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Hybrid density matrix approach as a factorization scheme for many-body systems:
Illustrated by a quantum dot–continuum system
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We present a theoretical factorization scheme for interactions between many-body systems with localized
discrete and delocalized quasicontinuous states. The projection operator technique combines a conventional
correlation expansion with an exact diagonalization scheme. Our approach is capable of treating the continuum
dynamically and to apply non-Markovian treatments beyond the Markovian approximation typically used in
Lindblad formalism. Therefore it can be an important tool to describe a variety of systems as well as interaction
mechanisms.
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I. INTRODUCTION

A variety of many-body systems exists that consists of a
subsystem with localized, discrete states and a subsystem with
quasicontinuous states. One important example is given by
semiconductor quantum dots (QDs) coupled to the embedding
bulk, quantum well, or wetting layer carrier reservoir. Beside
self-organized QDs, also other systems such as impurities in
bulk or other lower dimensional structures like quantum wells
[1–3] and wires [4], or molecule systems [5–9] form such a
hybrid system since a finite number of discrete, localized states
is interacting with a continuum of delocalized states.

Both subsystems are often coupled via Coulomb interac-
tion, but also by other coupling mechanisms like electron-
phonon interaction [10–12]. These interactions include scatter-
ing processes between the two subsystems. The factorization
scheme presented in this paper is constructed to describe
the coupling and scattering dynamics between these hybrid
many-body systems. To illustrate the principle of the theoret-
ical scheme, we choose in this paper the example of QDs
embedded in a carrier reservoir, due to their fundamental
role in various applications, such as single photon emitters
[13,14], conventional laser diodes, microcavity lasers [15,16]
or efficient nonclassical light sources [17].

In semiconductor QD devices, the in-scattering of carriers
into the QD-like electrons and holes typically occurs from the
delocalized continuum states of a carrier reservoir. Therefore
carrier scattering processes into discrete QD states are relevant
in a variety of applications such as intermediate band solar
cells [18], infrared emitters [19], and photodetectors [3,20] and
have been investigated extensively by experiments [21–24],
for instance, via two-color pump-probe spectroscopy [21,22]
as well as in theoretical studies [25–32].

Both systems (in our example, carrier reservoir and lo-
calized, discrete QD states) constitute many-body systems of
different type and must be described by different approxi-
mations. The reservoirs exhibit a high density of (occupied)
continuous states, especially in the case of electrical pumping.
Here, fluctuations in comparison to the average occupation
number are of minor importance and, typically, conventional
cluster correlation expansions are used and provide an accurate
description of the physical effects [31,33].

In contrast, localized few-particle configurations in the QD,
such as excitons, trions, and biexcitons exhibit strong fluctua-

tions with respect to mean occupation numbers. Therefore it is
necessary to describe the discrete states inside the QDs without
using correlation or cluster expansion, but with configurations
like the ground state, single, bi-, or more exciton and trion
states, etc., describing the different configurations [27–29].

We aim to treat both systems by different approximations,
but like to also include the coupling for describing the
(correlated) electron transfer from the reservoir to the QD.
For such a configuration, the continuum is typically treated
as a bath in the Lindblad approach [27–31]. Especially,
Jahnke et al. published some interesting results of carrier
scattering processes in QDs beyond the Boltzmann equation
using Lindblad formalism [28]. However, the treatment, so
far, is restricted to the Markovian treatment using Lindblad
formalism and to a description of the carrier reservoir as a
bath.

In this paper, we present a theoretical scheme, which
combines the advantages of both approaches (correlation
expansions and excitonic states) into a single consistent
expansion scheme: therefore the QD configurations are solved
by an exact diagonalization scheme, similar to the method
used in Ref. [27–29,31]. This way, correlations (e.g., Coulomb
induced) in the localized QD-states are treated nonperturba-
tively. However, extending the treatment of these references,
we treat the correlations of the continuum reservoir states
without using bath approximation in Lindblad formalism, but
in a mean field approach using single particle occupations as
first order for a cluster based description of the continuum
correlations [34]. This way the approach is capable of treating
the continuum dynamically and to go beyond the Markovian
approximation. Especially for a population of the reservoir
via external electrical contacts, the presented hybrid density
matrix approach provides a method to determine its dynamics
in response to modulations of the applied current (important,
e.g., for application in single photon regime). The resulting
equations are derived using a projection operator technique
and can be solved in different orders of approximation for
the reservoir-QD coupling. To compare our results with
literature, we consider the limit of a Markovian treatment of
the Coulomb coupling in second-order Born approximation for
the QD-reservoir scattering. The equations give similar results
for the limit of treating the continuum as bath as the Lindblad
approach of Refs. [28,29,32].
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The method is applicable for various systems and for
different interaction processes such as Coulomb coupling or
electron-phonon interaction, e.g., inducing spin-flip processes.
For simplicity, the example focusses only on the Coulomb
interaction.

