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Kondo effect and the fate of bistability in molecular quantum dots with strong
electron-phonon coupling
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We investigate the properties of the molecular quantum dot (Holstein-Anderson) model using numerical and
analytical techniques. Path integral Monte Carlo simulations for the cumulants of the distribution function of the
phonon coordinate reveal that at intermediate temperatures the effective potential for the oscillator exhibits two
minima rather than a single one, which can be understood as a signature of a bistability effect. A straightforward
adiabatic approximation turns out to adequately describe the properties of the system in this regime. Upon lowering
the temperature the two potential energy minima of the oscillator merge to a single one at the equilibrium position
of the uncoupled system. Using the parallels to the x-ray edge problem in metals we derive the oscillator partition
function. It turns out to be identical to that of the Kondo model, which is known to possess a universal low-energy
fixed point characterized by a single parameter—the Kondo temperature TK . We derive an analog of TK for
the molecular quantum dot model, present numerical evidence pointing towards the appearance of the Kondo
physics, and discuss experimental implications of the discovered phenomena.
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In view of the recent progress in the field of microelectronic
fabrication, which produces ever smaller electronic circuitry
elements, it is reasonable to assume that the basic building
blocks of the future nanoelectronics would be individual
molecules [1]. Contrary to the solid-state-based systems, their
internal degrees of freedom play a principal role. The most
important ones are the vibrational degrees of freedom [2,3].
Although it is possible to model their effects with the help of a
rather simple model—the molecular quantum dot (sometimes
also referred to as the Holstein-Anderson model), its properties
are still not understood in full detail [4]. One of the reasons
is that the problem in general is not exactly solvable and
many of the interesting regimes are not accessible analytically.
In particular, some time ago it was predicted that when
the electron-phonon coupling is sufficiently strong, such a
molecular dot might possess a bistability regime [5–7]. A sub-
sequent numerical analysis of systems under nonequilibrium
conditions (with a finite voltage bias applied across the dot)
has revealed some signatures of this phenomenon. However, so
far the numerics were not able to supply conclusive evidence
about the lifetime of the system in different conformational
states of the molecule [8,9]. On the other hand, there are several
arguments against a bistable behavior of such systems at low
energies [10–12]. The purpose of this paper is to reconsider
the problem, trying to settle the open issues outlined above
for systems in equilibrium. By doing this we have made a
twofold progress. First, we report path integral Monte Carlo
(PIMC) simulations for the coordinate distribution functions
of the localized vibrational degree of freedom, which are
especially convenient for measurements in future experimental
realizations of the model with the help of ultracold gas
systems. Furthermore, we show a natural extension of the
adiabatic approximation, which is valid in the low-energy
sector. There, surprisingly, the system undergoes a crossover
into a regime, which closely resembles the low-energy limit of
the Kondo model and which is determined by a single energy
scale.

The model for the molecular quantum dot possesses a single
electronic level with energy εd and one vibrational mode, see
Fig. 1 (we consider a spinless system and use units in which
� = e = 1). The corresponding local phonon is just a harmonic
oscillator with mass m and frequency ω0. It is linearly coupled
with strength λ to the molecular electronic state, which, in
turn, is coupled via a tunneling amplitude γ to the fermionic
continuum in a metallic electrode kept at chemical potential
μ = 0 at inverse temperature β. The Hamiltonian comprising
the aforementioned features reads

H = Hel + Hph + Hint,

Hel = εd d†d +
∑

k

[εkc
†
kck + (γ c

†
kd + H.c.)], (1)

Hph = P 2

2m
+ 1

2
mω2

0 Q2, Hint = λ Q (d†d − 1/2).

ck and d are the fermionic annihilation operators correspond-
ing to the electronic states of the metallic electrode and of
the molecule, respectively. P and Q are the momentum and
position operator of the phonon.

