructures does not simply
determine the coupling strength, but the distance between all

(a) (b)

FIG. 2. (Color online) (a) Two QDs aligned in a column with
local coordinate systems. θ defines the rotation angle between the
QD orientations. (b) Values of a spin-preserving (|V F

↑↑|) and a spin-
flipping Förster coupling element (|V F

↑↓|) as a function of θ .

unit cells of the nanostructures weighted by the occupation
probability does [cf. Eq. (7)]. The dipole moments depend on
the orientation of the crystal lattice [cf. Eq. (A3)]. The structure
of V F

σaσb
shows that the spin of an excited electron changes from

σa (in structure na) to σb (in structure nb) during Förster energy
transfer. The dependence of the spin-preserving (σa = σb) and
-flipping (σa �= σb) exciton transfer mechanisms (described
by the spin dependence of V F

σaσb
) on the mutual orientation

of the two coupled nanostructures has been discussed in
Refs. [17,44,45] for double QD structures: It was shown
that the Förster coupling strength strongly depends on the
relative orientation of the QDs if they are arranged in a
column as shown in Fig. 2(a). Parallel alignment of the two
vertically stacked QDs leads to spin-preserving Förster transfer
[θ = 0, see Fig. 2(b)], whereas the exciton spin is flipped
during Förster transfer in the case of antiparallel alignment
(θ = π ). In contrast, the Förster coupling elements show no
orientational dependence if the QDs are grown in a plane with
their crystalline c axes parallel to each other, as depicted in
Fig. 1(a). Consequently, Förster coupling is not spin selective
if the two QDs are arranged in a row, and the donor exciton
couples to both exciton states in the acceptor. We will show
that this will lead to more bright single-exciton states than in
the case of the stacked growth, caused by the Förster induced
hybridization process of the single-exciton states.

Rotation angles θ �= 0 can be realized for systems with
tunable relative orientations such as colloidal QDs. In the
considered example of two self-assembled QDs grown in a
plane or vertical stack, the growth direction is oriented along
the host crystal lattice. Therefore, nonparallel dipole moments
will only occur as a consequence of light-hole admixture [46],
which exceeds the framework of this paper.

In this work, we will include a second type of Coulomb
induced excitation energy transfer, the Dexter transfer [16].
As in the case of Förster transfer, Dexter transfer also induces
an exciton transfer from the donor to the acceptor, but the
underlying mechanism is different: Dexter transfer describes a
direct, real exchange of electrons between the structures, which
is only possible for overlapping electronic wave functions.
Thus, it is only important if the nanostructures are close to
each other. The corresponding Dexter part of the Coulomb
Hamiltonian is also derived in the Appendix and has the
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form

H Dexter
C =

∑
σa,σb

V D a
†
v1σa

a
†
c2σb

ac1σb
av2σa

+ H.c. (8)

with the coupling elements

V D = e2

4πε0εr

∫
d3r

∫
d3r ′ ξ ∗

v1(r)ξ ∗
c2(r ′)ξc1(r ′)ξv2(r)

|r − r ′| . (9)

σa denotes the spin of the electron transferred from one
valence band to the other, while σb denotes the spin of the
transferred conduction band electron. Because of ξ ∗

v1(r)ξv2(r)
and ξ ∗

c2(r ′)ξc1(r ′), Dexter transfer relies on sufficient wave-
function overlap. V D is spin independent and, therefore, each
electron keeps its spin state during the transfer: There are only
spin-preserving Dexter processes, which is different to the
Förster transfer.

Finally, the electron-light interaction He-L is treated semi-
classically as [33]

He-L = −d · E(t) (10)

with the dipole operator

d =
∑
n,σ

(∫
d3r ξ ∗

vn(r)ξcn(r) dnσ
vc a†

vnσ acnσ + H.c.

)
. (11)

In principle, also spatially indirect excitons originating from
light-induced electronic dipole transitions from one QD to
the other must be taken into account since we consider a
nonvanishing electronic wave-function overlap between the
QDs. However, direct excitons with the electron and hole
within the same QD are strongly preferred energetically due to
Coulomb attraction. Therefore, indirect excitons are not part of
the discussion since their excitation energies are several tens of
meV above the energy window studied in the spectra and the
transitions have only weak oscillator strengths. Nevertheless,
these exciton states have been included in all calculations.

For circular polarization of the external field, E(t) can be
expressed as E(t) = E(t)eσ± with the polarization vectors eσ+
and eσ− for right- and left-circularly polarized light. They
are given by eσ+ = (êx − i êy)/

√
2 and eσ− = (êx + i êy)/

√
2,

respectively, where êx and êy are unit vectors in a plane
perpendicular to the propagation direction [47].

In order to study the impact of the Coulomb interaction
on the eigenenergies of the system and to discuss linear and
nonlinear optical properties, we rewrite the Hamiltonian in
diagonalized exciton states. The system is assumed to be
initially in the ground state |g〉. The absorption of one photon
generates a single-exciton state. The uncoupled, local single-
exciton states |Xi〉 of the individual QDs (ni) are eigenstates of
H0 and created from the ground state: |Xi〉 = a

†
cniσi

avniσ
′
i
|g〉.

In this local basis, the exciton Hamilton operator has only off-
diagonal elements for Förster and Dexter coupling elements.
Due to these nondiagonal transition matrix elements, the local
single-exciton states are hybridized [12,13,48]. By diago-
nalizing the exciton Hamilton operator, the new delocalized
single-exciton basis set {|e〉} of eigenstates |e〉 = ∑

i η
e
i |Xi〉

of the electronic Hamiltonian (H0 + HC)|e〉 = Ee|e〉 and the
expansion coefficients ηe

i are obtained.
If two or more photons are absorbed by the system, also

double excitons can be excited. In analogy to the single-exciton

states, the two-exciton states |Bij 〉 of the uncoupled system are
set as |Bij 〉 = a

†
cniσi

avniσ
′
i
a
†
cnj σj

avnj σ
′
j
|g〉 with i < j . The de-

localized double-exciton eigenstates are |f 〉 = ∑
i,j η

f

ij |Bij 〉
with energy Ef : (H0 + HC)|f 〉 = Ef |f 〉.

