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Electronic transport through disordered organic materials is relevant in many applications, including organic
light-emitting diodes and organic photovoltaics. The charge-carrier mobility is one of the most important material
characteristics that must be optimized to make organic devices competitive. Here we introduce a general effective-
medium model for the analytic calculation of zero-field mobilities on the basis of material-specific parameters that
are obtained from extensive ab initio simulations. By means of kinetic Monte Carlo simulations, we generalize
the model to also include the strong disorder limit. As a proof of concept the model is applied to two different
disordered organic materials exhibiting medium and strong disorder, respectively. Surprisingly, even at strong
disorder the hole mobilities computed with the effective-medium model in its original form are found to agree best
with the experimental data. Seeking a possible explanation for this result, we investigate the strong dependence of
the mobility on the connectivity of the model topology and show that the distribution of hopping matrix elements
in the material is indeed much broader than assumed in simple lattice models. As the input parameters of the
model can be computed on the basis of relatively small samples, this model may be used for materials’ screening
without adjustable parameters.
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I. INTRODUCTION

Driven both by the fundamental research and by the
current level of applications there has been strong interest in
transport properties of thin-film materials, which are used in
organic light-emitting diodes [1], organic photovoltaics [2,3],
or organic field effect transistors [4]. However, the theo-
retical prediction of their functional properties still remains
a challenge [5,6]. At room temperature, ordered organic
semiconductors show relatively high carrier mobilities (e.g.,
μ � 1 cm2 V−1 s−1 [7], cf. μ � 102 − 104 cm2 V−1 s−1 for
crystalline inorganic semiconductors [8]). The mobilities in
disordered amorphous molecular systems and polymers are
typically three to five orders of magnitude lower than in
crystals [9,10].

Motivated by relevance of these materials for organic
electronics applications, a number of models have been
developed to understand [11–13] and to predict [14–17]
charge-carrier mobility in disordered organic materials, but
no compact expression for the mobility, using input from
first-principles calculations, has been derived to date. For a
parameter-free prediction of the intrinsic mobility, material-
specific microscopic parameters, such as the spatial distribu-
tion of hopping sites, the distribution of site energies, and
the hopping matrix elements, must be linked to transport
theories. Recently, kinetic Monte Carlo (KMC) methods
have widely been used to compute the mobility, in part
because material-specific microscopic parameters can easily
be integrated [6,14,16,18–20]. However, these methods require
large lattice sizes in the limit of strong disorder and struggle
to represent the local coordination of the hopping sites.
Charge transport in disordered semiconductors is intimately
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related to the percolation problem [21–23] of conducting
pathways. Based on this concept, a scaling transport theory
has been developed [24–26], which parametrizes the mobility
depending on the lattice type and the degree of the energy
correlation. The parameters of these models are typically fit
by comparison with experimental data. In addition, there have
been recent efforts to compute relevant parameters for mobility
models from first-principles calculations [14,16,20,27], and
it would be desirable to develop transport models that can
directly use these parameters to compute the macroscopic
observables of the system.

In this paper we attempt one step in this direction. We
begin by developing a generalized effective-medium model
(GEMM) that directly uses microscopic parameters obtained
from ab initio calculations of the bulk morphology of organic
materials. This model yields an analytic upper bound on the
zero-field bulk mobility of disordered materials and hence can-
not describe the percolation limit. As a next step, we fit the ex-
ponent of the GEMM that describes the dependence of mobil-
ity on the energy disorder to reproduce the strong disorder limit
by comparing to lattice KMC data. We then test the GEMM by
comparing its results with experimental data for two specific
materials, namely, tris-(8-hydroxyquinoline)aluminum (Alq3)
and N,N′-bis(1-naphthyl)-N, N′-diphenyl-1,1′-biphenyl-4,4′-
diamine (α-NPD), which strongly differ in their energy
disorders [13], and finally analyze the results.

II. METHODS

A. Master equation

Hopping transport can be described by a master-equation
(ME) approach [28] where each molecule represents a hopping
site and the probability pi to find a carrier on the site i at time
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t evolves according to

dpi

dt
=

∑
j

pjωji(1 − pi) − piωij (1 − pj ) (1)

with
∑

i pi = Nc being the total number of charge carriers and
ωij being the rate of the transition from i to j . Site positions can
be approximated by lattices [29] or by realistic distributions
of molecules derived from atomistic simulations [14–16]. In
heuristic models, e.g., the Gaussian disorder model (GDM),
the energetic disorder is described in terms of the variance
σ of the (Gaussian) density of states (DOS). However, no
direct connection between heuristic models and first-principles
electronic structure calculations has been demonstrated so
far [30–32].

The mobility is then evaluated from the steady-state
solution of the ME, which can be obtained by directly solving
Eq. (1) for low carrier densities [33], or by a numerical
solution using the KMC method. In the latter approach, the
drift-diffusion trajectory of charge carriers is tracked in order
to determine the time needed to move from one side of the
sample to the other by hopping, depending on the magnitude
of the applied external field. This emulates experimental
time-of-flight measurements of the mobility [13]. A popular
expression for the mobility,

μ ∝ exp(−Cβ2σ 2) (2)

with C ≈ 0.44, was obtained by Bässler [11] as a fit to his
numerical KMC data for medium energy disorder [2 < βσ <

6, and β = 1/(kBT ) is the reciprocal temperature].
In the following section a GEMM is introduced. In the

model the zero-field mobility is derived in the low charge-
carrier density limit from the response of a system of charge
carriers, being initially in thermal equilibrium in a macroscopic
sample, to an instantaneous switching on of the electric field.
This approach allows one to determine the zero-field mobility
in the effective-medium limit within the nondispersive hopping
transport regime as an intrinsic material property.

A necessary condition for the existence of a steady drift
is that the mean carrier velocity remains constant for a
sufficiently long time, during which the carriers drift a
characteristic distance in the system (which may be the
mean hopping distance in a disordered semiconductor). If
the steady flow of carriers would set in immediately as the
electric field is switched on at t = 0, then the initial value
of the average velocity would be directly proportional to the
zero-field mobility. We rigorously show (see Appendix B)
that the initial velocity provides an exact upper bound on the
intrinsic zero-field mobility, which we find to be in surprisingly
good quantitative agreement with the experimental data. As
we demonstrate below, this approximation breaks down in the
percolation limit, i.e., for high disorder and low coordination.