Our main goal is to derive a numerical procedure to
access the probability distribution of the expectation value
of the phonon position operator for arbitrary parameters, e.g.,
various coupling strengths λ and temperatures T , to search
for signatures of bistability. In order to achieve this goal we
first produce an effective action for the phonon by integrating
out the electrode degrees of freedom out of (1) using standard
functional integration technique. The resulting action is given
by

S = S0[Q] +
∫ β

0
dτdτ ′d†(τ )D−1

0 (τ − τ ′)d(τ ′)

− λ

∫ β

0
dτ Q(τ ) d†(τ )d(τ ), (2)
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FIG. 1. (Color online) Schematic representation of the system
described by the Hamiltonian (1).

where S0[Q] is the action for a free harmonic oscillator and
where by abuse of notation d†(τ ) and d(τ ) denote adjoint
variables. D0(τ ) is the Matsubara Green’s function (GF) of the
dot electron level, which can be found by elementary means.
We concentrate on the wide flat band model, in which the
conductance band of the electrode is infinitely wide and has a
constant density of states ρ0.1 Then one obtains

D−1
0 (	n) = i	n − εd − i
 sgn 	n (3)

in energy representation with 	n = π (2n + 1)/β and 
 =
πρ0|γ |2 being the inverse lifetime of the electron on the dot.
Further integrating out the dot’s electronic degree of freedom
yields for the partition function:

Z =
∫

DQe−S0[Q]− 1
2 ln det[βδnmD−1(	n)+λQ(	n−	m)]. (4)

This expression cannot be evaluated analytically. It is,
however, amenable to numerical treatment and is the basis for
our PIMC simulations. We follow the procedure outlined in
Refs. [13–16] and adapt it for measurement of the irreducible
cumulants of the type q = 〈Q〉 and q(n) = 〈(Q − 〈Q〉)n〉 for
n > 1. We use the notation Pn(q(n)) for the corresponding
distributions, which are the principal quantities of interest.

The notation
∫
DQ within the imaginary-time path inte-

gral (4) symbolically refers to the continuum limit

lim
K→∞

1

N

∫ K−1∏
k=1

dQk, (5)

where K is the number of steps into which the imaginary time
span of interest was divided and 
τ is the corresponding step
width. Qk indicates the phonon position at step k. N denotes a
normalization factor. It drops out of any observable since they
all are given by ratios of limits of the type (5). For numerical
purposes, the aforementioned limit is not performed, leaving
the discrete version of (4) to be a high yet finite dimensional
integral, which may readily be evaluated by the means of
Monte Carlo methods. The numerically evaluated mean of the
phonon displacement Q to some power n for example reads

〈Qn〉 = 1

N

∫ K∏
k=1

dQk Qn
K e

− m
τ
2

∑K
k=1[

(Qk−Qk−1)2

(
τ )2
+ω2

0Q
2
k]

× det
[(

δnm − 
τλ Qk GT
0,n−m

)]
, (6)

1This is not restrictive in any way. Any other band structure can be
treated along the same lines.

where GT
0,n−m is the Fourier transform of the thermal analog

GT
0 (τ ) of the time-ordered GF. The latter is connected to the

Matsubara GF D0(τ ) by Keldysh rotation, resulting for our
model in

GT
0 (τ ) = θ (τ )G>

0 (τ ) + θ (−τ )G<
0 (τ ),

G>
0 (τ ) =

∫ ∞

−∞

dω√
2π

2
e−ωτ

(ω − εd)2 + 
2
[f (ω) − 1], (7)

G<
0 (τ ) =

∫ ∞

−∞

dω√
2π

2
e−ωτ

(ω − εd)2 + 
2
f (ω).

Here, f (ω) denotes the Fermi distribution function of the
electrode. Note that G<

0 (τ ) is only finite for −β < τ < 0 and
G>

0 (τ ) for 0 < τ < β. The Heaviside step function must be
θ (0) = 1/2 at the origin.