Subsequently, we will refer to the delocalized eigenstates
of our system as manifolds g (ground state), e (single-exciton
states), and f (two-exciton states) [cf. Fig. 1(b)]. Higher-order
exciton states excited in wave mixing higher than third order
can be formulated in a similar way, but will not be considered
in this work since these states do not contribute to the double
quantum coherence signal realized in 2D spectroscopy [32] in
the χ (3) limit used to differentiate between Förster and Dexter
coupling.

IV. LINEAR OPTICAL SPECTROSCOPY

The linear absorption coefficient at an incident frequency
ω is given by [33]

α(ω) = ω

n(ω)ε0c
Im

(
P (1)(ω)

E(ω)

)
. (12)

n(ω) is the frequency-dependent refractive index of the
material {with n(ω) � Re[P (1)(ω)/(ε0E(ω)]}, c is the speed
of light in vacuum. The polarization in first order of the
electric field is given by P (1)(t) = tr[d ρ(1)(t)]. P (1)(ω) can
be calculated by using the dipole operator d and the first-
order density operator ρ(1)(t) in the new delocalized exciton
basis. Introducing a phenomenological dephasing constant γ

accounting for radiation processes and a Fourier transform of
P (1)(t), the linear absorption reads as [32,33]

α(ω) ∝ ω
∑

e

|deg · ePol|2 γ

γ 2 + (ωeg − ω)2
. (13)

Here, ePol denotes the polarization direction of the incoming
light, and deg is the dipole moment between the ground state
and a single-exciton state. The matrix element has the form

deg = 〈e|d|g〉 =
∑

i

ηe
i
∗〈Xi |d|g〉. (14)

ωeg ≡ 1
�

(Ee − E0) denotes the resonance frequencies of the
single-excitonic system with ground-state energy E0. The phe-
nomenological damping is assumed to be γ = 1/(500 ps) [49].

V. MULTIDIMENSIONAL SPECTROSCOPY

In this section, we will investigate heterodyne-detected
two-dimensional (2D) signals obtained by a multiple-pulse
technique [32]. While in linear spectroscopy only a single
excitation of the quantum system is observed, coherent multi-
dimensional spectroscopy allows us to excite double-exciton
and higher states and thus study their energies and couplings.
We consider coherent spectroscopy with three pulses up to the
third order in field.

In the considered four-wave mixing experiment, the system
is excited by a sequence of three temporally separated pulses
centered at times τ1, τ2, and τ3 with delay times T1 and T2

between them (cf. Fig. 3). A spatial separation of the pulses
by selecting the directions of the incoming signals (phase
matching) can only be realized for spatially extended systems
of identical structures and not for a single nanosystem. In the
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FIG. 3. (Color online) Timeline for the pulse sequence applied in
a double quantum coherence experiment.

case of a single nanosystem, the excitation pathways can be
controlled using phase cycling, where the phase shifts between
the pulses are varied [24]. The optical field then reads as [32]

E(r,t) =
3∑

j=1

∑
uj =±1

Euj

j (r,t − τj )e−iuj ωj (t−τj )+iuj ϕj (15)

with the envelope Euj

j (t − τj ) of the j th pulse with phase ϕj

and laser frequency ωj . The uj can either take the value +1
or −1 with E−1

j = (E+1
j )∗. The phase of a specific signal is

given by a particular linear combination of the incident pulse
phases ϕj : ϕs = u1ϕ1 + u2ϕ2 + u3ϕ3. The factors uj = ±1
are chosen according to the extracted phase combination, in
our case for the DQC signal. Other possible signals such as
the photon echo are described in Ref. [23].

Here, it is sufficient to consider the three lowest manifolds
g, e, and f . In this case, the polarization in third order of the
electric field is the observable [32]

P (3)
α (r,t)

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
dt3dt2dt1

3∑
β,γ,δ=1

R
(3)
αβγ δ(t3,t2,t1)

×Eβ(r,t − t3)Eγ (r,t − t3 − t2)Eδ(r,t − t3 − t2 − t1).

(16)

R
(3)
αβγ δ(t3,t2,t1) is the third-order response function (see

Refs. [30,32]) and t1, t2, and t3 denote the time intervals
between the interactions with the optical fields.

We will focus on double quantum coherence (DQC) signals
SϕIII with a signal phase ϕIII = ϕ1 + ϕ2 − ϕ3 and frequency
ωs = ω1 + ω2 − ω3. The two possible Liouville space path-
ways contributing to the response function and thus to the DQC
signal are illustrated in Fig. 4 using double-sided Feynman
diagrams [30]. It can be seen on the diagrams that the first two

FIG. 4. Feynman diagrams showing the two Liouville pathways
(i) and (ii) of the density matrix for the DQC signal ϕIII.

interactions induce the same changes in the density matrix in
both pathways: During the time interval t1, the density matrix is
in a coherence between the ground state g and a single exciton
state e, oscillating at an optical frequency ωeg . The second
pulse generates a coherence between the ground state and a
two-exciton state f . Only after the third laser pulse ϕ3, the
two pathways differ: It creates a |f 〉〈e′| coherence in pathway
(i) and a |e′〉〈g| coherence in pathway (ii). The last, outgoing
pulse ϕIII represents the so-called local oscillator field which
is mixed with the signal field for heterodyne detection [32].

The third-order signal depends on the three delay times T1,
T2, and T3 between the pulses (Fig. 3) and has the form [32]

S(3)
ϕIII

(T3,T2,T1) =
∫ +∞

−∞
dt PϕIII (t) · E∗

s (t − τs)e
iωs (t−τs ).

(17)

Here, Es denotes the local oscillator field and PϕIII (t) is the
induced polarization of the DQC signal. It depends on the
corresponding response function representing the Liouville
pathway contributing to the ϕIII technique (Fig. 4). The DQC
2D signal is measured as a function of the excitation frequen-
cies �1 and �2, which is obtained by Fourier transforming
the signal SϕIII (T3,T2,T1) with respect to the pulse delays T1

and T2 at a fixed third time interval T3. The double quantum
coherence signal is composed of the two contributions from
pathways (i) and (ii):

S(3)
ϕIII

(T3,�2,�1) = S
(3)
i (T3,�2,�1) + S

(3)
ii (T3,�2,�1) (18)

with the contributions [32]

S
(3)
i (T3,�2,�1) = −i

(2π )4

�3

∑
e,e′,f

[d∗
f e′ · E∗

s (ωf e′ − ωs)]

× [d∗
e′g · E∗

3 (ωe′g − ω3)e−iξf e′T3 ]

× df e · E2(ωf e − ω2)

�2 − ξfg

deg · E1(ωeg − ω1)

�1 − ξeg

,

(19)

S
(3)
ii (T3,�2,�1) = i

(2π )4

�3

∑
e,e′,f

[d∗
e′g · E∗

s (ωe′g − ωs)]

× [d∗
f e′ · E∗

3 (ωf e′ − ω3)e−iξe′gT3 ]

× df e · E2(ωf e − ω2)

�2 − ξfg

deg · E1(ωeg − ω1)

�1 − ξeg

.