B. Derivation of GEMM’s expression for the zero-field mobility

In thermal equilibrium the occupation probabilities p
(0)
i

of charge carriers are given by the Fermi-Dirac distribution
function p

(0)
i = {1 + exp[β(εi − μ)]}−1, where εi is the site

energy and μ is the chemical potential. This provides a
fundamental steady-state solution of the ME [see Eq. (1)],

holding due to the detailed balance of the thermally averaged
rates,

�
(0)
ji = �

(0)
ij , �

(0)
ij = p

(0)
i ω

(0)
ij

(
1 − p

(0)
j

)
. (3)

An instantaneous switching on of a homogeneous electric
field �F = 0 (t < 0), �F �= 0 (t � 0) brings the system out of
equilibrium. In Eq. (1), ωji = ω

(0)
ji + �ωji are now the new

rates in the presence of the field (the change �ωji is not
assumed small). The corresponding solution of the ME for
t � 0 may be written down as pi(t) = p

(0)
i + δpi(t), δpi(0) =

0 with δpi satisfying the linearized ME for short times after
t = 0,

dδ pi

dt
=

∑
j

p
(0)
j ωji

(
1−p

(0)
i

) − p
(0)
i ωij

(
1 − p

(0)
j

) + O(δpi).

(4)

The mean drift velocity of the carriers at the time t = 0+,
just after the switching on of the electric field, can be used to
characterize the zero-field mobility,

�v = 1

2Nc

∑
ij

�
(0)
ij

(
ωji

ω
(0)
ji

− ωij

ω
(0)
ij

)
�rij (5)

Here, �rij = �ri − �rj , and �rij is the site radius vector. This
expression in the zero-field limit yields the mobility tensor
(see Appendix A for details),

μαγ = qβ

2Nc

∑
ij

�
(0)
ij rα

ij

(
r

γ

ij + d
γ

ij /q
)

(6)

provided that the fluctuations in the induced local electric field
can be neglected. Here q = ±e is the carrier charge, �dij = �di −
�dj , and �di is the on-site dipole moment. When the contribution
of �di in Eq. (6) can be neglected, Eq. (6) coincides with the
Kasuya-Koide result [34,35], re-derived later by making use
of a generalized master equation [36].

It is instructive to compare Eq. (6) with an ansatz [37,38] in
which mobility is given by Einstein’s relation μ = eβD with
the diffusion coefficient,

D = 1

2nN0

∑
ij

Pijω
(0)
ij r2

ij (7)

where Pij = ω
(0)
ij /

∑
j ω

(0)
ij , N0 is the total number of sites,

and n(=1 − 3) is the effective spatial dimension of the
transport. Equation (7) is adequate for systems with no
disorder (crystalline materials) but leads to huge errors if
strong disorder is present as the expression leads to effectively
constant mobilities as a function of disorder (see a similar
criticism by Stehr et al. [33]). By making use of Einstein’s
relation and Eq. (6) with �di = 0, an alternative expression,
valid also for disordered materials, can be written down

D = 1

2nNc

∑
ij

�
(0)
ij r2

ij (8)
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To calculate the hopping rates in Eq. (6), we employ here
the commonly used Marcus rates [39–41],

ω
(0)
ij = fM

J 2
ij

λ2
exp

[
−β

(
ε−
ij − λ/2

)2

λ

]
. (9)

Here, Jij are the hopping matrix elements,fM =
√

πβ

�
λ3/2, and

ε+
ij = (εi + εj )/2, ε−

ij = (εi − εj )/2 are the mean energies and
the energy differences of the neighboring hopping sites. In the
limit of low carrier concentrations one gets

μαγ = qβfM

2N0〈e−βε〉
∑
ij

J 2
ij

λ2
exp

[
−β

(
ε+
ij + λ

4
+ (ε−

ij )
2

λ

)]

× rα
ij

(
r

γ

ij + d
γ

ij

/
q
)
. (10)

If the energetic and spatial disorders are uncorrelated and
the contribution of the on-site dipole moments is neglected,
the zero-field mobility becomes

μ0 = eβfM

2n
exp

[
−β

λ

4

]〈
exp

[−β
(
ε+ + ε−2

λ

)]〉
〈exp[−βε]〉 M

〈J 2r2〉
λ2

,

(11)

where M is the effective mean number of neighbors connected
with a given site by nonzero transfer integrals J (analog to the
“percolation correction factor” [42]).

For a Gaussian density of states the expression for the
mobility in the zero-field and low-concentration limit is as
follows:

μ0 = eβfM

2n

√
1 + βσ 2

λ

exp

[
−C(βσ )2 − β

λ

4

]
M

〈J 2r2〉
λ2

, (12)

with C = 0.25.
In the following we will refer to Eq. (12) as the main

expression of the GEMM. We will use in Eq. (12) parameters
σ , λ, and J from ab initio models and various values of C to
address also the percolation limit.

By calculating the mean carrier acceleration at t = 0, one
can see that the charge is being decelerated, see Appendix B.
Thus, strictly speaking, Eqs. (5) and (12) provide an exact
upper bound for the zero-field mobility.

Analytical models for the charge-carrier mobility in
an effective-medium approach have been reported before
[43–45]. However, the derivation of the models as well as their
final formulas somewhat differ from the ones of the present
paper.

C. Kinetic Monte Carlo

For a given model morphology of hopping sites, charge-
carrier mobilities can be determined by explicitly simulating
the microscopic hopping transport with the kinetic Monte
Carlo method [11]. Molecules are representing hopping sites,
which may or may not be on a lattice, interconnected by
hopping rates that may be computed from Marcus theory
or other models. Charge propagation through this lattice
can then be simulated by iteratively drawing hopping events
from the probability distribution of all possible events. For
uncorrelated processes the time step of the event is determined

by t = ω−1
tot ln (1/u), where u is a random number drawn from

a uniform distribution and ωtot is the sum of all rates. In the
presence of an electric potential, the drift velocity of charge
carriers is determined by the accumulated hopping distance
in the field direction divided by the time passed. For our
KMC calculations we employ Marcus rates as defined in
Eq. (9) where the hopping matrix elements are parametrized as
J 2

if = e−2αRif with 2α = 10/a on a simple cubic (SC) lattice
with lattice constant a = 1 nm and λ = 0.158 eV (the value
for α-NPD, see Appendix C).

III. RESULTS

A. Percolation limit

It is clear that Eq. (12) can only describe the effective-
medium limit in which percolation is not relevant. For
increasing disorder the assumption that the finite-time site
occupation probabilities correspond to their thermal zero time
expectation values is no longer correct. Prior work has shown
that the percolation regime can be captured by adjusting the
parameter C in Eq. (12) depending on the details of the lattice
coordination and correlation effects [12,24,26,41]. This is a
reasonable approximation as the functional dependence of the
mobility is by far strongest with respect to this parameter.

