
PHYSICAL REVIEW B 91, 155149 (2015)

Slave rotor approach to dynamically screened Coulomb interactions in solids
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Recent studies of dynamical screening of the electronic Coulomb interactions in solids have revived interest
in lattice models of correlated fermions coupled to bosonic degrees of freedom (Hubbard-Holstein-type models).
We propose a new dynamical mean-field-based approach to dynamically screened Coulomb interactions. In the
effective Anderson-Holstein model, a transformation to slave rotors [S. Florens and A. Georges, Phys. Rev. B 66,
165111 (2002)] is performed to decouple the dynamical part of the interaction. This transformation allows for
a systematic derivation and analysis of recently introduced approximate schemes for the solution of dynamical
impurity problems, in particular, the Bose factor ansatz within the dynamic atomic limit approximation (DALA)
with and without Lang-Firsov correction. More importantly still, it suggests an optimized choice for a Bose factor
in the sense of the variational principle of Feynman and Peierls. We demonstrate the accuracy of our scheme and
present a comparison to calculations within the DALA.
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I. INTRODUCTION

Lattice models of correlated fermions coupled to collective
bosonic modes have attracted renewed interest recently. The
Hubbard-Holstein model [1] is a paradigmatic model to study
the interplay between phonon-mediated attraction of electrons
and their electrostatic Coulomb repulsion [2]. The model
exhibits a wide variety of phenomena, such as bipolaron
formation [3,4], charge density waves (CDW) and phonon-
induced superconductivity [5,6], a metal-insulator (Mott)
transition affected by the phonons [7,8], and non-Fermi-liquid
behavior [9].

Besides the more traditional context of electron-phonon
coupling, the Hubbard-Holstein model (or, equivalently, the
Hubbard model with frequency-dependent interactions) has
been acquiring new applications within realistic theories of
correlated materials [10,11]. Techniques based on density
functional theory (DFT) are used to compute the one-particle
band structure of a material as a first step of combined
numerical schemes such as local-density approximation plus
dynamical mean-field theory (LDA+DMFT) [12,13] and
LDA+U [14]. On the next step, electrons from a subset
of correlated bands are identified with fermionic degrees
of freedom of a lattice model. This downfolding procedure
allows one to subsequently apply established many-body
methods (in particular, DMFT [15]) to account for correlation
effects and obtain electronic spectral functions [16,17], optical
conductivities [18,19], or transport properties (see, e.g., [20]).

This kind of calculation has recently acquired a new level
of realism thanks to techniques allowing for first-principles
calculations of the effective local Hubbard interactions also:
The constrained random-phase approximation (cRPA) [21–23]
even gives access to the energy-dependent matrix elements
of the interaction. The energy dependence of this Hubbard
interaction U(ω) reflects the fact that the high-energy itinerant
states, which are projected out from the full band structure, dy-
namically screen the Coulomb interactions between correlated
electrons. These screening processes quite generally result in a
substantial decrease of the static density-density interaction as
parametrized by an energy-dependent Slater parameter F0(ω).

They furthermore lead to renormalizations of the one-particle
hopping [24]. As a result, the phase diagram of the lattice
model is substantially affected.

Dynamical impurity models are also a central ingredient
of the GW+DMFT method [25,26], combining many-body
perturbation theory in the framework of Hedin’s GW approx-
imation with DMFT. Indeed, inspired by extended DMFT
[27], this method maps a system with long-range interactions
onto an effective local problem with dynamical interactions,
subject to a double self-consistency condition relating one- and
two-particle propagators to their counterparts in the solid. The
need for solving this dynamical effective impurity problem
has been a serious bottleneck hindering the implementation of
the scheme for quite some time, but the recent development
of the Bose factor ansatz (BFA) [11] as an efficient impurity
solver has finally unblocked the field [28,29]. For a review of
the current status, see [30].

Dynamical mean-field theory applied to the Hubbard-
Holstein model with local phonons maps it onto an effective
Anderson-Holstein model, parametrized by a bath hybridiza-
tion function �(iω), which is subject to a self-consistency
condition. Solving the effective impurity model numerically
amounts to obtaining its thermal Green’s function, G(τ ) =
−〈Td(τ )d†(0)〉, where the average is performed by using
the action corresponding to the effective Anderson-Holstein
model. Inclusion of bosons into an impurity problem drasti-
cally enlarges the dimensionality of its state space, making it
much more difficult to solve.