(20)

In analogy to the linear case, deg and df e represent the ground
state to single exciton and single exciton to biexciton transition
dipole moments in the delocalized exciton basis, respectively:
df e = ∑

i,j η
f

ij

∗〈Bij |d̂|Xj 〉ηe
j . The ξab ≡ ωab − iγab take into

account the dephasing rate γab and the exciton frequencies
ωeg = 1

�
(Ee − E0) and ωf e = 1

�
(Ef − Ee).

The resonances that occur in the 2D spectra [Eqs. (19) and
(20) as functions of �1 and �2] reveal how the single-exciton
(ωeg) and two-exciton states (ωf e) of the investigated system
are connected: Their intensities indicate the contribution of a
single-exciton resonance (�1 axis) to a specific two-exciton
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state (�2 axis) [31]. The resonances projected on the single-
exciton �1 axis (for �2 = ωf e) coincide with the signals
obtained by linear absorption spectroscopy. The signatures
along the �2 axis provide additional information about the
two-exciton resonances after excitation with a second laser
pulse at frequency �2: In coupled, hybridized quantum
systems, they reveal specific single-exciton to two-exciton
excitation pathways that could not be accessed in uncoupled
systems due to the optical selection rules.

VI. DISCUSSION OF THE OPTICAL SPECTRA

We now discuss the linear and two-dimensional DQC
optical spectra [Eqs. (18)–(20) as a function of �1 and
�2]. The single- and two-exciton energy scales are given as
detuning with respect to the uncoupled resonance energies for
the creation of a single exciton (E1) and biexciton (E11) at
the QD with lower band-gap energy (referred to as QD 1),
respectively. The detuning � between the original resonance
energies of the two QDs follows from the potential offsets
�Uc/v after diagonalization. In order to observe both weak and
strong signatures on the same scale, the following nonlinear
scaling was chosen [50]: Snonlinear = arsinh(|S(3)

ϕIII
|/N) with

normalization constant N .
In the example, the optical excitation pathways follow the

zinc-blende selection rules. Only exciton states with opposite
spins of electron and hole have a finite dipole transition
moment and can thus be directly excited by optical pulses.
These excitons are called bright single excitons. In the local
exciton basis, four bright single-exciton configurations exist,
two in each QD (states X1 to X4 in Fig. 5). Furthermore, it is
possible to selectively excite a specific conduction band spin
state by the use of circularly polarized light [51,52].

In order to interpret the optical spectra, it is essential to
know the two-exciton configurations which can be excited
directly from the bright single excitons with different circularly
polarized optical pulses. The possible excitation pathways
are shown in Fig. 6. If the system absorbs two photons of
the same circular polarization, only one two-exciton state
composed of two single excitons with the same electron
spin at different QDs can be created. In Figs. 5 and 6, this
two-exciton state is denoted as B5 in the case of right-hand

FIG. 5. Configurations of the four bright single excitons X1 to
X4, the six bright two-excitons B1 to B6 and of two dark double
excitonic states B7 and B8 (right, darkened column).

FIG. 6. (Color online) Level scheme showing the possible exci-
tation pathways in the uncoupled system. E0 denotes the energy of
the ground state g, En the energy of the uncoupled single-exciton
states Xi at QD n, and Emn the energy of the local double-exciton
states Bi consisting of two excitons at QDs m and n (m,n = 1,2). The
energetic distance between the uncoupled single-exciton energies E1

and E2 corresponds to the band-gap detuning � between the QDs, the
uncoupled biexciton energies E11 and E22 are separated by 2�. The
purple and green arrows indicate the possible transitions for excitation
with left-hand and right-hand circularly polarized light, respectively.
The dotted red arrow labeled V D marks the Dexter coupling of the four
bright two-exciton states B1 to B4 (red box) to the dark two-exciton
states B7 and B8.

circular polarization and as B6 in the case of left-hand circular
polarization. An excitation with two laser pulses of opposite
circular polarizations can generate so-called biexciton states
with both electron-hole pairs at the same QD (B1 and B2)
as well as configurations with both excitons at different QDs
(B3 and B4). Since spin-orbit coupling is neglected, B3 and
B4 are energetically degenerate. Regarding the uncoupled
system, three two-exciton resonance energies are expected:
In the spectra shown later, the double-exciton resonances are
denoted E11 (for the state B1), E22 (for B2), and E12 (for the
states B3 to B6 with the two excitons at different QDs), as
shown in Fig. 6.

Of course, the nondiagonal Coulomb couplings relax
these strict optical selection rules discussed above due to
hybridization in the formation process of delocalized states.
The diagonalized eigenenergies of the system are denoted ei

for single excitons and fi for two excitons. The energies of
the coupled system are shifted with respect to the resonance
energies of the uncoupled system which are marked by dashed
lines in the spectra (next section). In some cases, some excitons
are not hybridized and thus their energy remains unchanged.

For the discussion, we distinguish the following cases:

A. Case 1: Dominantly Förster coupled system

In this case, the QDs are separated in a way that the
QDs have negligible Dexter transfer compared to the Förster
elements. Here, a higher value d = 1.3 e nm of the dipole
moment compared to case 2 was set for the numerical
calculation in order to discuss the thus increased Förster
coupling in more detail. This value is slightly higher than the
values between 0.3 and 0.9 e nm usually found in literature
[39,53–55] (dipole moments of magnitudes 1 to 2 e nm have
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FIG. 7. (Color online) Case 1(i) (left column, only spin-
preserving Förster coupling) and 1(ii) (right column, spin-preserving
and -flipping Förster coupling): Linear absorption spectra [(a) and
(d)] and 2D spectra for excitation with four laser pulses of identical
circular polarizations σ+σ+σ+σ+ [(b) and (e)] and alternating polar-
izations σ+σ−σ+σ− [(c) and (f)]. All DQC signals were calculated
for a fixed delay time T3 = 1 ps.

so far only been measured for single QDs, cf. Ref. [56]). We
further distinguish the following:

(i) The QDs at center-to-center distance R12 = 12 nm
are aligned in a stack with parallel orientation [cf.
Fig. 2(a)]. In this geometry, spin is conserved during
Förster transfer. The corresponding coupling element
is calculated as |V F

↑↑| = |V F
↓↓| = 0.11 meV.