One approach to extend the model is therefore to fit it to
KMC simulations. In Fig. 1, we compare Eq. (12) for three
values of C with KMC data for simple cubic lattices with the
typically assumed minimal coordination of 6. As expected we
find that the effective-medium theory (C = 0.25) and KMC
agree only for small disorder, whereas the adjustment to
C = 0.36 is required to correctly fit to the KMC results for
disorder strengths βσ = 1−5. The mobilities of the GEMM
formula using Bässler’s prefactor C = 0.44 in the exponent are

100 300 500 700 900
  [E(V/cm)

1/2
]

0.25 0.36 0.44
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10
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m
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V
-1

s-1
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FIG. 1. (Color online) Left: zero-field mobilities of the GEMM
for varying disorder strength βσ from 1 to 5 with C = 0.25, 0.36, and
0.44, respectively; the dashed lines represent the KMC extrapolation
to zero-field mobility. Right: KMC results for a simple cubic lattice
with varying disorder strength βσ between 1 and 5 and a coordination
of 6 as a function of the square root of the applied electric field.
For 0.44 and 0.25 the discrepancy rapidly increases with increased
disorder with 0.44 underestimating and 0.25 overestimating the
mobility. C = 0.36 provides the best fit to the KMC results.
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FIG. 2. (Color online) The dependence of zero-field hole mobil-
ities Eq. (12) on the reduced disorder parameter (βσ )2 at T = 290 K
for the effective medium (C = 0.25, solid lines), the KMC (C =
0.36] , dashed lines), and Bässler’s (C = 0.44, dotted lines) models
for Alq3 (red/top lines) and α-NPD (blue/bottom lines). The circles
denote experimental data for α-NPD [46,47], and the squares denote
experimental data for Alq3 [46–50]. On the x axis the experimental
data points are positioned at the corresponding calculated energy
disorder. The horizontal error bars of the experimental data points
illustrate the stochastic uncertainties of energy disorder resulting
from the limited sample size of our microscopic input data. The
insets display the chemical formulas of the corresponding materials.

presented too. The deviations of GEMM mobilities from KMC
results are consistent with previous studies of the mobility
dependence on the exponential prefactor in similar model
systems [12,24].

B. Zero-field mobility estimates for Alq3 and α-NPD

In the following we calculate hole transport in amorphous
Alq3 and α-NPD, both prototypical organic semiconductors.
Microscopic parameters are calculated with a refined version
(see Appendix C) of the previously reported quantum patch
method [27], which calculates intermolecular polarization ef-
fects on a fully quantum-mechanical level. For Alq3 we obtain

values of J 2r2 = 9.05 × 10−3 eV2 Å
2
, λ = 0.213 eV, σ =

0.227 eV, and M = 7.31, leading to a zero-field hole mobility
of μ0 = 1.91 × 10−10 cm2 V−1 s−1 at 290 K, very close to
the experimental values [46–50]. For α-NPD, we obtained

values of J 2r2 = 1.415 × 10−3 eV2 Å
2
, λ = 0.158 eV, σ =

0.130 eV, and M = 13.0 which result in zero-field hole
mobility μ0 = 1.11 × 10−4 cm2 V−1 s−1 at T = 290 K, again
very close to the range of experimental values [46,47].

In Fig. 2 we have plotted μ0 vs (βσ )2 from Eq. (12) for
the rigorous upper limit from the effective-medium theory
with C = 0.25, fitted to our KMC data (C = 0.36) and
Bässler’s data (C = 0.44). We observe an essentially linear
dependence but note that the experimental data agree best
with the effective-medium theory even for large disorder.

C. Temperature dependence

We have further investigated the temperature dependence
of the zero-field mobility as shown in Fig. 3. We show
the temperature dependence of the zero-field hole mobilities

4 8 12 16
[1000/T  (K

-1
)]

2

10
-20

10
-16

10
-12

10
-8

10
-4

10
0

µ 0 (
cm

2  
V

-1
s-1

)

290 K

FIG. 3. (Color online) Temperature dependence of zero-field
hole mobilities in Alq3 (red/three bottom lines) and α-NPD
(blue/three top lines) according to the GEMM (solid lines: C =
0.25; dashed lines: C = 0.36; and dotted lines: C = 0.44). The
experimental data for Alq3 is presented as red crosses [48] and red
squares [46–50], while for α-NPD it is shown as blue spheres [46,47]
and triangles [51]. For α-NPD, mobilities from fit-based GDM (green,
dashed-dot-dot line) and correlated disorder model (CDM) (green,
dashed-dashed-dot line) models [52] are additionally displayed.

in Alq3 and α-NPD as calculated with GEMM for C =
0.25, 0.36, and 0.44 (as in Fig. 2) as well as experimental
values [46,48,51] and a fit based on analytical theories of van
Mensfoort et al. [52]

The temperature dependence found in the GEMM with the
effective-medium coefficient C = 0.25 again agrees best with
the experimental data for both Alq3 and α-NPD, both in terms
of the absolute values and in the slope [the latter defined as
m = � log10(μ0)

�( 1000
T

)
2 , see Table I].

IV. DISCUSSION

For the two model systems we are thus left with the puzzling
observation that the experimental absolute values of the zero-
field mobility and its temperature dependence are in better
agreement with the original GEMM than with its modifications
in the strong disorder limit where one would clearly expect the
latter to be relevant.

As these observations result from the use of ab initio
data for σ , J , and λ with Marcus rates, it is instructive
to turn the question around and to alternatively assume
percolation transport and fit the microscopic parameters as
is customary [52]. For example, in Ref. [48] the experimental

TABLE I. The slope m defined in the text calculated by the
analytic expression Eq. (12) for three different C factors, listed in
the first column, along with the experimental slopes. C = 0.25 gives
the best agreement with the experiment for both α-NPD and Alq3.

m (α-NPD) m (Alq3)

C = 0.25 −0.25 −0.77
C = 0.36 −0.36 −1.09
C = 0.44 −0.45 −1.35

Expt. −0.14 to −0.18 −0.49
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FIG. 4. (Color online) Ratio of zero-field mobilities obtained
from GEMM and KMC for an SC lattice with disorder strength of
βσ = 5 (typical material with such disorder: α-NPD) as function of
the number of links (for each hopping site) for three values of C

[see Eq. (12): 0.25 (black), 0.36 (red), and 0.44 (blue)]. As indicated
by the dashed line, with an increased number of links the GEMM
increasingly agrees with the KMC results. The opposite trend is
observed for C = 0.36 and 0.44 where the discrepancy increases.

temperature dependence of the zero-field mobility of Alq3 was
well fitted by Eq. (2). However, the extracted value for the
energy disorder σexp = 0.138 eV was significantly smaller
than what results from recent first-principles calculations of
hole transport in Alq3 [14,16,20], which all yield values of σ

� 0.2 eV for uncorrelated energy disorder (in good agreement
with photoluminescence measurements of Alq3 [53]). As the
temperature dependence in all models is dominated by the
exponential term in the mobility equation we thus find that
the values of σ obtained by ab initio calculations seem to
be at odds with exponents derived for lattice models with
uncorrelated disorder.