In principle, it is still possible to apply continuous-time
quantum Monte Carlo (CTQMC) algorithms to the Anderson-
Holstein model. In practice, and in particular for applications
to realistic materials, this is, however, not so straightforward:
The weak-coupling algorithm by Rubtsov [31] can treat
interactions with arbitrary frequency dependence, provided
they are not too strong (in comparison to the bandwidth)
and do not contain high-frequency components. In general,
neither of these conditions is satisfied for realistic screened
interactions—effective impurity models are usually found in
antiadiabatic or intermediate regimes. A recently proposed
generalization of the strong-coupling algorithm by Werner
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and Millis [32] does not suffer from these problems, and
has allowed for several recent applications within electronic
structure calculations; see, e.g., [10,33]. Nevertheless, there
is still an infamous problem associated with the extraction of
real-frequency spectral data from imaginary-time results of a
QMC run. A noticeable part of the spectral weight (replica
of the low-energy electronic structure) can lie far outside
the bare electronic band, when the impurity model is in the
antiadiabatic regime. Resolution of spectra of this kind is
notoriously difficult for analytic continuation tools.

Motivated by the mentioned problems, a new family of
techniques has emerged over the last few years. The “Bose
factor ansatz” (BFA) within the dynamic atomic limit approx-
imation (DALA) [11] was proposed as an approximate—yet
accurate—scheme capable to circumvent the analytic continu-
ation problem by reducing a given Anderson-Holstein problem
to an effective Anderson model. The resulting Anderson model
is readily solvable by existing impurity solvers, and the effect
of the bosonic resonances is treated analytically within the
BFA. Even the above-mentioned reduction of the effective
bandwidth compared to its bare value [24] can be taken
into account: the change can be estimated by means of a
Lang-Firsov transformation [34,35] and then incorporated into
the DALA approach (DALA+LF) [11].

Following this route of study, in the present paper we
introduce an approach to the Anderson-Holstein model based
on a slave rotor representation [36]. Slave rotor variables were
introduced in [36,37] as an efficient means to decouple charge
and spin degrees in low-energy models for correlated materi-
als, even in the case of dynamically screened interactions. For
impurity models in the DMFT context, the formalism leads to
a practical scheme allowing for an approximate solution of the
DMFT equations that correctly reproduces the Mott transition
and the main spectral features associated to it. In contrast
to previous work, however, we use the slave rotors here to
decouple the dynamical part of the density-density interaction
only. It becomes clear within this framework that DALA and
DALA+LF can be understood as simple approximations made
on fluctuations of the slave phase field. Finally, we derive an
effective mean-field modulation of the hybridization function
�(iω) induced by the coupling to the phase variables, leading
to an optimized Bose factor ansatz in the sense of Feynman’s
variational principle.

This paper is organized as follows. In Sec. II, we formulate
the Hubbard-Holstein model and an equivalent Hubbard model
with energy-dependent Hubbard interactions. Within DMFT,
this model is mapped onto an Anderson-Holstein model
with energy-dependent U(ω). In Sec. III, we analyze this
model within a slave rotor transformation. Different existing
approximations (DALA, DALA+LF) are found to be specific
approximations to the slave rotors equations, as explained
in Sec. IV. A consequence of the coupling between lattice
fermions and bosonic degrees of freedom is a reduction
of spectral weight in the low-energy sector of the model,
rationalized as an electronic polaron effect [24]. In Sec. V, we
derive a finite-temperature generalization for the expression
of the bosonic renormalization factor ZB and compare it
to an improved estimate within the slave rotor formalism.
Finally, a scheme beyond DALA and DALA+LF is proposed
in Sec. VI: Derived from Feynman’s variational principle, this

optimized Bose factor ansatz contains both the high-energy
plasmon replica and the low-energy spectral weight reduction
in a consistent way. Section VII contains a brief discussion
of the physical meaning of the optimized Bose factor ansatz.
Section VIII summarizes the resulting self-consistency loop
and gives technical details. In Sec. IX, we present DMFT
results for the Hubbard-Holstein model obtained using our
slave rotor scheme. Finally, Sec. X concludes the paper. Two
appendices present additional details concerning the derivation
of higher-order correlation functions within the slave rotor
picture, as well as of a temperature-dependent Lang-Firsov
factor.