II. PROJECTION OPERATOR FORMALISM

As a model system we use a QD with Ne discrete spin-
degenerated states x in the conduction and Nh states y in
the valence band embedded in quasicontinuous states ν, e.g.,
a wetting layer or bulk material. A fermionic many-particle
Fock state of the QD with the occupation number n

e(h)
x(y) = 0,1

for electrons (holes) can be constructed using

|nIeIh
〉 = ∣∣ne

1, . . . ,n
e
Ne

,nh
1, . . . ,n

h
Nh

〉
= e†x1

. . . e†xIe
h†

y1
. . . h†

yIh
|φ0〉, (1)

from the ground state |φ0〉 of the QD system with no electron
or hole carrier in the conduction or valence band, respectively.
Here, e

†
x (ex) denote the creation (annihilation) operators for

electrons of the QD state x and h
†
y (hy) for holes of the QD state

y. The QD is populated with ne
1 + . . . + ne

Ne
= Ie electrons

and nh
1 + . . . + nh

Nh
= Ih holes in state |nIeIh

〉. For the wetting
layer, the description via Fock states works in an analog way.
|nIeIh

,ν〉 denotes a complete system state, consisting of a set
of QD states nIeIh

with Ie electrons and Ih holes and wetting
layer states ν. The projection operator P IeIh projecting into
these many particle states with Ie electrons and Ih holes is
given by

P IeIh =
∑

nIeIh
,ν

|nIeIh
,ν〉〈nIeIh

,ν|. (2)

In the projection operator formalism the description of the
QD configurations can be formulated via a local QD operator
L

IeIh†
i :

LIeIh†
i ≡ P IeIhe†x1

. . . e†xIe
h†

y1
. . . h†

yIh
P 00, (3)

with the multi-index i := {x1 . . . xIe
,y1 . . . yIh

} (note that
P 00 = |φ0〉〈φ0|). The operators L

IeIh†
i are the analog to bra-ket

states in the isolated QD systems. Due to these local QD
creation (annihilation) operators L

IeIh†
i (LIeIh

i ), all localized
few particle configurations in the QD, such as excitons, trions,
and biexcitons can be represented. In Fig. 1(b), several QD
configurations are depicted as well as the interaction between
the QD and the carrier reservoir, cf. Fig. 1(a).

III. HAMILTONIAN

The dynamics of the interacting QD-continuum system
are calculated by Heisenberg equations of motion. For our
example, the total Hamiltonian H consists of the single-
particle contribution H0 and the Coulomb-interaction HC :

H0 =
∑
n,μ

ε
λμ

n μ†
nμn +

∑
ν,μ

ε
λμ

ν μ†
νμν, (4)

where ε
λμ

n(ν) is the single-particle energy of the bound QD
states n and of the unbound continuum states ν with the band
index λμ ∈ {c,v}. For compact notation, we introduce a carrier

FIG. 1. (Color online) (a) Level scheme of the QD-continuum
system. (b) Several configurations of the electron and hole occupa-
tions in the QD system. Here, the diagonal elements of the QD density
matrix ρ

IeIh
ii are presented. The developed theoretical scheme is also

applicable to nondiagonal contributions.

index μ ∈ {e,h}. The Coulomb interaction using the envelope
approximation for the single-particle wave functions is given
in electron hole picture by

HC =1

2

∑
s,μ1,μ2

V
s1s2s3s4
μ1μ2

μ1
†
s1
μ2

†
s2
μ2s3

μ1s4
, (5)

where s1,s2,s3,s4 are multi-indices of the energy levels of
the system, consisting of index n for bound QD states or
continuum states ν and spin σ . Here, we consider the part
of Coulomb interaction between two types of carriers μ1 and
μ2. The Coulomb coupling elements V

s1s2s3s4
μ1μ2

of the Coulomb
potential W (r,r′) read

V
s1s2s3s4
μ1μ2

= qμ1qμ2

∫ ∫
φ∗

μ1,s1
(r)φ∗

μ2,s2
(r′)W (r,r′)

× φμ2,s3 (r′)φμ1,s4 (r)drdr′δσs1 ,σs4
δσs2 ,σs3

, (6)

where φμ,s(r) denote the wave functions and σ the spin.
Especially, for high carrier densities of the continuum, the

capture dynamics within the QD-continuum system can be
assumed to be dominated by Coulomb scattering [35]. Here,
we neglect the influence of electron-phonon processes for the
example used to demonstrate the scheme, but the factorization
scheme is also applicable for electron-phonon scattering.