How can this apparent discrepancy be dissolved? Bässler’s
exponent (C = 0.44) is relevant for strong disorder or near
the percolation limit [11], whereas the fitted exponent (C ∼
0.36) is valid for medium disorder strengths as shown in prior
works [41]. However, the agreement between the model using
effective-medium exponents (C = 0.25) and the experimental
data is striking.

Closer inspection reveals one additional difference in the
functional dependence of the GEMM and KMC models on
the system parameters: In the GEMM, the dependence on the
connectivity of the system, i.e., on the number of neighbors
that can be reached from any given site (M), is linear, whereas
in percolative models there is a much stronger dependence.
In the following we will, therefore, investigate a possibility
to reconcile the apparently conflicting observations from
microscopic analysis and fitted transport models.

By construction, the GEMM will deviate from the correct
percolation limit as a function of σ (see Fig. 1), but the disorder
threshold where this deviation becomes significant (say by one
order of magnitude) depends strongly on the connectivity of
the lattice as observed previously by Bässler [11]. In Fig. 4 we
present KMC data for an SC lattice in which the connectivity
of the lattice to next-nearest and next-next-nearest neighbors
is progressively increased (for details, see Appendix D). As a
result the crossover regime where the effective-medium theory

0 5 10 15 20 25 30
Molecular center-of-mass distance (Å)

10
-2

10
-4

10
-6

10
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10
-12

 |J
| (
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)

FIG. 5. Scatter plot of the logarithm of the absolute values of
the transfer integrals as a function of intermolecular distance for
α-NPD. Although the linear behavior (exponential decay) is clearly
observable, the spread indicates that an efficient connectivity exists
until up to 20-Å (center-of-mass) distance between α-NPD molecules.

strongly deviates from the percolation theory occurs at larger
values of the disorder parameter. This is physically intuitive
because increasing the number of connections in the lattice
will dramatically affect the percolation threshold, which near
to the percolation limit is dominated by the weakest bond in
the system. If we consider an SC lattice with some particular
percolation path, adding bonds in competition with the weakest
nearest-neighbor bond will dramatically increase the mobility,
whereas only a linear change is expected in the prefactor in
Eq. (12) of the GEMM.

As Fig. 4 shows, the effective-medium model becomes
relevant even for relatively large disorder βσ = 5 as the
connectivity of the model increases. In order to verify this for
realistic bulk systems we have computed the distribution of
hopping matrix elements for an α-NPD morphology that was
generated using molecular dynamics (see Appendix C) and
subsequently analyzed with the quantum patch method [27]
(Fig. 5). Although we find an exponential decay of the
average hopping matrix element as a function of distance
(representing an exponential decay of the mobility with
decreasing hopping-site concentration), there is a significant
spread of hopping matrix elements around the mean. In
particular, large hopping matrix elements are found even
at considerable distances among α-NPD molecules (20-Å
center-of-mass distance). This means that the number of
connections, which dramatically affects mobility, has to be
explicitly determined by microscopic calculations. Mapping
such a realistic morphology on a lattice model might thus
generate couplings that exceed the nearest-neighbor distance
by far.

Ultimately, only KMC calculations on realistic morpholo-
gies will answer the question whether the effective increase
in the connectivity will reconcile percolation theory with
disorder parameters computed from ab initio methods. These
calculations are nontrivial because it is presently not possible
to generate realistic morphologies of sufficient size [24] to
be directly used in KMC calculations. Recent work suggests
[17,54] that there may exist effective mapping techniques
that extrapolate parameters from small samples to sufficient
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system size, but their viability for realistic systems has yet to
be demonstrated.

We note that the decay of the zero-field hole mobility at
lower temperatures is overestimated in the GEMM approach
compared to the experimental values. Alq3 has a significant
molecular dipole moment (∼5 D) so that it seems overly
simplistic to neglect the energy correlations. In accordance
with Ref. [52] where the CDM-based zero-field mobilities
show a lower temperature slope than the uncorrelated GDM,
we suspect this to be the prime reason for the rather steep
GEMM slopes in Fig. 3. Inclusion of energy correlations as
in Ref. [52] is the next natural step in the refinement of the
method and as such will be addressed in the near future.

We further note that the presented analytic model is reminis-
cent of the mean-medium approximation (MMA) developed
by Shaked et al. [55], Roichman et al. [56], Roichman [57],
and Tessler et al. [58] as a practical method to model semicon-
ductor devices. The MMA was applied to calculate the charge-
carrier mobilities in organic semiconductors having Gaussian
DOS. Its main approximation is the assumption that the whole
spectrum of energies, distributed with the DOS probability
function, is accessible from each site. This transforms the
master-equation-on-lattice problem into a continuum-mean-
medium problem. One of the drawbacks of this continual
mapping is the loss of the exponential dependence of the
mobility on the hopping site concentration and temperature,
which is avoided in the present model. These dependencies are
fully preserved in the GEMM as readily displayed in Fig. 5, i.e.,
the dependence of J on intermolecular distance corresponds
to the mobility dependence on the hopping-site concentration.
Likewise, as shown in Fig. 3, the temperature dependence
of the GEMM mobility Eq. (12) for α-NPD is somewhere
between the GDM and the CDM [52]. The assumption of
the MMA, that the charge-carrier distribution in the steady
state can be described by the equilibrium Fermi-Dirac dis-
tribution function, is similar to our use of the equilibrium
charge distribution at t = 0 in the derivation in Sec. II B.
The MMA can obviously provide only the upper limit of the
possible current for a given DOS (as each site contains all
possible energies, the fastest transfer process determines the
current), in analogy to what applies for the GEMM. In the
limit of low carrier concentration, both approaches result in the
exponent C = 0.25 for a Gaussian DOS [12,59]. At this point,
however, the similarity between the methods ceases to hold
as the GEMM allows one to account for possible correlations
between site energies and transfer integrals, which seems not
to be possible in the MMA.