II. MODELS WITH SCREENED
COULOMB INTERACTION

In the present paper, we will focus on the single-band Hub-
bard model with dynamically screened Coulomb interactions
U(ω). Electrons can hop from site to site on a periodic lattice:
mathematically, electrons of spin σ are created (annihilated)
on site i by operators d

†
iσ (diσ ). The model is defined by the

finite-temperature action,

SH = −
∑
ij,σ

∫ β

0
dτ d̄iσ (τ )[(−∂τ + μ)δij + tij ]djσ (τ )

+U∞
∑

i

∫ β

0
dτ ni↑(τ )ni↓(τ )

+ 1

2

∑
i

∫∫ β

0
dτdτ ′ Ni(τ )Uret(τ − τ ′)Ni(τ

′). (1)

Here, tij are hopping amplitudes between adjacent atoms on
the lattice and μ is the chemical potential. The full density
operators are defined as Ni = ni↑ + ni↓. The instantaneous
part of the interaction is denoted by U∞. Screening is contained
in the retarded part Uret(iν), which is chosen to be negative and
thus effectively reduces the on-site electron-electron repulsion.

The retarded interaction Uret(τ ) can be represented as a
superposition of modes each parametrized by a position of a
resonance ωα and coupling strength λ2

α:

Uret(τ ) = −
∑

α

λ2
α

cosh[(τ − β/2)ωα]

sinh[ωαβ/2]
. (2)

This expression is valid for τ ∈ [0; β) and must be periodically
continued outside the segment. We will also need a Matsubara
frequency variant of this expansion,

Uret(iν) = −
∑

α

λ2
α

2ωα

ν2 + ω2
α

, (3)

with bosonic Matsubara frequencies ν = νn = n 2π
β

, as well as
an equivalent real-frequency description,

Uret(τ ) = −
∫ +∞

0
ImUret(ε)

cosh[(τ − β/2)ε]

sinh[εβ/2]

dε

π
, (4)

which uses a screening spectral function ImUret(ε) =
−πλ2(ε), λ(ε) = ∑

α λ2
α[δ(ε − ωα) − δ(ε + ωα)].

The τ dependence of the interaction makes it necessary
to use the path-integral formalism and action (1) instead of a
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Hamiltonian. However, in some cases, it is more convenient
to introduce a set of bosonic modes at each lattice site
with frequencies ωα and write a Hubbard-Holstein model
Hamiltonian, which is equivalent to SH . In this case, the
frequencies ωα are identified with plasmonic resonances (the
“charge cloud” of the integrated out electrons plays the role of
the plasma). The Hamiltonian includes a term which couples
electrons to the introduced bosons,

ĤHH = −
∑
ij,σ

tij d
†
iσ djσ −μ

∑
iσ

d
†
iσ diσ +U∞

∑
i

d
†
i↑di↑d

†
i↓di↓

+
∑
i,α

ωαb
†
iαbiα +

∑
i,α,σ

λαd
†
iσ diσ (b†iα + biα). (5)

The equivalence of SH and ĤHH is readily verified by
integrating out the b

†
iα,biα variables.

It is worth noting that the Hubbard-Holstein model and the
corresponding action SH may be supplemented with additional
site-local electron terms (for instance, a local magnetic field),
and most of the results of the present paper will stand.

III. SLAVE ROTOR TRANSFORMATION
OF THE ANDERSON-HOLSTEIN MODEL

The slave rotor approach invented by Florens and Georges
[36] is an elegant and economic way to separate out and
describe charge fluctuation in models of strongly correlated
electrons. It was successfully applied to both impurity [37] and
lattice models [38,39], to study the bandwidth-controlled and
doping-controlled Mott transition [40], as well as to magnetism
of multiorbital models [41]. Among other results, a slave rotor
decoupling of the screened Coulomb interaction U (τ ) was
described by Florens in [37]. Here, we choose a different form
of such a decoupling and provide a short reasoning for the
choice later in this section.