The QD in- and out-scattering result from Auger type
processes between the localized QD- and continuous reservoir
states. There are two different types of Coulomb induced
scattering processes both illustrated in Fig. 2: the capture of
one carrier into a QD state and carrier relaxation within the
reservoir (reservoir assisted) or within the QD (QD assisted).
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FIG. 2. (Color online) Coulomb induced electron and hole cap-
ture via Auger processes between bound QD and continuous states
of the carrier reservoir: (a) carrier relaxation within the reservoir or
(b) within the QD.

This way, the energy conservation for the entire process is
balanced [32,35,36].

IV. EXCITON ENERGY EIGENSTATES

Due to the discrete nature of QD states, Coulomb correla-
tions inside QDs can be very strong. In contrast to continua
with a high number of states and high electron occupations,
QDs have only a few discrete states, which are energetically
well separated. Consequently, the QD is populated by a small
number of carriers. Varying configurations of the carriers
inside the QD lead to significant differences of the Coulomb
interaction and distinct energies of the discrete configurations.
Therefore it is useful to describe the discrete QD states by
excitonic states, which can be diagonalized with respect to the
internal Coulomb interaction H QD:

(
H

QD
0 + H

QD
C

)
X

IeIh†
j = E

IeIh

j X
IeIh†
j , (7)

where we transform the local states inside the QD into new
eigenstates:

X
IeIh†
j =

∑
j

c
IeIh∗
ij LIeIh†

i , (8)

so that they are eigenstates of the QD contribution with
the eigenenergies E

IeIh

j and the expansion coefficients c
IeIh∗
ij .

Similar to the local QD operators, the Coulomb coupling
elements are redefined into effective coupling elements Ṽ with
respect to the expansion coefficients for continuum assisted
scattering:

Ṽ
ν1ν2ν3
ij,μ1μ2

IeIh

=
∑

a

∑
n1

c
IeIh∗
a,j V

n1ν1ν2ν3
μ1μ2

cIe+1Ih

i,an1
, (9)

and QD assisted scattering:

Ṽ
ν1

ij,μ1μ2
IeIh

=
∑

a

∑
n1,n2,n3

c
IeIh∗
a,j V

n1n2n3ν1
μ1μ2

c
Ie+1Ih

i,an1n2/n3
. (10)

V. HYBRID DENSITY MATRIX EQUATION

A. Observables

The observables of central interest to characterize the
system are given by the electron and hole occupations f μ

ν =
〈μ†

νμν〉 in the first order of the continuum state ν (polarizations
pμ

ν1,ν2
= 〈μ†

ν1
μν2〉) as well as by the reduced density matrix of

the QD system ρ
IeIh,I

′
eI

′
h

ij (i,j denote the QD configurations, Ie

the electron and Ih the hole number):

ρ
IeIh,I

′
eI

′
h

ij = 〈
P IeIhXIeIh†

i X
I ′
eI

′
h

j P I ′
eI

′
h

〉
, (11)

where P IeIh is a projection operator and X
IeIh†
i is the creation

operator of the QD energy eigenstates. Note that for the
QD states, the diagonalized many-body configurations enter,
which is of particular importance for high (biexciton) binding
energies found in nitride QDs [37,38].