Finally, in contrast to Refs. [43–45], we use here model
parameters obtained by ab initio methods, including explicit
small-molecule morphology simulations. Use of these param-
eters allows us to separate the dependence of the mobility in
terms of the prefactor of σ in the exponent from the other
input data. For example, if we consider the results presented
in Fig. 7 in Ref. [45], we find C = 0.41 for 4σ/λ = 3.3 (the
value which corresponds to α-NPD), whereas we have shown
in this paper that C = 0.25 best reproduces the experimental
values across the complete temperature range. This suggests
that a third dimension to the parametric space of C vs σ/Ea ,
e.g., the effective connectivity of the hopping sites, might be
necessary to accurately capture involved physics. We note that

C = 0.25 is a solid limit of the GEMM in full agreement with
the KMC results from Ref. [45], demonstrating the validity of
the GEMM in the small disorder limit.

To summarize, we have developed a GEMM that provides
an analytic approach to compute the zero-field mobility in
disordered organic semiconductors based on ab initio data
from microscopic theory. By fitting to lattice KMC data we
have extended this model to the percolation limit but found
for two realistic systems that the experimental data are better
described by the original effective-medium exponent than by
its percolationlike modifications. As a possible explanation
for this apparent discrepancy we suggest that the connectivity
of a realistic morphology when mapped onto a lattice model
may be larger than what is assumed in systems used to
parametrize percolation theory. Finally, we believe that much
insight can be gained from the availability of analytic models,
which yield a functional dependence of the mobility on the
system parameters without necessarily requiring excessive
computational resources.
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APPENDIX A: DERIVATION OF EQ. (6) FROM EQ. (5)

In the zero-field limit the following expression for the
mobility tensor μαγ , vα = μαγ Fγ , can be derived from Eq. (5):

μαγ = 1

2Nc

∑
ij

�
(0)
ij

(
1

ω
(0)
ji

∂ωji

∂Fγ

− 1

ω
(0)
ij

∂ωij

∂Fγ

)
rα
ij . (A1)

One can proceed further with an analytical derivation, if a
general representation for the transition rates ωij = Aijϕ(ε−

ij )
is assumed, with ε+

ij = (εi + εj )/2 , ε−
ij = (εi − εj /2) being

the mean energy and the energy difference of the neighboring
sites, respectively. The coefficients Aij are constants. The
function ϕ(ε−

ij ) depends on the external field only through
the change in the energy difference ε−

ij → ε−
ij + δF ε−

ij induced

by the field. Then ∂ωij

∂Fγ
= ∂ω

(0)
ij

∂ε−
ij

∂δF ε−
ij

∂Fγ
, and by once more using

the detailed balance condition one gets

μαγ = 1

2Nc

∑
ij

�
(0)
ij

(
−2β

∂δF ε−
ij

∂Fγ

)
rα
ij . (A2)

By neglecting fluctuations in the induced local electric field,
δF εi = −q( �F �r) − ( �F �di) , where �di is the dipole moment of
the site i, q = ±e is the charge of the carrier, and one finally
arrives at Eq. (6),

μαγ = qβ

2Nc

∑
ij

�
(0)
ij rα

ij

(
r

γ

ij + d
γ

ij /q
)

(A3)

To derive the final expression (12) for the mobility in
the zero-field and low-concentration limit from Eq. (11), the
following averages for the Gaussian density of states have been
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used (assuming no correlations in the site energies):,

〈e−βε〉 = 1√
2πσ

∫
exp

[
− ε2

2σ 2
− βε

]
dε = e(βσ )2

/
2,

〈e−βε+〉 = e(βσ )2
/

4 and 〈e−β(ε−2
/
λ)〉 =

(
1+βσ 2

λ

)−1/2

.

(A4)

APPENDIX B: DERIVATION OF ACCELERATION OF
CHARGE CARRIERS AT t = 0

Here we are going to calculate the acceleration of charge
carriers at t = 0. A formal solution of the linearized ME d �p

dt
=

�̂ �p can be written as

�p(t) = �p∞ + exp(�̂t)( �p0 − �p∞) = �p∞ + exp(�̂t) �p0, (B1)

where �̂ij = ωji − δij

∑
j ′ �=i ωij ′ is the matrix of transition

rates, �p(t) is a vector of the occupation probabilities, �p(t =
0) = �p0, and �p(t = ∞) = �p∞. By t = ∞ the system has
relaxed to a new thermal equilibrium state, therefore �̂ �p∞ = 0
.

Directly from Eq. (B1) follow general expressions for the
mean charge velocity �v(t) = �RT exp(�̂t)�̂ �p0 and the mean
acceleration �a(t) = �RT exp(�̂t)�̂2 �p0 as functions of time with
�RT = (�r1, . . . ,�rN ) being the vector of site coordinates.

At t = 0 and for weak fields the projection of the accelera-
tion onto the field direction becomes

�F �a(0) = −2qβ
∑

i

⎡
⎣∑

j

( �F �rij )ω̄ij e
−β(εj −μ)/2

⎤
⎦

2

, (B2)

where ω̄ij is the symmetric part of the hopping rate: ω̄ij =
ωij e

−βε
(−)
ij . This clearly shows that the charge is being deceler-

ated at t = 0, unless the sum in brackets vanishes for all sites
(that is the case, e.g., for a regular cubic lattice of sites with
no energetic disorder).

APPENDIX C: CALCULATION OF MICROSCOPIC
PARAMETERS

A morphology of 300 α-NPD molecules was generated
with the molecular dynamics package GROMACS [60]. After
equilibration at 850 K for 1 ns, the system was cooled
down to 300 K with a cooling rate of 200 K/ns and finally
equilibrated for 1 ns at a constant pressure of 1 bar. The
general amber force field [61] with Austin Model 1-bond-
charge-correction partial charges [62,63] was used for the
calculations. The molecule topologies and parameters are
generated with the ACPYPE tool [64]. To converge electrostatics

in the subsequent quantum mechanical calculations the cell
was further periodically extended to 8100 molecules. The
inner part of the morphology, which was used to extract
microscopic parameters (100 molecules), was postrelaxed
using the density functional theory package TURBOMOLE with
the Becke three-parameter Lee-Yang-Parr hybrid functional
and def2-SV(P) basis functions. The molecules were thereby
relaxed individually in their immediate and fixed environment.