Within the slave rotor picture, one introduces a “rotor
phase” variable θ , which is conjugate to the full charge,
and a pair of auxiliary fermionic variables f̄σ ,fσ (called
spinons hereafter). The rotor phase variable is related to the
Hubbard-Stratonovich scalar φ field, which is often used to
decouple density-density interactions between electrons,

φ(τ ) ≡ ∂θ

∂τ
, θ (τ ) ∈ [0; 2π ), θ (0) = θ (β), (6)

where the new fermion variables are proportional to the old
ones with an additional complex phase given by θ ,

fσ ≡ dσ eiθ , f̄σ ≡ d̄σ e−iθ . (7)

The switch of variables φ 
→ θ and d̄,d 
→ f̄ ,f is linear
and thus the corresponding Jacobians of path integrals are
irrelevant constants. It is also worth noting that θ is introduced
in such a way that there is no need to consider its static
component: the resulting action and any correlation function
appearing in the theory contain either a τ derivative of θ or a
difference θ (τ ) − θ (τ ′).

The thermal Green’s function of the original electrons is
readily expressed in terms of the new variables using definition
(7),

G(τ ) ≡ −〈dσ (τ )d̄σ (0)〉 = −〈fσ (τ )f̄σ (0)e−iθ(τ )+iθ(0)〉. (8)

When the slave rotor transformation is used to study
lattice models, the degrees of freedom are usually introduced
separately at each lattice site. Some sort of a mean-field
(saddle-point) approximation is then applied to the phase
variables θi . This procedure allows for a decoupling of spinons
and chargons and to estimate the role of either of the two
subsystems in a given physical phenomenon.

Here, we use the slave rotor representation in a slightly
different fashion. Our approach is based on dynamical mean-
field theory [7,15] (DMFT), mapping the lattice (Hubbard-
Holstein) model onto an effective Anderson impurity model
with frequency-dependent interactions U (iν). This single-site
Anderson model is parametrized by a hybridization function
�(iω), which is to be determined self-consistently. The self-
consistency condition is dictated by the bare electronic band
structure of the lattice or crystal, i.e., by hopping matrix
elements tij (see Sec. VII for more details). The action of
the auxiliary Anderson model reads

SAM = Sst
AM + S

dyn
AM, (9)

Sst
AM = −

∑
σ

∫ β

0
dτ d̄σ (τ )[−∂τ + μ̃]dσ (τ )

+
∑

σ

∫∫ β

0
dτdτ ′ d̄σ (τ )�(τ − τ ′)dσ (τ ′)

+U0

∫ β

0
dτ n↑(τ )n↓(τ ), (10)

S
dyn
AM = 1

2

∫∫ β

0
dτdτ ′ N (τ )Ū (τ − τ ′)N (τ ′). (11)

In the original action (1) of the Hubbard model, the full
interaction function is split into an unscreened part U∞ and
a retarded part U (τ ) = U∞δ(τ ) + Uret(τ ). Here, in contrast,
we have explicitly extracted the fully screened static com-
ponent, U (τ ) = U0δ(τ ) + Ū (τ ), where U0 ≡ U (iν = 0) =
U∞ − 2

∑
α λ2

α/ωα (and the chemical potential has also un-
dergone a modification, μ̃ = μ + ∑

α λ2
α/ωα). This has been

done to proceed with a Hubbard-Stratonovich decoupling of
S

dyn
AM alone,

SAM = −
∑

σ

∫ β

0
dτ d̄σ (τ )[−∂τ + μ̃ − iφ(τ )]dσ (τ )

+
∑

σ

∫∫ β

0
dτdτ ′ d̄σ (τ )�(τ − τ ′)dσ (τ ′)

+U0

∫ β

0
dτ n↑(τ )n↓(τ ) + Sφ, (12)

Sφ = 1

2

∫∫ β

0
dτdτ ′ φ(τ )Ū−1(τ − τ ′)φ(τ ′). (13)

Here, one sees the difference between the present approach
and the approach by Florens et al. In [37], a φ field was
used to decouple the full interaction term in the Anderson
model, including both dynamical and static parts. In contrast
to that, our intention is to associate with rotors only the
fluctuations caused by the dynamical part of the interaction.
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As shown below, this choice of decoupling provides us with
a more convenient description of dynamical screening. The
physical effect of the static component of the interaction is of
a different nature than the finite-frequency components and it
is convenient to treat it separately.