(ii) The QDs are arranged in a plane [cf. Fig. 1(a)]
with R12 = 13 nm, where both spin-preserving and
spin-flipping Förster transfers occur with the respec-
tive calculated coupling elements |V F

↑↑| = |V F
↓↓| =

0.050 meV and |V F
↑↓| = |V F

↓↑| = 0.14 meV.
For case 1(i), where spin-preserving Förster interaction is

the only coupling, one bright single exciton is always coupled
to the bright single exciton with corresponding spin state in the
other QD [cf. Fig. 9(a)]. This leads to a hybridization of the two
bright excitons and thus two interaction shifted peaks in the
linear absorption spectrum of Fig. 7(a). The upper resonance
exhibits a higher oscillator strength than the lower peak [13].

Figures 7(b) and 7(c) show the 2D spectra for two
different polarization combinations of the four exciting pulses:
σ+σ+σ+σ+ and σ+σ−σ+σ−. As pointed out before, exciting
the system with photons of the same, right-hand circular
polarization [Fig. 7(b)] leads to one bright two-exciton state B5

with both spin-up excitons at different QDs. The corresponding
excitation pathways shown in Fig. 6 consist of two sequent
green arrows lifting the system from the ground state to
B5. This double-exciton state cannot couple to any other
two-exciton states by means of V F

↑↑ since all spin-up electrons

are already excited. Hence, Fig. 7(b) shows only one two-
exciton resonance, which is not changed by Förster coupling
with respect to the uncoupled resonance E12. In contrast, an
excitation with four pulses of alternating polarizations, e.g.,
σ+σ−σ+σ− [Fig. 7(c)], leads to three dominant two-exciton
resonances. They result from the excitation of two electron-
hole pairs within the same QD (state B1 at energy f1 for QD 1,
state B2 at energy f2 for QD 2) and the excitation of one
electron-hole pair in each QD (states B3 and B4 at energy
f3). All three states are coupled via spin-preserving Förster
transfer and therefore change their energy with respect to the
uncoupled resonances E11, E22, and E12 (dashed lines) due to
Förster coupling (cf. Fig. 6). It is noteworthy that in particular
the peaks at e2/f1 and e1/f2 mark excitation pathways that
could not be excited if there were no Förster coupling since
the electron-hole pair generated by the first pulse has to be
transferred to the other QD via Förster coupling.

In case 1(ii) [Figs. 7(d)–7(f)], both spin-preserving and
spin-flipping Förster transfers occur. Thus, in linear spec-
troscopy one bright single exciton in one of the QDs couples to
both bright single excitons in the other QD and a hybridization
of all four bright single excitons can be observed in Fig. 7(d)
(upper panel). In the nonlinear regime, also the two-exciton
states are important. All six bright two-exciton configurations
are coupled via Förster transfer. If the system is excited by
photons of the same polarization, a weak coupling from B5 (see
Fig. 6) to the biexciton states B1 (energy f1) and B2 (energy f2)
is observed in Fig. 7(e) due to spin-flipping Förster coupling.
The third, low-energy resonance splits into two closely
spaced two-exciton resonances at the hybridized level f3 and
the uncoupled resonance E12, where the E12 line exhibits
only a weak oscillator strength for σ+σ−σ+σ− excitation.
The symmetry of the bright two-exciton configurations with
electron-hole pairs at different QDs (B3 to B6) causes, that
the Förster shifts are canceled, which results in an additional
absorption peak at the uncoupled resonance E12. The spectrum
for excitation with alternating polarizations [Fig. 7(f)] shows
a 4 × 4 peak pattern as well due to the coupling of all bright
two-exciton configurations. In comparison to Fig. 7(e), the
two-exciton resonances at f1 and f2 exhibit higher intensities
since the contributing dipole moments are increased.

In principle, a cancellation of the Förster shifts for some
delocalized states and thus an additional peak at the uncoupled
resonance E12 might also occur in case 1(i) for σ+σ−σ+σ−
excitation due to the symmetry of the two-exciton states B3

and B4. However, the corresponding two-exciton resonance
has only a low oscillator strength and is therefore hardly visible
in the spectrum.

B. Case 2: Predominantly Dexter coupled system

In this case, the QDs are arranged in a plane in close
proximity (R12 = 10 nm) with negligible Förster coupling
(calculated as |V F| ≈ 0.02 meV) compared to the calculated
dominant Dexter interaction strength V D = 1.6 meV. The QD
dipole moment is chosen to be d = 0.6 e nm [54]. Since Dexter
interaction always preserves the spin state of the transferred
exciton, a bright single exciton in one QD couples to the bright
exciton with the same spin state in the other QD. This results
in the same linear absorption features as in case 1(a), but this
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FIG. 8. (Color online) Case 2 (dominant Dexter coupling): Lin-
ear absorption spectrum (a) and 2D spectra for excitation with
four laser pulses of identical circular polarizations σ+σ+σ+σ+ (b)
and alternating polarizations σ+σ−σ+σ− (c). Due to the Dexter
coupling, the peaks are strongly shifted with respect to the uncoupled
resonances (dashed lines) and the lower resonance single-exciton
peak at −1.1 meV nearly vanishes (dark state). Therefore, the same
nonlinear scaling as for the 2D spectra was chosen for the linear
spectrum. All DQC signals were calculated for a fixed delay time
T3 = 1 ps.

time the energy shift induced by the coupling is determined by
the Dexter interaction strength [cf. Fig. 8(a)].

The 2D spectrum for excitation with identical polarizations
σ+σ+σ+σ+ [Fig. 8(b)] exhibits the same features as the corre-
sponding spectrum in case 1(i), where spin-preserving Förster
processes constitute the only coupling mechanism. In analogy
to the Förster case 1(i), only one two-exciton absorption
resonance is observed at the uncoupled resonance E12 since
no Dexter excitation transfer is possible when both spin-up
conduction band states of the two QDs are occupied. Here,
the spin-preserving Förster and Dexter coupling mechanisms
open the same excitation transfer channels in the system.