Applying the Monte Carlo method to (6) in order to estimate
it simply means stochastically sampling its integrand, i.e.,
randomly traveling phase space, and evaluating the integrand
at the points visited. If samples were drawn uniformly (which
for an infinite interval is rather a challenge), numerical effort
would scale exponentially with the dimension of the space
one wishes to sample. We employ an importance sampling
procedure instead, which uses the fact that the physical
distribution functions Pn(q(n)) actually have a rather small
support—interactions and Boltzmann factors reduce the rele-
vant phase space volume significantly. Thus samples may not
be drawn uniformly but according to a distribution PMC({Qk}),
such that only the dominant areas of the phase space are
sampled with high accuracy. The nonuniform exploration of
phase space must be countered by accumulating the ratio of the
integrand and the probability density it is drawn from instead
of the plain integrand. This strategy is applied optimally if
PMC({Qk}) is identical to the integrand of the integral to be
estimated. In our case this optimum can be reached since due to
the thermal type of our problem the integrand is non-negative
and normalizable. However, this cannot be done in the case of a
system in nonequilibrium, when, for instance, the quantum dot
is coupled to two metallic electrodes with different chemical
potentials. In order to produce samples distributed according
to the integrand of (6) we employ the Metropolis-Hastings
algorithm [17,18]. That is, we construct a Markov chain of
paths {Qk} whose equilibrium distribution is equal to the
one we are looking for. Thus, once equilibrated, the Markov
walk produces a manifold of trajectories, since any step of it
represents an entire phonon path.

Both the systematic error due to the finite number of
discretization steps and the statistical error due to stochastic
nature of simulations can be made arbitrarily small by
increasing the discretization resolution and number of samples,
respectively. In addition, Markov chain methods are a source
of yet another error type. The obtained random samples are
not statistically independent since they are not drawn from
a distribution but constructed from the Markov walk. This
walk paces configuration space, rendering its consecutive
steps correlated. That implies a twofold difficulty: first of all,
variances are underestimated if calculated in the same way
as for independent numbers and, second, there is no means
of assessing the convergence of individual walks. Only if two
points are separated by more then the autocorrelation time
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FIG. 2. Dependence of the phonon displacement probability
distribution on electron-phonon coupling strength λ obtained via
PIMC simulations for β
 = ω0/
 = 1. λ increases from zero (curve
with the highest maximum) to λ = 6 (curve with the outmost maxima)
in unit steps. In all simulations mω2

0 = 1 so that q0 and λ are measured
in units of

√

/mω2

0 and
√


mω2
0, respectively. Dots represent the

numerical data and curves are fits of a symmetric and normalized
superposition of two Gaussians. In all simulations εd = 0.

can they be considered statistically independent. In order to
control that we use the procedure proposed by Flyvbjerg [19],
according to which samples are paired, pair averages are
treated as independent samples and the statistical error is
estimated. Subsequently, the just obtained averages are paired
once again and the error is estimated anew, and so forth. The
iteration is stopped once the estimators form a plateau. In this
way we obtain very reliable numerical data, the overall error
of which is extremely small.

Figure 2 shows the distribution of the average value 〈Q〉
for increasing electron-phonon coupling. For λ = 0 we deal
with a simple harmonic oscillator and P1(q) is given by the
probability distribution of the ground-state wave function. For
growing interaction strength one observes a splitting of the
central maximum into two resulting in a bimodal distribution.
This can be interpreted as a formation of a double dip in
the oscillator’s effective potential, the latter in close analogy
to the uncoupled case, where one would expect P1(q) ∼
exp[−βV (q)] in the semiclassical limit, with V (q) denoting
the oscillator’s potential energy. This is closely related to the
bistability effect discussed earlier [5,7]. An approximation
used in these works assumes the phonon degrees of freedom to
be much slower than the electronic ones, e.g., when the typical
timescale for the electron dynamics on the dot ∼ 
−1 is much
smaller than the phonon oscillation period ω−1

0 	 
−1 one
can use the adiabatic, or Born-Oppenheimer approximation.
Then the field Q(τ ) in the λ term in (4) can be taken to be
static: Q(	n − 	m) = δnmβQ with constant Q. The resulting
functional integral can then be evaluated by virtue of the
saddle-point approximation, which is performed in Ref. [5],
yielding in the case of strong coupling λ2 	 mω2

0
 for P1(q)
two δ-shaped maxima at the positions Q± = ±qmax where
qmax = λ/2mω2

0. It turns out that a careful evaluation of the
adiabatic approximation beyond the saddle point is indeed able
to recover the actual shape of the distribution function obtained
numerically with high degree of accuracy. Moreover, the
prediction for Q± is perfectly reproduced by our simulations.