An inverted operator Ū−1(τ − τ ′) in the expression for
Sφ should not be understood in a literal mathematical way.
Indeed, such an operator does not exist because the amplitude
of the zeroth mode of Ū (τ − τ ′), i.e., Ū (iν = 0), is zero by
definition. To impart that operator a definite meaning, we must
include into the path integral only such trajectories φ(τ ) that
have no static component:

∫ β

0 dτ φ(τ ) = 0 [φ(iν = 0) = 0].
The substitution of spinon-chargon variables into (12) gives

an expression for the action which is explicitly split into three
parts: an atomic part, a hybridization part, and the part with
the dynamical interactions:

S = Sat[f̄ ,f ] + Shyb[f̄ ,f ; θ ] + Sdyn[θ ], (14)

Sat[f̄ ,f ] = −
∑

σ

∫ β

0
dτ f̄σ (τ )[−∂τ + μ̃]fσ (τ )

+U0

∫ β

0
dτ f̄↑(τ )f↑(τ )f̄↓(τ )f↓(τ ), (15)

Shyb[f̄ ,f ; θ ] =
∑

σ

∫∫ β

0
dτdτ ′ f̄σ (τ )

×�(τ − τ ′)fσ (τ ′)eiθ(τ )−iθ(τ ′), (16)

Sdyn[θ ] = 1

2

∫∫ β

0
dτdτ ′ ∂τ θ (τ )Ū−1(τ − τ ′)∂τ ′θ (τ ′). (17)

This action plays a central role in the formalism being
presented. In the limit �(τ − τ ′) → 0, fermionic and rotonic
degrees of freedom decouple, making the problem exactly
solvable. This is the strong-coupling limit of the theory, i.e.,
the dynamic atomic limit in terms of Ref. [11]. The thermal
Green’s function factorizes into fermionic and rotonic parts if

the corresponding degrees of freedom are not coupled in the
action:

G(τ − τ ′) = Gf (τ − τ ′)GX(τ − τ ′), (18)

Gf (τ − τ ′) ≡ −〈fσ (τ )f̄σ (τ ′)〉, (19)

GX(τ − τ ′) ≡ +〈eiθ(τ )e−iθ(τ ′)〉. (20)

In this specific limit, the low-energy dynamics of fermions
is determined by the screened interaction U0, and the
particular form of Ū (τ − τ ′) enters only into a bosonic
weight-modulating factor in the Green’s function. As we
will discuss below, the dynamic atomic limit approximation
(DALA), as introduced in [11], corresponds to imposing a
factorized form with the weight factor given by its atomic limit
expression even for finite �(τ − τ ′). The slave rotor formalism
is thus naturally suited for exploring effects beyond the
DALA.

IV. APPROXIMATIONS WITHIN
THE SLAVE ROTOR PICTURE

In the atomic limit, GX can be calculated by a direct
evaluation of the corresponding path integrals,

Gat
X(τ − τ ′) =

∫
D[θ ]eiθ(τ )−iθ(τ ′)−Sdyn[θ]∫

D[θ ]e−Sdyn[θ] . (21)

An expression for a general 2n-point correlation function is
derived in Appendix A. Here we only give the result for the
function of two times (illustrated in Fig. 1),

Gat
X(τ − τ ′) = exp

[
− 2

β

∑
ν>0

Ū (iν)

ν2
{1 − cos[ν(τ − τ ′)]}

]
.

(22)

The argument of the exponential function in (22) (denoted
with K(τ ) in [32]) can be further transformed by substituting

FIG. 1. The rotor correlation functions Gat
X(τ ) in the atomic limit for the case of a single bosonic mode (left plot: β = 10; right plot:

β = 40). Horizontal lines show the corresponding values of ZB .