This changes in the case of an excitation with alternating
photon polarizations σ+σ−σ+σ− in Fig. 8(c): Here, a splitting
of the low-energy resonance into two peaks at f3 and E12

can be observed, where the interaction shifted resonance
at f3 has only a low oscillator strength compared to the
uncoupled E12 resonance. Therefore, the oscillator strength
distribution between these two peaks is inverted compared
to the purely Förster coupled case in Fig. 7(c), where the
uncoupled resonance E12 is vanishing or has minor oscillator
strength. This effect is specific to Dexter coupling: Besides the
coupling between bright single excitons of the same spin state
like spin-preserving Förster interaction, Dexter transfer can
also cause a coupling between bright and dark two-exciton
states. Figure 9(b) shows a schematic representation of Dexter

(a)

(b)

FIG. 9. (Color online) (a) Spin-preserving and -flipping Förster
coupling schemes. (b) Dexter coupling between dark exciton states.

coupling mechanisms between dark electron-hole pairs. If
a biexciton localized at one of the QDs is excited, this
state can be Dexter coupled to a two-exciton state with a
dark electron-hole pair in each QD. This leads to a Dexter
coupling between four bright (B1 to B4) and two dark (B7

and B8) two-exciton states, as can be seen in Fig. 6. Again,
the corresponding Dexter shifts are canceling for multiple
couplings between these states for some delocalized states,
which leads to an additional hybridized two-exciton state
occurring at the uncoupled resonance E12. This peak exhibits
a high oscillator strength compared to the interaction shifted
peak at f3 since Dexter transfer to dark two-exciton states
changes the overall structure of formed exciton eigenstates.
Specifically for some states, their internal distribution over
dark and bright two-exciton states leads to a cancellation of
the interaction shifts due to multiple couplings. This results
in an enhanced oscillator strength of the resonance E12 for
predominantly Dexter coupled systems.

If an intermediate distance between the QDs is chosen
such that both Förster and Dexter couplings are important,
we essentially observe the same behavior as in case 1(ii)
without Dexter processes, only that the spin-preserving Förster
transfer mechanisms are enhanced by the additional Dexter
interactions. This leads to a stronger splitting of the absorption
peaks, whereas the number of resonances is the same.

In summary, we observed the following 2D absorption peak
patterns, which identify the nature of coupling processes: In
case 1(i) (only spin-preserving Förster coupling), we obtained
a 1 × 2 pattern for σ+σ+σ+σ+ excitation due to the coupling
of the two bright single excitons with identical spin states
and no two-exciton coupling. For σ+σ−σ+σ− excitation,
three interaction shifted two-exciton resonances are observed
because of the additional coupling to the biexcitonic states. In
case 1(ii) (spin-preserving and -flipping Förster coupling), a
4 × 4 pattern for both polarization combinations emerged as
a consequence of the coupling of all bright single excitons
and the splitting of the low-energy two-exciton resonance
due to the hybridization of all bright two excitons. Case
2 (dominant Dexter coupling) revealed a 1 × 2 pattern for
σ+σ+σ+σ+ excitation [same behavior as in case 1(a)] and a
4 × 2 pattern with substantially increased peak intensity at E12

for σ+σ−σ+σ− excitation because of Dexter coupling to dark
two-exciton states. These spectroscopic signatures are unique

155313-8



TWO-DIMENSIONAL SPECTROSCOPY: AN APPROACH TO . . . PHYSICAL REVIEW B 91, 155313 (2015)

and help to distinguish the different coupling mechanisms by
using 2D spectroscopy.

Overall, the different Coulomb coupling mechanisms, in
particular in Figs. 7(c) and 8(c), exhibit their characteristic
features in fine details of the 2D resonance peak structure
(like the intensity distribution between the two low-energy
resonances at energies f3 and E12). Therefore, a careful
analysis of the resonance patterns and peak intensities and
a sufficient experimental resolution are crucial for a reliable
identification of the underlying coupling processes. Modern,
ultrafast laser systems (see, e.g., Refs. [57–59]) allow for a
femtosecond pulse delay control, which is short compared to
dephasing processes. However, shifts due to spectral diffusion
will in principle affect spectroscopic measurements of single
nanostructures since high repetition rates and thus long integra-
tion times are required for a sufficient resolution [49,60]. This
sampling problem can be addressed, e.g., by applying suitable
apodization schemes [61]. In the last few years, four-wave
mixing experiments with homogeneous linewidths between
20 and 50 μeV have been performed [49,62,63], such that
Coulomb couplings in the order of 1 meV (like the Dexter
coupling strength calculated for our model system) should in
principle be visible for slightly detuned single QD systems
in modern 2D experiments. Aside from experimental studies
on an ensemble of QDs [63], also studies using coherent
spectroscopy on single natural QDs in a quantum well were
carried out [62] for a photon echo. In principle, similar
coherences as in the double quantum coherence spectrum can
be detected in photon echo spectra, but DQC dissects the
resonances better. Overall, it shows that studies of coherent
spectroscopy on single systems are possible.

Another point may be important if light-hole admixture is
taken into account (see, e.g., Refs. [51,64]). Then, additional
excitation pathways are accessible. Light-hole (LH) admixture
means that the heavy-hole-dominated valence band states
regarded in this paper get a (small) contribution from the
LH band (which is usually in the range of few percent
[65]). The spin-conserving and non-spin-conserving Förster
coupling cases will be slightly mixed by LH admixture since
the dipole moments are nonparallel in the case of LH admixture
[46]. However, the opened transitions will only have a minor
contribution due to the small LH admixture (below 2% [65]).

VII. CONCLUSIONS

The influence of nondiagonal Coulomb coupling on the
optical properties of a coupled quantum system was studied
using linear and nonlinear two-dimensional coherent spec-
troscopy techniques. We showed that Förster- and Dexter-type
energy transfers lead to characteristic signatures in the double
quantum coherence spectra, which allow us to deduce the
underlying type of coupling process. The splitting of the
low-energy resonance into two resonances at the hybridized
level f3 and the uncoupled resonance E12 is a suitable criterion
to distinguish the dominant coupling mechanism by means
of the relative intensities of the two resonances. It is clearly
visible when spin-flipping Förster or Dexter processes take
place. In the first case, the splitting is a consequence of the
hybridization of all bright two excitons. In the latter case, it
appears due to the coupling of bright and dark two-exciton

states and the oscillator strength of the uncoupled resonance
E12 is significantly enhanced.