10 20 30 40
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FIG. 3. Distribution function of the variance q (2) for different
electron-phonon strengths: λ = 0 [the corresponding data points
perfectly coincide with the prediction of (8), plotted as a curve],
and λ = 1,2,3,4,5,6 (the maxima of the respective data sets lie at
larger q (2) for growing λ).

In general the central dip in P1(q) at the original equilibrium
position of the uncoupled oscillator q = 0 might or might not
touch the axis of ordinates. We call the former case perfect
bistability while in the latter situation we are dealing with the
spurious bistability.

While in the uncoupled case the distribution Pn(q(n)) of
higher moments for n > 1 can trivially be found from P1(q)
of q = 〈Q〉 via the relation

Pn(q(n)) = P1(q)/(nqn−1), (8)

it is not possible any more in the case λ 
= 0 because in a
fully interacting system a multitude of irreducible multiparticle
correlations emerge and the single-particle picture, which
is essential for the derivation of (8), breaks down. This is
demonstrated in Fig. 3, where we have plotted the distribution
P2(q(2)) of the second cumulant for an interacting system as
well as the prediction (8).

Upon further lowering the temperature one observes a
rather fast collapse of the bimodal distribution function to
one with a single maximum at Q = 0. This kind of crossover
occurs at a very low critical temperature, which strongly
depends on λ and can be seen in PIMC results for two
different values of the coupling, λ = 1 and 2.5. Figure 4 shows
the data for intermediate coupling strength λ = 1. Here the

-5 -4 -3 -2 -1 0 1 2 3 4 5q
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P 1
(q
)

βΓ=0.1
βΓ=0.5
βΓ=1
βΓ=2
βΓ=5
βΓ=10 

FIG. 4. Phonon displacement probability distribution for λ = 1
and ω0/
 = 1 for different inverse temperatures β.
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FIG. 5. Phonon displacement probability distribution for λ = 2.5
and ω0/
 = 1 for different inverse temperatures β.

distribution at β
 = 2 is bimodal due to the bistability effect,
while P1(q) exhibits one unique maximum for all investigated
temperatures above or below β
 = 2. The collapse of the
spurious bistability at low temperature can be even more
clearly observed in a strongly coupled system with λ = 2.5, see
Fig. 5. It turns out that under these conditions the bistability
starts to emerge already at β
 ≈ 0.2 and becomes almost
perfect at β
 ≈ 2 (in the sense that then P (0) ≈ 0, which
means that the probability to find the phonon localized in
the original equilibrium position of the uncoupled oscillator
vanishes completely), persisting this way all the way down
to temperatures β
 ≈ 15. After that the bistability starts to
degrade as demonstrated by the curves for β
 ≈ 20 and
β
 ≈ 30, which no longer touch the ordinate axis at Q = 0.

This interesting behavior leaves open a number of important
questions. The first and most important of them regards the
dependence of the lower crossover temperature Tc, below
which P1(q) again shows one unique maximum, on the
electron-phonon coupling strength. The adiabatic approxima-
tion is not able to estimate Tc. In what follows we improve
it by taking care of the low-energy fluctuations of the Q(τ )
field in the functional integral (4). In order to make progress
it is helpful to return to the action (2). Here Q(τ ) plays the
role of a time-dependent potential for the local fermion. In that
respect the problem in question formally resembles the x-ray
edge problem solved by Nozières and De Dominicis (ND),
with our local fermion being the equivalent to the core-hole
electron level of the ND problem [20]. This similarity has
been recognized in the seminal paper by Yu and Anderson
(YA) [21], in which the authors considered the scaling behavior
of a fermionic continuum locally coupled to an Einstein
phonon, and in which they used Hamann’s version of the ND
solution [22]. Although our model is not fully equivalent to
those treated in any of the works mentioned above, we can
easily adapt their mathematical apparatus to our needs. Despite
the fact that the resulting effective model is equivalent to the
spin-boson Hamiltonian [23], its derivation is much simpler
using the approach inspired by YA.