155149-4



SLAVE ROTOR APPROACH TO DYNAMICALLY SCREENED . . . PHYSICAL REVIEW B 91, 155149 (2015)

Eq. (2) and doing the Matsubara sum,

K(τ ) =
∑

α

λ2
α

ω2
α

cosh[ωα(τ − β/2)] − cosh(βωα/2)

sinh(βωα/2)
. (23)

This nontrivial exponential form of Gat
X(τ ) leads to an

interesting physical consequence. Let us consider a dynamical
interaction function Ū (iν) whose spectrum is localized around
a single characteristic frequency ω0. The spectrum of the
auxiliary function K(τ ) will also have this frequency as a
special point. It is then readily seen from a Taylor expansion
of the exponent that all multiples of ω0 will be resonances
of Gat

X(τ − τ ′); the spectrum of K(τ ) will be replicated
along the frequency axis. For a more general case of several
characteristic frequencies ωα , the spectrum of Gat

X(τ ) will
exhibit features at all combinatorial frequencies

∑
α mαωα

with integer coefficients mα .
Let us now switch on the hybridization of the impurity

electrons with the bath. f fermions and the rotor get coupled
through Shyb and the theory becomes nontrivial. The simplest
approximation to treat the model in this case is to artificially
suppress the coupling by putting θ (τ ) − θ (τ ′) to zero in
Shyb (the phase changes slowly over imaginary time). This
approximation was introduced in Ref. [11] as a means to
solve dynamic impurity models in the antiadiabatic limit at the
cost of static ones and was dubbed the “dynamic atomic limit
approximation” (DALA). In DALA, one neglects any mutual
influence of � and fluctuations of the full charge, which are
induced by the dynamical part of the screened interaction.
Obviously, this becomes a good approximation when the
energy scales separate, as is the case in the antiadiabatic limit.
As follows from Eq. (8), in DALA we have

G(τ ) = Gf (τ ; �)Gat
X(−τ ), (24)

where Gat
X coincides with (22) and Gf (τ ; �) is calculated

for a conventional Anderson model with the given � and
the screened static interaction U0. The factorized form
(24) corresponds to what is called the Bose factor ansatz
(BFA) empirically introduced in [11] for the antiadiabatic
limit. Interestingly, within the slave rotor formalism, this
factorization stands disregarding approximations made on
θ field and without limitations on the parameters of the
Hubbard-Holstein model. This comes at the price, however, of
introducing a coupling in the differential equations governing
the behavior of the two factors and, in this language, DALA
simply corresponds to the zeroth-order approximation in this
coupling.

The advantage of DALA is that it provides a simple way to
reuse existing quantum impurity solvers designed to work with
purely static interactions. Moreover, it substantially simplifies
the ill-posed analytic continuation problem. Extracting a
spectral function A(ε) from noisy output data of a QMC run for
the original Anderson-Holstein model is a very difficult task.
This is due to the presence of the aforementioned plasmon
satellites. On the other hand, the spectral function Af (ε)
corresponding to Gf (τ ; �) normally contains only low-energy
scales [not larger than max(bandwidth,U0)] and, for this
reason, it is much easier to extract using a maximum entropy
algorithm. Thanks to Eq. (24), the spectral function of physical

electrons is a convolution,

A(ε) =
∫ +∞

−∞
dε′ (1 + e−βε)Af (ε − ε′)B(ε′)

(1 + eβ(ε′−ε))(1 − e−βε′ )
, (25)

where B(ε) = −(1/π )ImGat
X(ε) is the spectral function of

rotors, which may be calculated from (22) at machine
precision.

The main limitation of DALA is that it overlooks the
influence of high-energy bosonic fluctuations on low-energy
dynamics of correlated spinons. For example, the coupling
of the fermionic degrees of freedom to bosonic fluctuations
leads to an “electronic polaron effect,” enhancing the mass
of the effective low-energy fermionic degrees of freedom or,
equivalently, renormalizing the bare hopping matrix elements.
This effect has been investigated in detail in Ref. [24] in
the framework of Lang-Firsov transformation techniques. As
pointed out in Ref. [11], the simplest way to refine DALA is to
take into account an effective change in the magnitude of �(τ )
caused by the bosons. Such a renormalization is described by
the Lang-Firsov constant ZB (DALA+LF approximation). As
we will see below, the present framework lends itself to an
even more refined improvement: the slave rotor formalism can
be used to define a dynamical renormalization of the hopping
matrix elements, thus generalizing the simple ZB renormal-
ization. Before explaining how to construct such a scheme, we
will, however, first need to introduce a generalization of the
simple ZB renormalization to finite temperatures. This is done
in the following section.