Moreover, the discussion of our spectra showed that Dexter
transfer processes are not limited by the optical selection rules
due to the coupling to dark two excitons. Similar coupling
identifying spectral patterns is expected, e.g., for bound
excitons in disordered quantum wells coupled to excitons in
single molecules.
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APPENDIX: DERIVATION OF COULOMB
MATRIX ELEMENTS

Starting with the general expression for the Coulomb matrix
elements in Eq. (4), we first rewrite the integrals over r and r ′
into sums of integrals over the single unit cells (UCs):

Vabcd = e2

8πε0εr

UC∑
i,j

i �= j

∫
UCi

d3ri1

∫
UCj

d3rj2

× ξ ∗
λana

(r i1)ξ ∗
λbnb

(rj2)ξλdnd
(rj2)ξλcnc

(r i1)

|r i1 − rj2|
× u∗

λanaσa
(r i1)u∗

λbnbσb
(rj2)uλdndσd

(rj2)

× uλcncσc
(r i1) δσaσc

δσbσd
. (A1)

Here, the short-range contribution at i = j has been
neglected. It vanishes for Förster-type Coulomb exchange
terms [66,67]. Since only the long-range contribution is taken
into account in this paper, the diagonal and Dexter coupling
elements are slightly underestimated. However, this limitation
of the model system does not affect the general findings
about the spectroscopic signatures of the different coupling
mechanisms and may only slightly shift the corresponding
resonances.

The vectors rkn can be split into the lattice vector Rk of
the kth unit cell and a small variation sn within this cell:
rkn = Rk + sn. A three-dimensional Taylor expansion of the

1
|r i1−rj2| term up to the first order has the form [13]

1

|r i1 − rj2| � 1

|Rij | − Rij

|Rij |3 (s1 + s2) + s1 · s2

|Rij |3

− 3

|Rij |3 (s1 · Rij )(s2 · Rij ) (A2)

with Rij = Ri − Rj . The second term on the right-hand
side of Eq. (A2) (monopole-dipole term) is neglected
within the rotating-wave approximation for the quantities
important for this paper. We assume that the envelope function
ξλn(r) is constant over a unit cell: ξλn(Rk + sn) � ξλn(Rk).
Furthermore, we use the invariance of the Bloch functions
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under a lattice translation and their orthonormality condition
1

VUC

∫
UC d3snu

∗
λnσ (sn)uμnσ (sn) = δλμ. VUC denotes the

unit-cell volume. Defining the microscopic interband dipole
moment for transitions between the valence and conduction
band [68],

dnσ
λμ = 1

VUC

∫
UC

d3s u∗
λnσ (s) e s uμnσ (s), (A3)

we get the following expressions for the monopole-monopole
contribution:

V mono
abab = e2

8πε0εr

∫
d3r

∫
d3r ′

∣∣ξλana
(r)

∣∣2∣∣ξλbnb
(r ′)

∣∣2

|r − r ′|
× δλaλc

δλbλd
δnanc

δnbnd
δσaσc

δσbσd
(A4)

for na = nc, nb = nd and

V mono
abcd = e2

8πε0εr

∫
d3r

∫
d3r ′

× ξ ∗
λana

(r)ξ ∗
λbnb

(r ′)ξλbna
(r ′)ξλanb

(r)

|r − r ′|
× δλaλc

δλbλd
δnand

δnbnc
δσaσc

δσbσd
(A5)

for na = nd , nb = nc. These two matrix elements are referred
to as monopole-monopole shifts [Eq. (A4)] and Dexter
terms [Eq. (A5)] throughout this work. In contrast to the
diagonal monopole-monopole shifts, the Dexter terms occur
as nondiagonal entries in the matrix representation of the
Coulomb Hamiltonian.

The dipole-dipole terms have the form

V
dipole
abcd = 1

8πε0εr

∫
d3r

∫
d3r ′

(
dnaσa

λaλb
· dnbσb

λbλa

|r − r ′|3

− 3

[
dnaσa

λaλb
· (r − r ′)

] [
dnbσb

λbλa
· (r − r ′)

]
|r − r ′|5

)

× ξ ∗
λana

(r)ξ ∗
λbnb

(r ′)ξλanb
(r ′)ξλbna

(r)

× δλaλd
δλbλc

δnanc
δnbnd

δσaσc
δσbσd

. (A6)

Since the dipole moments vanish for identical band indices
(dnσ

λλ = 0), dipole-dipole couplings represent nondiagonal
elements in the Coulomb interaction matrix. The monopole-
monopole and Förster terms do not require a wave-function
overlap between the two nanostructures, which is expressed
by the condition na = nc and nb = nd .

[1] A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M.
Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, Appl.
Phys. Lett. 104, 041104 (2014).

[2] C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto,
Phys. Rev. Lett. 86, 1502 (2001).

[3] Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang,
and Y. Li, Nat. Photonics 1, 717 (2007).

[4] A. Nozik, Physica E (Amsterdam) 14, 115 (2002).
[5] E. Biolatti, R. C. Iotti, P. Zanardi, and F. Rossi, Phys. Rev. Lett.

85, 5647 (2000).
[6] K. Gawarecki, M. Pochwała, A. Grodecka-Grad, and P.

Machnikowski, Phys. Rev. B 81, 245312 (2010).
[7] N. Baer, S. Schulz, S. Schumacher, P. Gartner, G. Czycholl, and

F. Jahnke, Appl. Phys. Lett. 87, 231114 (2005).
[8] S. C. Kuhn and M. Richter, Phys. Rev. B 90, 125308

(2014).
[9] F. V. de Sales, S. W. da Silva, J. M. R. Cruz, A. F. G. Monte,

M. A. G. Soler, P. C. Morais, M. J. da Silva, and A. A. Quivy,
Phys. Rev. B 70, 235318 (2004).

[10] B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A.
Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M.
Petroff, Phys. Rev. Lett. 95, 137403 (2005).

[11] S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov,
Phys. Rev. Lett. 89, 186802 (2002).

[12] B. W. Lovett, J. H. Reina, A. Nazir, and G. A. D. Briggs, Phys.
Rev. B 68, 205319 (2003).

[13] J. Danckwerts, K. J. Ahn, J. Förstner, and A. Knorr, Phys. Rev.
B 73, 165318 (2006).