The idea is based on integrating out the local fermion field,
which is done in imaginary time rather than in the energy
domain as in (4). To that end we rewrite the full system action

as (see also Refs. [21,22])

e−S(Q) = e−S0(Q)
〈
e−λ

∫ β

0 dτ Q(τ )d†(τ )d(τ )
〉 = e−S0(Q)Zψ,

where the average is taken over the electronic degrees of
freedom assuming the phonon path Q(τ ) being fixed. The
computation of Zψ is accomplished in the usual way by
differentiating it with respect to the coupling constant λ,
performing the average and integrating again with respect to
λ [22,24]. As a result one obtains

Zψ = exp

[
−

∫ λ

0
dλ

∫ β

0
dτQ(τ )D(τ,τ + 0+)

]
, (9)

where D(τ,τ ′) = −〈Tτd(τ )d†(τ ′)〉λ is the Matsubara GF for
the local fermion, calculated in presence of the potential Q(τ ).
It is best computed as a solution of the following exact Dyson
equation:

D(τ,τ ′) = D0(τ − τ ′) + λ

∫ β

0
dτ ′′ D0(τ − τ ′′)

×Q(τ ′′)D(τ ′′,τ ′). (10)

From now on we start making approximations. As was realized
by ND, in order to access the low-energy behavior of our
system it is sufficient to get hold of the long-time asymptotics
of the solution of Eq. (10) [20]. This can be conveniently done
with the help of the regularized version of

D0(τ ) ≈ − 


ε2
d + 
2

[ P
πτ

+ εd



δ(τ )

]
, (11)

where P denotes the principal value. With this simplification
the solution of the Dyson equation can be taken from Ref. [25].
As a result, using the notation ξ (τ ) = λQ(τ )/
 we obtain

Zψ = exp

{
−

∫ β

0
dτ [V1(ξ ) + T1(ξ )]

}
, (12)

where

V1(ξ ) = −(2
/π )[ξ arctan ξ − (1/2) ln(1 + ξ 2)] (13)

is an addition to the original harmonic oscillation potential,
giving rise to precisely the same terms, which are responsible
for the adiabatic (Born-Oppenheimer) approximation [5].
The other, transient, term describes retardation effects and
represents the next order expansion around the adiabatic
approximation [22],

T1(ξ ) = P
π2

∫ β

0
dτ ′ 1

τ − τ ′ ξ (τ )
dξ (τ ′)
dτ ′

× 1

ξ 2(τ ) − ξ 2(τ ′)
ln

[
1 + ξ 2(τ )

1 + ξ 2(τ ′)

]
. (14)

The partition function of our system is now a functional
integral over ξ (τ ) and the oscillator momentum variable P (τ ).
It was recognized by Hamann that in the regime in which
the oscillator potential mω2

0Q
2(τ )/2 + V1(Q(τ )) develops two

distinct minima (bistability regime) the dominant paths are
given by hopping events between them [22]. It was later shown
by YA that this picture is only insignificantly altered by the
kinetic term of the oscillator [21]. Following YA and modeling
the hopping events in the same way one can explicitly write

155306-4



KONDO EFFECT AND THE FATE OF BISTABILITY IN . . . PHYSICAL REVIEW B 91, 155306 (2015)

down the partition function for the system in question. It turns
out to be identical to the result in Eq. (61) of YA in which the
hopping fugacity is replaced by

y = 2−α/2

ξ0
exp

[
−2m

(



λ

)2
ξ 2

0

τ0

]