The temporal evolution of the reduced QD density matrix

ρ
IeIh,I

′
eI

′
h

ij and the continuum occupations f μ
ν with respect to

Auger processes are calculated via the Heisenberg equation of
motion approach [39]. For illustrative purposes, the resulting
hierarchy of equations of motion is illustrated in Fig. 3 for
QD assisted electron-electron scattering. The dynamics of the

FIG. 3. (Color online) Scheme of the hybrid density matrix ap-
proach: the temporal evolution of the system observables describing
the occupation probability of the QD ρ

IeIh
i and the continuum f e

ν is
determined by assisted quantities of QD and continuum contributions.
To solve the hierarchy problem, the assisted expectation values can
be factorized in the second order of equation of motion. Here,
we present diagonal elements of the QD density matrix and of
the reservoir. However, the hybrid density matrix approach can be
also applied to nondiagonal elements. For illustrative purposes, only
electron-electron scattering processes including carrier relaxation
within the QD, shown in Fig. 2, left (b), are depicted. For all
other electron and hole capture processes, in particular, containing
reservoir relaxation, the principle of the scheme is the same. (The
hole continuum can be described identical to the electron continuum.)
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QD density matrix ρ
IeIh,I

′
eI

′
h

ij [cf. Eq. (A1)] and the continuum
densities f μ

ν [cf. Eq. (A2)] (polarizations pμ
ν1,ν2

) couples to
assisted expectation values consisting of QD and continuum
contributions such as 〈XIeIh†

i e†ν1
X

Ie+1Ih

j 〉 [cf. blue box in Fig. 3
and Eq. (A3)] whose temporal evolution themselves depends
on assisted quantities of higher order, cf. Appendix and green
box in Fig. 3. Quantities of always increasing number of
continuum fermionic operators occur during the derivation of
the hierarchy and the set of equation of motion does not close,
which is typically called hierarchy problem [40]. Factorization
rules provide a method to close the set of equation of motions.

B. Factorization Scheme

To derive a suitable factorization scheme, we assume
that for the continuum a description using single particle
observables is sufficient. (Note that similar schemes can be
derived for closing the scheme at two particle correlations like
〈e†ν1

e†ν2
eν3eν4〉c [cf. Eq. (14)] in the continuum.) In contrast,

we have to consider all occupied states inside the QD. This
is equivalent to a treatment of the continuum in Hartree-Fock
level and for the QD beyond correlation expansion level.

These two assumptions lead to the following assumed form
of the statistical operator ρ(t) = ρQD(t)ρct.(t) including QD
and continuum (ct.) contributions:

ρct.(t)

= 1

Zct.
exp

[
−

∑
ν,η

(
αee

ν,η(t)e†νeη + αhh
ν+K,η+K (t)hν+Kh

†
η+K

)

+ αeh
ν+K,η(t)e†ν+Kh†

η + αhe
ν,η+K (t)hνeη+K

]
, (12)

ρQD(t) = 1

ZQD
exp

(
−

∑
i,j,Ie,Ih,I ′

e,I
′
h

β
IeIh,I

′
eI

′
h

i,j (t)XIeIh†
i X

I ′
eI

′
h

j

)
,

(13)

as basis for the factorization rules [41] with the partition
functions ZQD and Zct., the number of continuum states K

and the Lagrange parameters αμ1,μ2
ν,η (t) and β

IeIh,I
′
eI

′
h

i,j (t). It can
be shown, that the continuum expectation values factorize
identical to the Hartree-Fock-factorization. For two-particle
continuum quantities, the factorization rule reads

〈μ†
ν1

μ†
ν2

μν3μν4〉 = 〈μ†
ν1

μν4〉〈μ†
ν2

μν3〉 − 〈μ†
ν1

μν3〉〈μ†
ν2

μν4〉
+ 〈μ†

ν1
μ†

ν2
μν3μν4〉c, (14)

where 〈μ†
ν1

μ†
ν2

μν3μν4〉c denotes correlations. The resulting
factorization rule for assisted expectation values, consisting
of continuum contributions A†A and QD contributions X†X,
read

〈A†AX†X〉 = 〈A†A〉〈X†X〉 + 〈A†AX†X〉c. (15)

As a first approximation, we neglect the correlations
〈μ†

ν1
μ†

ν2
μν3μν4〉c and 〈A†AX†X〉c (second-order Born level).1

1Note that due to the exact factorization in the QD system we are
beyond Hartree-Fock level.

However, in analogy to conventional correlation expansion
[40], our theoretical approach can be expanded to these
correlations as well.

The factorization scheme is in principle a treatment in
the second-order Born approximation [42]. The factorization
is the key element to treat the reservoir as a dynamical
variable and not as a bath in thermodynamic equilibrium
via Lindblad terms.2 The factorization rule is restricted to
expectation values featuring the same number of creation and
annihilation operators of the continuum. It is an open question
whether other statistical operators can be found resulting in
factorization rules, which can be already used for lower order
assisted expectation values such as 〈X†A†X〉 (where A† is a
continuum operator) similar to the Fock term.