[14] M. Richter, K. J. Ahn, A. Knorr, A. Schliwa, D. Bimberg,
M. E.-A. Madjet, and T. Renger, Phys. Status Solidi B 243,
2302 (2006).

[15] A. Carmele, A. Knorr, and M. Richter, Phys. Rev. B 79, 035316
(2009).

[16] D. L. Dexter, J. Chem. Phys. 21, 836 (1953).

[17] G. D. Scholes and D. L. Andrews, Phys. Rev. B 72, 125331
(2005).

[18] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo,
D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204
(1999).

[19] J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313
(1998).

[20] T. Förster, Ann. Phys. 437, 55 (1948).
[21] V. M. Agranovich and M. D. Galanin, in Electronic Excita-

tion Energy Transfer in Condensed Matter, edited by V. M.
Agranovich and A. A. Maradudin (North-Holland, Amsterdam,
1982).

[22] G. D. Scholes, Annu. Rev. Phys. Chem. 54, 57 (2003).
[23] S. Mukamel, Annu. Rev. Phys. Chem. 51, 691 (2000).
[24] P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300,

1553 (2003).
[25] V. M. Axt and T. Kuhn, Rep. Prog. Phys. 67, 433 (2004).
[26] I. Kuznetsova, P. Thomas, T. Meier, T. Zhang, X. Li, R. Mirin,

and S. Cundiff, Solid State Commun. 142, 154 (2007).
[27] I. Kuznetsova, T. Meier, S. T. Cundiff, and P. Thomas, Phys.

Rev. B 76, 153301 (2007).
[28] D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin,

S. Mukamel, and S. T. Cundiff, Phys. Rev. Lett. 104, 117401
(2010).

[29] T. U.-K. Dang, C. Weber, S. Eiser, A. Knorr, and M. Richter,
Phys. Rev. B 86, 155306 (2012).

[30] S. Mukamel, Principles of Nonlinear Optical Spectroscopy
(Oxford University Press, New York, 1995).

[31] L. Yang and S. Mukamel, Phys. Rev. Lett. 100, 057402 (2008).
[32] D. Abramavicius, B. Palmieri, D. V. Voronine, F. Sanda, and

S. Mukamel, Chem. Rev. 109, 2350 (2009).
[33] H. Haug and S. W. Koch, Quantum Theory of the Optical

and Electronic Properties of Semiconductors (World Scientific,
Singapore, 2004).

155313-10

http://dx.doi.org/10.1063/1.4863223
http://dx.doi.org/10.1063/1.4863223
http://dx.doi.org/10.1063/1.4863223
http://dx.doi.org/10.1063/1.4863223
http://dx.doi.org/10.1103/PhysRevLett.86.1502
http://dx.doi.org/10.1103/PhysRevLett.86.1502
http://dx.doi.org/10.1103/PhysRevLett.86.1502
http://dx.doi.org/10.1103/PhysRevLett.86.1502
http://dx.doi.org/10.1038/nphoton.2007.226
http://dx.doi.org/10.1038/nphoton.2007.226
http://dx.doi.org/10.1038/nphoton.2007.226
http://dx.doi.org/10.1038/nphoton.2007.226
http://dx.doi.org/10.1016/S1386-9477(02)00374-0
http://dx.doi.org/10.1016/S1386-9477(02)00374-0
http://dx.doi.org/10.1016/S1386-9477(02)00374-0
http://dx.doi.org/10.1016/S1386-9477(02)00374-0
http://dx.doi.org/10.1103/PhysRevLett.85.5647
http://dx.doi.org/10.1103/PhysRevLett.85.5647
http://dx.doi.org/10.1103/PhysRevLett.85.5647
http://dx.doi.org/10.1103/PhysRevLett.85.5647
http://dx.doi.org/10.1103/PhysRevB.81.245312
http://dx.doi.org/10.1103/PhysRevB.81.245312
http://dx.doi.org/10.1103/PhysRevB.81.245312
http://dx.doi.org/10.1103/PhysRevB.81.245312
http://dx.doi.org/10.1063/1.2139621
http://dx.doi.org/10.1063/1.2139621
http://dx.doi.org/10.1063/1.2139621
http://dx.doi.org/10.1063/1.2139621
http://dx.doi.org/10.1103/PhysRevB.90.125308
http://dx.doi.org/10.1103/PhysRevB.90.125308
http://dx.doi.org/10.1103/PhysRevB.90.125308
http://dx.doi.org/10.1103/PhysRevB.90.125308
http://dx.doi.org/10.1103/PhysRevB.70.235318
http://dx.doi.org/10.1103/PhysRevB.70.235318
http://dx.doi.org/10.1103/PhysRevB.70.235318
http://dx.doi.org/10.1103/PhysRevB.70.235318
http://dx.doi.org/10.1103/PhysRevLett.95.137403
http://dx.doi.org/10.1103/PhysRevLett.95.137403
http://dx.doi.org/10.1103/PhysRevLett.95.137403
http://dx.doi.org/10.1103/PhysRevLett.95.137403
http://dx.doi.org/10.1103/PhysRevLett.89.186802
http://dx.doi.org/10.1103/PhysRevLett.89.186802
http://dx.doi.org/10.1103/PhysRevLett.89.186802
http://dx.doi.org/10.1103/PhysRevLett.89.186802
http://dx.doi.org/10.1103/PhysRevB.68.205319
http://dx.doi.org/10.1103/PhysRevB.68.205319
http://dx.doi.org/10.1103/PhysRevB.68.205319
http://dx.doi.org/10.1103/PhysRevB.68.205319
http://dx.doi.org/10.1103/PhysRevB.73.165318
http://dx.doi.org/10.1103/PhysRevB.73.165318
http://dx.doi.org/10.1103/PhysRevB.73.165318
http://dx.doi.org/10.1103/PhysRevB.73.165318
http://dx.doi.org/10.1002/pssb.200668053
http://dx.doi.org/10.1002/pssb.200668053
http://dx.doi.org/10.1002/pssb.200668053
http://dx.doi.org/10.1002/pssb.200668053
http://dx.doi.org/10.1103/PhysRevB.79.035316
http://dx.doi.org/10.1103/PhysRevB.79.035316
http://dx.doi.org/10.1103/PhysRevB.79.035316
http://dx.doi.org/10.1103/PhysRevB.79.035316
http://dx.doi.org/10.1063/1.1699044
http://dx.doi.org/10.1063/1.1699044
http://dx.doi.org/10.1063/1.1699044
http://dx.doi.org/10.1063/1.1699044
http://dx.doi.org/10.1103/PhysRevB.72.125331
http://dx.doi.org/10.1103/PhysRevB.72.125331
http://dx.doi.org/10.1103/PhysRevB.72.125331
http://dx.doi.org/10.1103/PhysRevB.72.125331
http://dx.doi.org/10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1103/PhysRevLett.80.4313
http://dx.doi.org/10.1103/PhysRevLett.80.4313
http://dx.doi.org/10.1103/PhysRevLett.80.4313
http://dx.doi.org/10.1103/PhysRevLett.80.4313
http://dx.doi.org/10.1002/andp.19484370105
http://dx.doi.org/10.1002/andp.19484370105
http://dx.doi.org/10.1002/andp.19484370105
http://dx.doi.org/10.1002/andp.19484370105
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103746
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103746
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103746
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103746
http://dx.doi.org/10.1146/annurev.physchem.51.1.691
http://dx.doi.org/10.1146/annurev.physchem.51.1.691
http://dx.doi.org/10.1146/annurev.physchem.51.1.691
http://dx.doi.org/10.1146/annurev.physchem.51.1.691
http://dx.doi.org/10.1126/science.1083433
http://dx.doi.org/10.1126/science.1083433
http://dx.doi.org/10.1126/science.1083433
http://dx.doi.org/10.1126/science.1083433
http://dx.doi.org/10.1088/0034-4885/67/4/R01
http://dx.doi.org/10.1088/0034-4885/67/4/R01
http://dx.doi.org/10.1088/0034-4885/67/4/R01
http://dx.doi.org/10.1088/0034-4885/67/4/R01
http://dx.doi.org/10.1016/j.ssc.2007.02.010
http://dx.doi.org/10.1016/j.ssc.2007.02.010
http://dx.doi.org/10.1016/j.ssc.2007.02.010
http://dx.doi.org/10.1016/j.ssc.2007.02.010
http://dx.doi.org/10.1103/PhysRevB.76.153301
http://dx.doi.org/10.1103/PhysRevB.76.153301
http://dx.doi.org/10.1103/PhysRevB.76.153301
http://dx.doi.org/10.1103/PhysRevB.76.153301
http://dx.doi.org/10.1103/PhysRevLett.104.117401
http://dx.doi.org/10.1103/PhysRevLett.104.117401
http://dx.doi.org/10.1103/PhysRevLett.104.117401
http://dx.doi.org/10.1103/PhysRevLett.104.117401
http://dx.doi.org/10.1103/PhysRevB.86.155306
http://dx.doi.org/10.1103/PhysRevB.86.155306
http://dx.doi.org/10.1103/PhysRevB.86.155306
http://dx.doi.org/10.1103/PhysRevB.86.155306
http://dx.doi.org/10.1103/PhysRevLett.100.057402
http://dx.doi.org/10.1103/PhysRevLett.100.057402
http://dx.doi.org/10.1103/PhysRevLett.100.057402
http://dx.doi.org/10.1103/PhysRevLett.100.057402
http://dx.doi.org/10.1021/cr800268n
http://dx.doi.org/10.1021/cr800268n
http://dx.doi.org/10.1021/cr800268n
http://dx.doi.org/10.1021/cr800268n