× exp

{
−τ0

[
mω2

0

3

(



λ

)2

ξ 2
0 − 


π

(
1 − 1

ξ0
arctan ξ0

)]}
,

(15)

where α = [(2/π ) arctan ξ0]2, ξ0 = λqmax/
 and τ0 is the
duration of the hop, which is found from precisely the same
prescription as the one used by YA. In the strong coupling
limit the partition function for the system formally equals the
one found in Ref. [26] for the Kondo problem. It possesses
a nontrivial scaling behavior towards low energies, which is
reflected in a surge of the number of hopping events. Below the
Kondo temperature TK the system undergoes a transition to a
new kind of ground state, which is universally characterized
by TK . From the equivalence of the partition functions we find
the following relation for the temperature below which the
bistability vanishes:

Tc ≈ C
(
λ2/mω2

0

)
e−πλ2/(8
mω2

0), (16)

where C is some yet unknown numerical prefactor. When
adopting the hybridization 
 as our energy unit Tc becomes
a single parametric function of x = λ2/(
mω2

0): βc
 ≈
(1/Cx)eπx/8. From the comparison with the data presented
in Fig. 5 we conclude that βc
 > 30 and therefore we can
estimate the constant C as being smaller than 0.06.

Bistability signatures have recently been observed in
nonequilibrium electron transport through molecular quantum
dots. Although the corresponding simulations have been
carried out at zero temperature no effects related to Kondo
physics have been seen. It can be attributed to the finite bias
voltage playing the role of effective temperature [27]. On
the other hand, there is also another reason for absence of
Kondo signatures in case of small voltages. Starting with an
initially decoupled system, which is the case in the mentioned
nonequlibrium simulations, it takes a finite time tK ∼ 1/TK

for the Kondo effect to become fully established [28]. An
estimation shows that tc ∼ 1/Tc is of the same order or even
larger than timescales addressed by the simulations. Thus the
genuine stationary state has not yet been achieved, which
would explain why the bistability signatures were visible. In
Ref. [29] the authors reported a bistability collapse on a large
time scale, which is consistent with our estimation.

We would like to mention that although both the numerics as
well as the analytical discussion are performed for the resonant
case εd = 0, we expect everything to hold also for finite, not
too large values of εd. This assertion definitely can be shown
to hold for the bistability effect by a direct computation [5]. As
far as the Kondo crossover is concerned, it is known to survive
in a finite magnetic field, which is smaller than TK . From the
mapping between the models one finds that εd plays the role
of the magnetic field. Therefore we conclude that for εd < Tc

one should expect the Kondo crossover to be seen as well.

a b
c

d

BEC cloud

0

0

FIG. 6. (Color online) Synthetic quantum system on the basis
of an ultracold boson-fermion mixture, which is described by (1).
Two laser fields arranged along the axes ab and cd create a deep
regular lattice for the fermions, which plays the role of the continuum
(the electrode in the molecular quantum dot realization). Tunneling
between the lattice sites is equal and given by γ0. By an auxiliary laser
field an impurity site is produced, the tunneling amplitude γ to which
is different from γ0. The impurity site is immersed in a BEC cloud,
with which it can interact and thereby excite lowest-lying eigenmodes
of the cloud.

Systems of primary interest, in which the bistability and
YA-type Kondo effect should be observable and preferably
also find practical applications, are contacted molecules.
Here the fundamental obstacle is the weak electron-phonon
coupling. However, this restriction is less severe in systems
that are based on carbon nanotubes. As reported in Ref. [30]
the dimensionless electron-phonon coupling strength in such
systems can exceed ∼3, which is sufficient for the bistability
as well as Kondo crossover to become observable. The only
reason why that has not yet been observed experimentally is
the insufficiently low temperature. This difficulty can certainly
be overcome in future experiments.