For Alq3, a morphology generated with the VOTCA [16,65]
package was used. It contains 512 molecules and was period-
ically extended to 13 824 molecules in order to reach conver-
gence for long-range electrostatic interaction. Energy disorder
and transfer integrals were obtained utilizing the quantum
patch method [27], which equilibrates the charge densities of
the molecules in the morphology. The reorganization energy
was calculated based on the four-point procedure of Nelson
and co-workers [66,67], which limits the λ calculation to
the inner part only. The impact of environment is modeled
through limiting relaxations of dihedral angles. Namely, for
many of the molecules the dihedral angles are changing quite
dramatically upon charging and relaxation in vacuum. Such
a severe change in dihedral angle will hardly be possible in
any realistic morphology [68]. As such, we have restricted our
calculations to the “frozen dihedral approximation” where we
relax all the other degrees of freedom upon charging except
the aforementioned dihedrals, which are kept fixed.

APPENDIX D: LATTICE CONNECTIVITY
IN CUBIC LATTICES

To simulate charge transport in lattice topologies with
varying connectivity M , we partition the system in the nearest-
neighbor (further abbreviated as n-n), the second n-n, and the
third n-n shells. For the first n-n (6 sites) shell a connectivity
of 6 is given by the six equal transfer integrals J 1n

if = e−αRif ,
whereas, at the same time, in the second n-n shell (sites 7
to 18) and the third n-n shell (sites 19 to 26) the transfer
integrals are set to J 2n

if = J 3n
if = 0. To gradually increase the

connectivity from the first n-n shell to the second (M = 6
to 6 < M � 18) without introducing off-diagonal disorder in
the SC topology, we increase the transfer integrals in the
second n-n shell according to J 2n

if = J 1n
if (M − 6)/12, keeping

J 3n
if = 0 in the third. This effectivelly corresponds to M

connections/hopping channels with a transfer integral of J 1n
if .

The former equivalance is valid if the external electric field
in the KMC simulations is applied along the z axis of the SC
lattice such that the potential drop due to the field as well as
the hopping distance in the field direction is identical for all
26 sites. Similarly, when further extending the connectivity to
the third n-n shell (18 < M � 26) we additionally set all J 3n

if
to J 3n

if = J 1n
if (M − 18)/8.
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(2013).

[46] S. Naka, H. Okada, H. Onnagawa, Y. Yamaguchi, and T. Tsutsui,
Synth. Met. 111-112, 331 (2000).

[47] S. C. Tse, K. C. Kwok, and S. K. So, Appl. Phys. Lett. 89,
262102 (2006).

[48] H. H. Fong and S. K. So, J. Appl. Phys. 100, 094502 (2006).
[49] R. G. Kepler, P. M. Beeson, S. J. Jacobs, R. A. Anderson, M. B.

Sinclair, V. S. Valencia, and P. A. Cahill, Appl. Phys. Lett. 66,
3618 (1995).

[50] J. Kalinowski, N. Camaioni, P. Di Marco, V. Fattori, and
A. Martelli, Appl. Phys. Lett. 72, 513 (1998).

[51] C. H. Cheung, K. K. Tsung, K. C. Kwok, and S. K. So, Appl.
Phys. Lett. 93, 083307 (2008).

[52] S. L. M. van Mensfoort, V. Shabro, R. J. de Vries, R. A. J.
Janssen, and R. Coehoorn, J. Appl. Phys. 107, 113710 (2010).

[53] E. W. Forsythe, D. C. Morton, and D. Chiu, SID Int. Symp. Dig.
Tech. Pap. 33, 1266 (2002).

[54] P. Kordt, O. Stenzel, B. Baumeier, V. Schmidt, and D. An-
drienko, J. Chem. Theory Comput. 10, 2508 (2014).

[55] S. Shaked, S. Tal, Y. Roichman, A. Razin, S. Xiao, Y.
Eichen, and N. Tessler, Adv. Mater. (Weinheim, Ger.) 15, 913
(2003).

[56] Y. Roichman, Y. Preezant, and N. Tessler, Phys. Status Solidi A
201, 1246 (2004).

[57] Y. Roichman, Ph.D. thesis, Technion-Israel Institute of Technol-
ogy, Faculty of Electrical Engineering, 2004.

[58] N. Tessler, Y. Preezant, N. Rappaport, and Y. Roichman, Adv.
Mater. (Weinheim, Ger.) 21, 2741 (2009).

[59] R. Coehoorn, W. F. Pasveer, P. A. Bobbert, and M. A. J. Michels,
Phys. Rev. B 72, 155206 (2005).

[60] S. Pronk et al., Bioinformatics 29, 845 (2013).
[61] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A.

Case, J. Comput. Chem. 25, 1157 (2004).
[62] A. Jakalian, B. L. Bush, D. B. Jack, and C. I. Bayly, J. Comput.

Chem. 21, 132 (2000).
[63] A. Jakalian, D. B. Jack, and C. I. Bayly, J. Comput. Chem. 23,

1623 (2002).
[64] A. W. S. da Silva and W. F. Vranken, BMC Res. Notes 5, 367

(2012).
[65] V. Rühle, C. Junghans, A. Lukyanov, K. Kremer, and

D. Andrienko, J. Chem. Theory Comput. 5, 3211 (2009).
[66] S. F. Nelsen, S. C. Blackstock, and Y. Kim, J. Am. Chem. Soc.

109, 677 (1987).
[67] S. F. Nelsen, M. N. Weaver, Y. Luo, J. R. Pladziewicz, L. K.

Ausman, T. L. Jentzsch, and J. J. O’Konek, J. Phys. Chem. A
110, 11665 (2006).

[68] H. Li, L. Duan, D. Zhang, and Y. Qiu, J. Phys. Chem. C 118,
14848 (2014).