TWO-DIMENSIONAL SPECTROSCOPY: AN APPROACH TO . . . PHYSICAL REVIEW B 91, 155313 (2015)

[34] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors
(Springer, Berlin, 2005).

[35] S. Sauvage, P. Boucaud, J. M. Gerard, and V. Thierry-Mieg,
Phys. Rev. B 58, 10562 (1998).

[36] L. R. Wilson, D. J. Mowbray, M. S. Skolnick, M. Morifuji, M. J.
Steer, I. A. Larkin, and M. Hopkinson, Phys. Rev. B 57, R2073
(1998).

[37] A. Grodecka, P. Machnikowski, and J. Förstner, Phys. Rev. B
78, 085302 (2008).

[38] B. Fornberg and D. M. Sloan, Acta Numerica 3, 203 (1994).
[39] P. Machnikowski and E. Rozbicki, Phys. Status Solidi B 246,

320 (2009).
[40] L. R. C. Fonseca, J. L. Jimenez, J. P. Leburton, and R. M. Martin,

Phys. Rev. B 57, 4017 (1998).
[41] E. Stock, M.-R. Dachner, T. Warming, A. Schliwa, A.

Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A.
Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg,
Phys. Rev. B 83, 041304 (2011).

[42] I. A. Ostapenko, G. Hönig, S. Rodt, A. Schliwa, A. Hoffmann,
D. Bimberg, M.-R. Dachner, M. Richter, A. Knorr, S. Kako, and
Y. Arakawa, Phys. Rev. B 85, 081303 (2012).

[43] C. Curutchet, A. Franceschetti, A. Zunger, and G. D. Scholes,
J. Phys. Chem. C 112, 13336 (2008).

[44] A. O. Govorov, Phys. Rev. B 68, 075315 (2003).
[45] A. O. Govorov, Phys. Rev. B 71, 155323 (2005).
[46] A. Sitek and P. Machnikowski, Phys. Rev. B 86, 205315 (2012).
[47] D. P. Craig and T. Thirunamachandran, Molecular Quantum

Electrodynamics: An Introduction to Radiation Molecule Inter-
actions (Dover, Mineola, NY, 2003).

[48] F. Schlosser, A. Knorr, S. Mukamel, and M. Richter, New J.
Phys. 15, 025004 (2013).

[49] P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin,
D. Ouyang, and D. Bimberg, Phys. Rev. Lett. 87, 157401 (2001).

[50] B. P. Fingerhut, M. Richter, J.-W. Luo, A. Zunger, and S.
Mukamel, Ann. Phys. 525, 31 (2013).

[51] F. Meier and B. P. Zakharchenya, Optical Orientation (North-
Holland, Amsterdam, 1984).

[52] G. D. Scholes, J. Chem. Phys. 121, 10104 (2004).
[53] B. Hanewinkel, A. Knorr, P. Thomas, and S. W. Koch, Phys.

Rev. B 55, 13715 (1997).
[54] P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J.

Malloy, and L. F. Lester, Appl. Phys. Lett. 77, 262 (2000).
[55] J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon,

M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Schöll,
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