Another class of systems, in which strong electron-phonon
coupling is realizable, are ultracold gas mixtures. The authors
of Ref. [31] have succeeded in producing a synthetic quantum
system with an effective electron-phonon coupling strength,
which would be sufficient to observe the phenomena we have
discussed above. In order to see them we envision an optical
lattice, which can be loaded with fermionic atoms, e.g., with
6Li, which plays the role of a fermionic continuum, see Fig. 6.
Additionally a trap for a Bose-Einstein condensate (BEC), e.g.,
of 23Na atoms, is positioned in the vicinity of one of the lattice
sites, such that there is at least a partial spatial overlap between
the BEC in its ground state and one (or several) of the fermionic
sites (a prototype system is realized in Ref. [32]). The latter
then plays the role of the dot energy level. In presence of
boson-fermion interactions there would be a coupling λ 
= 0
between the lowest-lying harmonic mode of the BEC and the
localized fermion level, such that the model (1) applies. Due to
the high tunability of such systems we expect that not only the
bistability regime might be reached, but also the much deeper
lying Kondo fixed point. The simplest observable of interest is
then the spatial dimension of the BEC droplet, which is pro-
portional to 〈Q〉 and its cumulants we have discussed above.

To conclude, we have analyzed the low-energy limit of the
molecular quantum dot model in equilibrium. With the help
of a path integral Monte Carlo method we have computed
the probability distribution functions of different observables
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of the harmonic degree of freedom. We have shown that
in the strong coupling regime at not too low temperature
the distribution of the expectation value of the average
oscillator coordinate becomes bimodal. This is a consequence
of the bistability effect reported previously, which can be
described in the framework of the Born-Oppenheimer (adi-
abatic) approximation. Upon lowering the temperature the
system crosses over into the true low-energy fixed point, in
which the bistability vanishes. By means of an analytical
expansion around the adiabatic approximation we have shown
that the emergent behavior is connected to the Kondo effect,
which is characterized by a single parameter—the crossover

temperature Tc—and have related it to the parameters of the
system under investigation. Furthermore we have discussed
the experimental implications of the predicted phenomena and
suggested a setup for their observation on the basis of ultracold
boson-fermion mixtures.
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[27] L. Mühlbacher, D. F. Urban, and A. Komnik, Phys. Rev. B 83,
075107 (2011).

[28] P. Nordlander, M. Pustilnik, Y. Meir, N. S. Wingreen, and D. C.
Langreth, Phys. Rev. Lett. 83, 808 (1999).

[29] K. F. Albrecht, Ph.D. thesis, University of Freiburg, 2013.
[30] R. Leturcq, C. Stampfer, K. Inderbitzin, L. Durrer, C. Hierold,

E. Mariani, M. G. Schultz, F. von Oppen, and K. Ensslin, Nature
Phys. 5, 327 (2009).

[31] A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwierlein,
Phys. Rev. Lett. 102, 230402 (2009).

[32] R. Scelle, T. Rentrop, A. Trautmann, T. Schuster, and M. K.
Oberthaler, Phys. Rev. Lett. 111, 070401 (2013).