155203-8

http://dx.doi.org/10.1039/b413819h
http://dx.doi.org/10.1039/b413819h
http://dx.doi.org/10.1039/b413819h
http://dx.doi.org/10.1039/b413819h
http://dx.doi.org/10.1021/cr050143+
http://dx.doi.org/10.1021/cr050143+
http://dx.doi.org/10.1021/cr050143+
http://dx.doi.org/10.1021/cr050143+
http://dx.doi.org/10.1002/pssb.2221750102
http://dx.doi.org/10.1002/pssb.2221750102
http://dx.doi.org/10.1002/pssb.2221750102
http://dx.doi.org/10.1002/pssb.2221750102
http://dx.doi.org/10.1103/PhysRevLett.94.206601
http://dx.doi.org/10.1103/PhysRevLett.94.206601
http://dx.doi.org/10.1103/PhysRevLett.94.206601
http://dx.doi.org/10.1103/PhysRevLett.94.206601
http://dx.doi.org/10.1021/cr050140x
http://dx.doi.org/10.1021/cr050140x
http://dx.doi.org/10.1021/cr050140x
http://dx.doi.org/10.1021/cr050140x
http://dx.doi.org/10.1039/b719592c
http://dx.doi.org/10.1039/b719592c
http://dx.doi.org/10.1039/b719592c
http://dx.doi.org/10.1039/b719592c
http://dx.doi.org/10.1002/pssa.200925276
http://dx.doi.org/10.1002/pssa.200925276
http://dx.doi.org/10.1002/pssa.200925276
http://dx.doi.org/10.1002/pssa.200925276
http://dx.doi.org/10.1021/ct200388s
http://dx.doi.org/10.1021/ct200388s
http://dx.doi.org/10.1021/ct200388s
http://dx.doi.org/10.1021/ct200388s
http://dx.doi.org/10.1103/PhysRevB.86.184202
http://dx.doi.org/10.1103/PhysRevB.86.184202
http://dx.doi.org/10.1103/PhysRevB.86.184202
http://dx.doi.org/10.1103/PhysRevB.86.184202
http://dx.doi.org/10.1063/1.2949506
http://dx.doi.org/10.1063/1.2949506
http://dx.doi.org/10.1063/1.2949506
http://dx.doi.org/10.1063/1.2949506
http://dx.doi.org/10.1103/PhysRevB.82.193202
http://dx.doi.org/10.1103/PhysRevB.82.193202
http://dx.doi.org/10.1103/PhysRevB.82.193202
http://dx.doi.org/10.1103/PhysRevB.82.193202
http://dx.doi.org/10.1039/c2cp23489k
http://dx.doi.org/10.1039/c2cp23489k
http://dx.doi.org/10.1039/c2cp23489k
http://dx.doi.org/10.1039/c2cp23489k
http://dx.doi.org/10.1103/PhysRevB.4.2612
http://dx.doi.org/10.1103/PhysRevB.4.2612
http://dx.doi.org/10.1103/PhysRevB.4.2612
http://dx.doi.org/10.1103/PhysRevB.4.2612
http://dx.doi.org/10.1103/RevModPhys.45.574
http://dx.doi.org/10.1103/RevModPhys.45.574
http://dx.doi.org/10.1103/RevModPhys.45.574
http://dx.doi.org/10.1103/RevModPhys.45.574
http://dx.doi.org/10.1103/PhysRevB.57.12964
http://dx.doi.org/10.1103/PhysRevB.57.12964
http://dx.doi.org/10.1103/PhysRevB.57.12964
http://dx.doi.org/10.1103/PhysRevB.57.12964
http://dx.doi.org/10.1103/PhysRevLett.107.136601
http://dx.doi.org/10.1103/PhysRevLett.107.136601
http://dx.doi.org/10.1103/PhysRevLett.107.136601
http://dx.doi.org/10.1103/PhysRevLett.107.136601
http://dx.doi.org/10.1103/PhysRevB.83.085206
http://dx.doi.org/10.1103/PhysRevB.83.085206
http://dx.doi.org/10.1103/PhysRevB.83.085206
http://dx.doi.org/10.1103/PhysRevB.83.085206
http://dx.doi.org/10.1021/ct500418f
http://dx.doi.org/10.1021/ct500418f
http://dx.doi.org/10.1021/ct500418f
http://dx.doi.org/10.1021/ct500418f
http://dx.doi.org/10.1103/PhysRev.120.745
http://dx.doi.org/10.1103/PhysRev.120.745
http://dx.doi.org/10.1103/PhysRev.120.745
http://dx.doi.org/10.1103/PhysRev.120.745
http://dx.doi.org/10.1103/PhysRevLett.109.136401
http://dx.doi.org/10.1103/PhysRevLett.109.136401
http://dx.doi.org/10.1103/PhysRevLett.109.136401
http://dx.doi.org/10.1103/PhysRevLett.109.136401
http://dx.doi.org/10.1103/PhysRevB.62.7934
http://dx.doi.org/10.1103/PhysRevB.62.7934
http://dx.doi.org/10.1103/PhysRevB.62.7934
http://dx.doi.org/10.1103/PhysRevB.62.7934
http://dx.doi.org/10.1103/PhysRevB.64.125125
http://dx.doi.org/10.1103/PhysRevB.64.125125
http://dx.doi.org/10.1103/PhysRevB.64.125125
http://dx.doi.org/10.1103/PhysRevB.64.125125
http://dx.doi.org/10.1063/1.3159654
http://dx.doi.org/10.1063/1.3159654
http://dx.doi.org/10.1063/1.3159654
http://dx.doi.org/10.1063/1.3159654
http://dx.doi.org/10.1103/PhysRevB.83.155208
http://dx.doi.org/10.1103/PhysRevB.83.155208
http://dx.doi.org/10.1103/PhysRevB.83.155208
http://dx.doi.org/10.1103/PhysRevB.83.155208
http://dx.doi.org/10.1143/JPSJ.13.1096
http://dx.doi.org/10.1143/JPSJ.13.1096
http://dx.doi.org/10.1143/JPSJ.13.1096
http://dx.doi.org/10.1143/JPSJ.13.1096
http://dx.doi.org/10.1103/PhysRevB.46.13100
http://dx.doi.org/10.1103/PhysRevB.46.13100
http://dx.doi.org/10.1103/PhysRevB.46.13100
http://dx.doi.org/10.1103/PhysRevB.46.13100
http://dx.doi.org/10.1103/PhysRevB.36.7442
http://dx.doi.org/10.1103/PhysRevB.36.7442
http://dx.doi.org/10.1103/PhysRevB.36.7442
http://dx.doi.org/10.1103/PhysRevB.36.7442
http://dx.doi.org/10.1021/jp0495848
http://dx.doi.org/10.1021/jp0495848
http://dx.doi.org/10.1021/jp0495848
http://dx.doi.org/10.1021/jp0495848
http://dx.doi.org/10.1021/ct2003463