First, we apply the factorization rule (15) to the mixed

expectation values like 〈XIeIh†
i e†ν1

e†ν2
eν3eν4X

I ′
eI

′
h†

j 〉 (cf. Fig. 3
green box) in the equations of motion (A3)–(A5) to separate

QD 〈XIeIh†
i X

I ′
eI

′
h†

j 〉 and continuum contributions 〈e†ν1
e†ν2

eν3eν4〉.
Subsequently, we factorize the continuum quantities such as
〈e†ν1

e†ν2
eν3eν4〉 via Hartree-Fock, e.g., using Eq. (14).

For simplicity and because they are often discussed in
literature in master equations, we present in this paper only the

diagonal elements of the QD density matrix ρ
IeIh,I

′
eI

′
h

ii ≡ ρIeIh
i

and of the reservoir f μ
ν , neglecting fast decaying coherences

such as 〈e†ν1
h†

ν2
〉, pμ

ν1,ν2
and ρ

IeIh,I
′
eI

′
h

ij . However, the developed
theoretical scheme provides equations of nondiagonal contri-
butions like coherences as well. Structurally, these equations
are very similar to the equations presented in this paper.

The factorization rules result in a closed set of equations
of motion, consisting of assisted quantities such as 〈X†

i e
†
νXj〉

and system observables like ρIeIh
i . The derived hybrid density

matrix equations resemble a mixture of density matrix contri-
butions for the occupation probability of QD configurations
ρIeIh

i and typical Boltzmann equation like features for the
average populations in the reservoir f μ

ν , including their Pauli
blocking. The complete non-Markovian set of equations is
presented in the Appendix, Eqs. (A1)–(A5).

C. Markovian Limit

For a first insight, we solve the equations of the assisted
quantities Eqs. (A3)–(A5) via a Markovian treatment. The
important part for describing the dynamics of the emission
process is given by the reduced density matrix of the QD:

∂tρ
IeIh

i =2π

�2

∑
j,ν1

[
T

ν1
ij,ee

Ie + 1; Ih

− T
ν1

ji,ee
Ie ; Ih

+ T
ν1

ij,eh
Ie + 1; Ih

− T
ν1

ji,eh
Ie ; Ih

+
∑
ν2,ν3

(
S

ν1ν2ν3
ij,ee

Ie + 1; Ih

− S
ν1ν2ν3
ji,ee
Ie ; Ih

+ S
ν1ν2ν3
ij,eh

Ie + 1; Ih

− S
ν1ν2ν3
ji,eh
Ie ; Ih

)]
+ e ↔ h, (16)

2In the description of electron-phonon interaction, similar ap-
proaches are typically used: the influence of phonons can be
approximated via Lindblad terms or dynamically, e.g., in the second-
order Born approximation.
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where e ↔ h means that all listed contributions enter again
with exchanged carrier indices e and h. The full strength of the
hybrid approach is the accessibility of the average populations
in the reservoir f μ

ν as a new dynamical variable3:

∂tf
e
ν =2π

�2

∑
Ie,Ih,i,j

[
T

ν

ij,ee
Ie + 2; Ih

+ T
ν

ij,eh
Ie + 1; Ih + 1

+
∑
ν1,ν2

(
S

νν1ν2
ij,ee

Ie + 1; Ih

− S
ν2ν1ν

ij,ee
Ie + 1; Ih

+ S
νν1ν2
ij,eh

Ie + 1; Ih

−S
ν2ν1ν

ij,he

Ie ; Ih + 1
+ S

ν1νν2
ij,he

Ie ; Ih + 1

)]
. (17)

The hole occupation has the same form just the carrier index e

is changed to h. According to Fig. 2, the Coulomb scattering
can be distinguished in carrier capture processes including
carrier relaxation within the reservoir [36]:

S
ν1ν2ν3
ij,μ1μ2

Ie + 1; Ih(+1)
=

∣∣∣∣Ṽ ν3ν2ν1
ji,μ1μ2

IeIh

∣∣∣∣
2

δ
(
EIeIh

i − E
Ie+1Ih(+1)
j

+ εμ1
ν1

+ εμ2
ν2

− εμ2
ν3

)
(
f μ2

ν3

(
1 − f μ2

ν2

)(
1 − f μ1

ν1

)
ρ

Ie+1Ih(+1)
j

− (
1 − f μ2

ν3

)
f μ2

ν2
f μ1

ν1
ρIeIh

i

)
, (18)

or within the QD:

T
ν1

ij,μ1μ2
Ie + 1; Ih

=
∣∣∣∣Ṽ ν1

ji,μ1μ2
IeIh

∣∣∣∣
2

δ
(
EIeIh

i − E
Ie+1Ih

j + εμ1
ν1

)
× ((

1 − f μ1
ν1

)
ρ

Ie+1Ih

j − f μ1
ν1

ρIeIh

i

)
. (19)

In principle, both Coulomb scatterings depend on similar
contributions: the squared effective Coulomb coupling ele-
ment, the energy conserving δ-function including continuum
energies εμ

ν , and the eigenenergies EIeIh
i of the QD, typical

Boltzmann-type structures and density matrix contributions
for the occupation probability of QD configurations.

Usually, reservoir assisted scattering Eq. (18) constitutes
the dominant contribution, since the energy conservation dur-
ing the scattering process can be achieved much easier in the
continuum Eq. (18) than in the QD Eq. (19), cf. Fig. 2. In case
of phonon assisted processes an additional energy is available
to achieve the energy conservation for QD assisted scattering.

The first (second) term in Eqs. (18) and (19) describes
QD out- (in-) scattering, including the Pauli blocking of the
final reservoir occupations after scattering, e.g., (1 − f μ1

ν1
).

Scattering contributions in Boltzmann equations for electrons
in a continuum typically have the form f1f2(1 − f3)(1 − f4).
Beside Boltzmann like treatment of carrier scattering processes
in continuum systems scattering in systems with discrete levels
like molecules, atoms or QDs can be described via density ma-
trix equations including �j→iρ

Ie+1Ih

j − �i→jρ
IeIh
i . In contrast

to pure Boltzmann and pure density matrix equations in the
approach developed here a hybrid form enters like f μ2

ν3
(1 −

f μ2
ν2

)(1 − f μ1
ν1

)ρIe+1Ih

j [cf. Eq. (18) first term], showing the full

3The occurring difference of Coulomb coupling elements Ṽ
ν2ν1ν

ji,ee −
Ṽ

ν2νν1
ji,ee is redefined to Ṽ

ν2ν1ν

ji,ee .

strength of the hybrid density matrix approach. The scattering
processes changes the occupation probability of the QD
configuration ρIeIh

i to the QD configuration ρ
Ie+1Ih

j executing
at the same time a Pauli blocking process in the continuum.

For the case of electron-electron (or hole-hole) scattering
including carrier relaxation within the reservoir, the carriers
in the reservoir are indistinguishable particles. This results in
interference effects similar to double slit experiments [43]. In
the equations of motion, those interference effects are indicated

by differences of Coulomb coupling elements like Ṽ
ν3ν2ν1
ji,ee
IeIh

−

Ṽ
ν3ν1ν2
ji,ee
IeIh

, cf. Appendix.4

VI. GENERAL DISCUSSION

A well-known limit can be observed for the hybrid density
matrix equations, if we assume an quasiequilibrium in the
reservoir. In this case, the equation of motion for the QD
density matrix resembles the typical Lindblad form [28,32]
for QD reduced density matrix, cf. Eqs. (16) and (17).
However, the hybrid density matrix approach is able to treat
the continuum dynamically Eq. (17) and to go beyond the
Markovian treatment of the Lindblad coupling, cf. Appendix.
In particular, this is necessary to describe the dynamics of the
time modulated reservoir in electrically pumped QD devices.

In addition, to discuss the potential as well as the intrinsic
limits of nonclassical light emission from QD devices,
the sequence of electrical generation, time evolution and
subsequent radiative decay from different excited many
particle configurations in QD devices must be investigated.
The presented method offers the possibility to describe effects
of generation, propagation and radiative decay of the many
body configurations.

Furthermore, the presented hybrid density matrix approach
results in a nonlinear, closed set of differential equations,
c.f. Appendix, Eqs. (A1)–(A5), which for example can be
numerically solved using Runge-Kutta or other time solving
methods. The most demanding aspect in the numerical
implementation of our equations is the sum over a sufficient
number of continuum carrier states for achieving numerical
convergence. Obviously, the solution of the hybrid equations
require knowledge of the coupling elements (in the QD
example the Coulomb coupling elements). For energetically
higher continuum levels, the coupling to the systems with
discrete resonances decreases at some point. Furthermore,
the continuum carrier occupations are only significantly filled
near the continuum minimum (band edge). Both points can be
used to achieve numerical convergence, including only a finite
number of continuum states in numerical simulations.