155306-6

http://dx.doi.org/10.1088/0953-8984/19/10/103201
http://dx.doi.org/10.1088/0953-8984/19/10/103201
http://dx.doi.org/10.1088/0953-8984/19/10/103201
http://dx.doi.org/10.1088/0953-8984/19/10/103201
http://dx.doi.org/10.1103/PhysRevB.85.121408
http://dx.doi.org/10.1103/PhysRevB.85.121408
http://dx.doi.org/10.1103/PhysRevB.85.121408
http://dx.doi.org/10.1103/PhysRevB.85.121408
http://arxiv.org/abs/arXiv:cond-mat/0207513
http://dx.doi.org/10.1103/PhysRevB.67.075301
http://dx.doi.org/10.1103/PhysRevB.67.075301
http://dx.doi.org/10.1103/PhysRevB.67.075301
http://dx.doi.org/10.1103/PhysRevB.67.075301
http://dx.doi.org/10.1021/nl048216c
http://dx.doi.org/10.1021/nl048216c
http://dx.doi.org/10.1021/nl048216c
http://dx.doi.org/10.1021/nl048216c
http://dx.doi.org/10.1103/PhysRevB.86.081412
http://dx.doi.org/10.1103/PhysRevB.86.081412
http://dx.doi.org/10.1103/PhysRevB.86.081412
http://dx.doi.org/10.1103/PhysRevB.86.081412
http://dx.doi.org/10.1103/PhysRevB.88.045137
http://dx.doi.org/10.1103/PhysRevB.88.045137
http://dx.doi.org/10.1103/PhysRevB.88.045137
http://dx.doi.org/10.1103/PhysRevB.88.045137
http://dx.doi.org/10.1103/PhysRevB.69.245302
http://dx.doi.org/10.1103/PhysRevB.69.245302
http://dx.doi.org/10.1103/PhysRevB.69.245302
http://dx.doi.org/10.1103/PhysRevB.69.245302
http://dx.doi.org/10.1103/PhysRevB.89.205129
http://dx.doi.org/10.1103/PhysRevB.89.205129
http://dx.doi.org/10.1103/PhysRevB.89.205129
http://dx.doi.org/10.1103/PhysRevB.89.205129
http://dx.doi.org/10.1103/PhysRevB.87.085127
http://dx.doi.org/10.1103/PhysRevB.87.085127
http://dx.doi.org/10.1103/PhysRevB.87.085127
http://dx.doi.org/10.1103/PhysRevB.87.085127
http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1103/PhysRevB.79.035320
http://dx.doi.org/10.1103/PhysRevB.79.035320
http://dx.doi.org/10.1103/PhysRevB.79.035320
http://dx.doi.org/10.1103/PhysRevB.79.035320
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1063/1.457480
http://dx.doi.org/10.1063/1.457480
http://dx.doi.org/10.1063/1.457480
http://dx.doi.org/10.1063/1.457480
http://dx.doi.org/10.1103/PhysRev.178.1097
http://dx.doi.org/10.1103/PhysRev.178.1097
http://dx.doi.org/10.1103/PhysRev.178.1097
http://dx.doi.org/10.1103/PhysRev.178.1097
http://dx.doi.org/10.1103/PhysRevB.29.6165
http://dx.doi.org/10.1103/PhysRevB.29.6165
http://dx.doi.org/10.1103/PhysRevB.29.6165
http://dx.doi.org/10.1103/PhysRevB.29.6165
http://dx.doi.org/10.1103/PhysRevB.2.1373
http://dx.doi.org/10.1103/PhysRevB.2.1373
http://dx.doi.org/10.1103/PhysRevB.2.1373
http://dx.doi.org/10.1103/PhysRevB.2.1373
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/PhysRevB.1.4464
http://dx.doi.org/10.1103/PhysRevB.1.4464
http://dx.doi.org/10.1103/PhysRevB.1.4464
http://dx.doi.org/10.1103/PhysRevB.1.4464
http://dx.doi.org/10.1103/PhysRevB.83.075107
http://dx.doi.org/10.1103/PhysRevB.83.075107
http://dx.doi.org/10.1103/PhysRevB.83.075107
http://dx.doi.org/10.1103/PhysRevB.83.075107
http://dx.doi.org/10.1103/PhysRevLett.83.808
http://dx.doi.org/10.1103/PhysRevLett.83.808
http://dx.doi.org/10.1103/PhysRevLett.83.808
http://dx.doi.org/10.1103/PhysRevLett.83.808
http://dx.doi.org/10.1038/nphys1234
http://dx.doi.org/10.1038/nphys1234
http://dx.doi.org/10.1038/nphys1234
http://dx.doi.org/10.1038/nphys1234
http://dx.doi.org/10.1103/PhysRevLett.102.230402
http://dx.doi.org/10.1103/PhysRevLett.102.230402
http://dx.doi.org/10.1103/PhysRevLett.102.230402
http://dx.doi.org/10.1103/PhysRevLett.102.230402
http://dx.doi.org/10.1103/PhysRevLett.111.070401
http://dx.doi.org/10.1103/PhysRevLett.111.070401
http://dx.doi.org/10.1103/PhysRevLett.111.070401
http://dx.doi.org/10.1103/PhysRevLett.111.070401