http://dx.doi.org/10.1021/ct2003463
http://dx.doi.org/10.1021/ct2003463
http://dx.doi.org/10.1021/ct2003463
http://dx.doi.org/10.1103/RevModPhys.65.599
http://dx.doi.org/10.1103/RevModPhys.65.599
http://dx.doi.org/10.1103/RevModPhys.65.599
http://dx.doi.org/10.1103/RevModPhys.65.599
http://dx.doi.org/10.1038/nmat2427
http://dx.doi.org/10.1038/nmat2427
http://dx.doi.org/10.1038/nmat2427
http://dx.doi.org/10.1038/nmat2427
http://dx.doi.org/10.1103/PhysRevB.85.245205
http://dx.doi.org/10.1103/PhysRevB.85.245205
http://dx.doi.org/10.1103/PhysRevB.85.245205
http://dx.doi.org/10.1103/PhysRevB.85.245205
http://dx.doi.org/10.1088/0022-3719/14/6/012
http://dx.doi.org/10.1088/0022-3719/14/6/012
http://dx.doi.org/10.1088/0022-3719/14/6/012
http://dx.doi.org/10.1088/0022-3719/14/6/012
http://dx.doi.org/10.1103/PhysRevLett.87.126601
http://dx.doi.org/10.1103/PhysRevLett.87.126601
http://dx.doi.org/10.1103/PhysRevLett.87.126601
http://dx.doi.org/10.1103/PhysRevLett.87.126601
http://dx.doi.org/10.1103/PhysRevB.67.224303
http://dx.doi.org/10.1103/PhysRevB.67.224303
http://dx.doi.org/10.1103/PhysRevB.67.224303
http://dx.doi.org/10.1103/PhysRevB.67.224303
http://dx.doi.org/10.1103/PhysRevB.88.125202
http://dx.doi.org/10.1103/PhysRevB.88.125202
http://dx.doi.org/10.1103/PhysRevB.88.125202
http://dx.doi.org/10.1103/PhysRevB.88.125202
http://dx.doi.org/10.1016/S0379-6779(99)00358-6
http://dx.doi.org/10.1016/S0379-6779(99)00358-6
http://dx.doi.org/10.1016/S0379-6779(99)00358-6
http://dx.doi.org/10.1016/S0379-6779(99)00358-6
http://dx.doi.org/10.1063/1.2420785
http://dx.doi.org/10.1063/1.2420785
http://dx.doi.org/10.1063/1.2420785
http://dx.doi.org/10.1063/1.2420785
http://dx.doi.org/10.1063/1.2372388
http://dx.doi.org/10.1063/1.2372388
http://dx.doi.org/10.1063/1.2372388
http://dx.doi.org/10.1063/1.2372388
http://dx.doi.org/10.1063/1.113806
http://dx.doi.org/10.1063/1.113806
http://dx.doi.org/10.1063/1.113806
http://dx.doi.org/10.1063/1.113806
http://dx.doi.org/10.1063/1.120805
http://dx.doi.org/10.1063/1.120805
http://dx.doi.org/10.1063/1.120805
http://dx.doi.org/10.1063/1.120805
http://dx.doi.org/10.1063/1.2972125
http://dx.doi.org/10.1063/1.2972125
http://dx.doi.org/10.1063/1.2972125
http://dx.doi.org/10.1063/1.2972125
http://dx.doi.org/10.1063/1.3407561
http://dx.doi.org/10.1063/1.3407561
http://dx.doi.org/10.1063/1.3407561
http://dx.doi.org/10.1063/1.3407561
http://dx.doi.org/10.1889/1.1830176
http://dx.doi.org/10.1889/1.1830176
http://dx.doi.org/10.1889/1.1830176
http://dx.doi.org/10.1889/1.1830176
http://dx.doi.org/10.1021/ct500269r
http://dx.doi.org/10.1021/ct500269r
http://dx.doi.org/10.1021/ct500269r
http://dx.doi.org/10.1021/ct500269r
http://dx.doi.org/10.1002/adma.200304653
http://dx.doi.org/10.1002/adma.200304653
http://dx.doi.org/10.1002/adma.200304653
http://dx.doi.org/10.1002/adma.200304653
http://dx.doi.org/10.1002/pssa.200404342
http://dx.doi.org/10.1002/pssa.200404342
http://dx.doi.org/10.1002/pssa.200404342
http://dx.doi.org/10.1002/pssa.200404342
http://dx.doi.org/10.1002/adma.200803541
http://dx.doi.org/10.1002/adma.200803541
http://dx.doi.org/10.1002/adma.200803541
http://dx.doi.org/10.1002/adma.200803541
http://dx.doi.org/10.1103/PhysRevB.72.155206
http://dx.doi.org/10.1103/PhysRevB.72.155206
http://dx.doi.org/10.1103/PhysRevB.72.155206
http://dx.doi.org/10.1103/PhysRevB.72.155206
http://dx.doi.org/10.1093/bioinformatics/btt055
http://dx.doi.org/10.1093/bioinformatics/btt055
http://dx.doi.org/10.1093/bioinformatics/btt055
http://dx.doi.org/10.1093/bioinformatics/btt055
http://dx.doi.org/10.1002/jcc.20035
http://dx.doi.org/10.1002/jcc.20035
http://dx.doi.org/10.1002/jcc.20035
http://dx.doi.org/10.1002/jcc.20035
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
http://dx.doi.org/10.1002/jcc.10128
http://dx.doi.org/10.1002/jcc.10128
http://dx.doi.org/10.1002/jcc.10128
http://dx.doi.org/10.1002/jcc.10128
http://dx.doi.org/10.1186/1756-0500-5-367
http://dx.doi.org/10.1186/1756-0500-5-367
http://dx.doi.org/10.1186/1756-0500-5-367
http://dx.doi.org/10.1186/1756-0500-5-367
http://dx.doi.org/10.1021/ct900369w
http://dx.doi.org/10.1021/ct900369w
http://dx.doi.org/10.1021/ct900369w
http://dx.doi.org/10.1021/ct900369w
http://dx.doi.org/10.1021/ja00237a007
http://dx.doi.org/10.1021/ja00237a007
http://dx.doi.org/10.1021/ja00237a007
http://dx.doi.org/10.1021/ja00237a007
http://dx.doi.org/10.1021/jp064406v
http://dx.doi.org/10.1021/jp064406v
http://dx.doi.org/10.1021/jp064406v
http://dx.doi.org/10.1021/jp064406v
http://dx.doi.org/10.1021/jp504979x
http://dx.doi.org/10.1021/jp504979x
http://dx.doi.org/10.1021/jp504979x
http://dx.doi.org/10.1021/jp504979x