We discuss the specific example of a QD-continuum system
with respect to numerical feasibility: here, the calculation of
Coulomb coupling elements is quite challenging due to the
number of integrals involved in the two particle interaction,
which must be calculated for the continuum states. As an
overall estimation, the numerical effort to solve the set of
hybrid equations should be manageable similarly to Ref. [44].

4For the configuration inside the QD, interference effects are already
included during diagonalization.
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With high numerical effort, interesting results of the switch-on
dynamics of the wetting layer and QD populations can be ob-
tained at least in the Markov approximation as in Ref. [44]. In
comparison to Ref. [44], the main difference is that the hybrid
equations will allow to include the influence of electron hole
complexes like excitons, trions, biexcitons, etc., with system-
atically including all their intradot correlations in the QD with
similar order of numerical effort as in Ref. [44], which did not
include complexes. The inclusion of complexes like biexcitons
[28,29] is particularly important in nitrides, since interesting
bright and dark biexciton configurations are expected [45].

In standard correlation expansion as in Ref. [44] no
systematic way exists to include only the intra dot complexes.
Their implementation would result in a much higher numerical
effort in pure correlation expansion. Additionally, in a non-
Markovian evaluation, the time dependence of scattering
channels from continuum to discrete states (i.e., the complexes
like excitons or biexcitons in QDs), as it was, e.g., seen in
bound systems [42,46], is an expected feature.

VII. CONCLUSION

In conclusion, we present a hybrid density matrix approach,
which combines conventional correlation expansion with an

exact diagonalization scheme in a projector operator technique
to describe hybrid systems (e.g., QD reservoir). In the limit
of an equilibrated reservoir, the resulting hybrid density
matrix equations give well known results. However, they
offer a non-Markovian description, because the influence of
the reservoir is not restricted to a treatment via Lindblad
terms.

Beside Coulomb coupling, further interactions can be
included such as non-Markovian, nonperturbative electron-
phonon interaction [35,47] via self-consistent Born or time-
convolutionless (TCL) [48] approximations, in particular, to
discuss the zero phonon line broadening or electron-phonon
induced spin-flips, which is expected to be relevant for nitrides
QDs because of their enhanced electron-phonon coupling
strength.
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APPENDIX: NON-MARKOVIAN SET OF EQUATION OF MOTION

The equation of motion of the reduced density matrix of the QD beyond the Markov approximation read
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ν1ν3ν2
ji,eh

Ie − 1Ih

∗〈
X

Ie−1Ih†
j e†ν1

h†
ν2

hν3X
IeIh

i

〉)] ⎫⎬
⎭ + e ↔ h, (A1)

where e ↔ h means, that all listed contributions enter again with exchanged carrier indices e and h. The average populations in
the reservoir as a new dynamical variable is given by
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⎭ (A2)

with ξe = (−1)Ie+Ih and ξh = (−1)Ih . The hole continuum can be described in an identical way compared to the electron
continuum. QD as well as continuum assisted electron-electron, hole-hole, electron-hole, and hole-electron scattering occurs in
Eqs. (A1) and (A2), cf. Fig. 2.
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The system observables ρIeIh
i and f μ

ν couple to the non-Markovian equations of mixed expectation values. Carrier capture
processes including carrier relaxation within the QD are represented by

− i�∂t
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where we introduce the definition �
ν1

ij,μ1
Ie + 1; Ih

= (1 − f μ1
ν1

)ρIe+1Ih

j − f μ1
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ρIeIh
i , in which the first contribution represents the QD out-

and the second the QD in-scattering. In the corresponding hole quantity, the carrier index is changed. Additionally, scattering
processes containing carrier relaxation within the reservoir enter, such as electron-electron scattering:
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or electron-hole scattering:
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Again, the carrier index must be changed to describe the inverse process regarding electrons and holes. Additional non-Markovian
contributions occur, if the continuum indices of creation and annihilation electron operators in Eqs. (A4) and (A5) are identical.
In the Markovian limit, these terms do not enter in the dynamics due to the energy conservation. However, they could play a role
in higher-order Markov treatment, resulting in Coulomb induced dynamical damping or energy renormalization.
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