V. LANG-FIRSOV TRANSFORMATION:
EFFECT OF A FINITE TEMPERATURE

When all bosonic resonances ωα lie far above energy levels
of an isolated atom and the boundary of the conduction band
D, the interplay of electronic and bosonic fluctuations may
be accounted for in a simplified way. This task may be
accomplished through construction of a low-energy effective
model for electrons.

In this section, we present an effective model derivation
based on the Lang-Firsov transformation. This derivation is a
finite-temperature generalization of the approach proposed in
Ref. [24].

The Lang-Firsov transformation is a unitary change of a
basis in the state space of ĤHH. It transforms the Hamiltonian
and field operators, replacing electrons d

†
iσ ,diσ with polarons

c
†
iσ ,ciσ . The unitary transformation operator is

ÛLF = exp

[
− λ

ω0

∑
i,α,σ

d
†
iσ diσ (biα − b

†
iα)

]
. (26)

The field operators transform as follows:

ciσ = ÛLFdiσ Û
†
LF = diσ exp

[∑
α

λα

ωα

(biα − b
†
iα)

]
, (27)

c
†
iσ = ÛLFd

†
iσ Û

†
LF = d

†
iσ exp

[
−

∑
α

λα

ωα

(biα − b
†
iα)

]
. (28)

The Hamiltonian is completely equivalent to ĤHH, although it
does not explicitly contain a coupling term between polarons
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and bosons [34,35]:

ĤLF = ÛLFĤHHÛ
†
LF

= −
∑
ij,σ

tij c
†
iσ cjσ − μ̃

∑
iσ

c
†
iσ ciσ

+U0

∑
i

c
†
i↑ci↑c

†
i↓ci↓ +

∑
i,α

ωαb
†
iαbiα. (29)

The Lang-Firsov transformation results in a renormaliza-
tion of the chemical potential μ̃ and the unscreened part of the
interaction U0; these quantities coincide with those in (10).

The polaron degrees of freedom represent electrons dressed
by bosonic fluctuations. One can take this dressing into account
in an approximate way by calculating renormalized hopping
constants ZBtij for the original electrons. In the paper by
Casula et al. [24], this is done by projecting the Lang-Firsov
Hamiltonian onto the subspace of zero-boson states,

Ĥeff = 〈{0}α|ĤLF|{0}α〉, given ωα � U0,tij . (30)

This leads to the following effective low-energy
Hamiltonian:

Ĥeff = −
∑
ij,σ

ZBtij d
†
iσ djσ − μ̃

∑
iσ

d
†
iσ diσ

+U0

∑
i

d
†
i↑di↑d

†
i↓di↓, (31)

which is a conventional Hubbard model with a renormalized
bandwidth, interaction strength, and chemical potential, but
where the one-particle hopping matrix elements have been
renormalized by a factor ZB < 1 that we discuss below.

This simple renormalization is valid in the antiadiabatic
regime and for not very high temperatures. As the temperature
goes higher, more boson excitations are effectively created
and the projection onto the zero-boson subspace becomes no
longer valid.

When the effective low-energy model is used to calculate a
spectrum of physical electrons, the Green’s function reads

G
low-energy
iσ ;jσ (τ ) = −ZB〈Tdiσ (τ )d†

jσ (0)〉Ĥeff
. (32)

The full spectral weight, corresponding to a Green’s function
defined in this way, is equal to ZB . The remaining contribution
1 − ZB to the weight is constituted by high-frequency scatter-
ing processes involving boson creations/annihilations. As we
have excluded such processes from Ĥeff , consistency of the
theory requires us to diminish the spectral weight accordingly.

Here we present a finite-temperature expression for ZB ,
which is obtained by tracing out all bosonic degrees of freedom
from ĤLF (a complete derivation is found in Appendix B),

ZB = exp

[
−

∑
α

λ2
α

ω2
α

coth(βωα/2)

]

= exp

[
1

π

∫ +∞

0

ImUret(ε)

ε2
coth(βε/2)dε

]
. (33)

Expression (33) contains two dimensionless combinations
of three energy scales, namely, λα/ωα and βωα . They give rise
to a multitude of temperature limiting cases, some of which
we analyze here.

(i) β → ∞; λ,ω = const. This is the zero-temperature
limit, consistent with the result of Casula et al., ZB =
exp(−∑

α λ2
α/ω2

α).
(ii) β → 0; βω = const. If all energy scales of the bosonic

subsystem follow a rise of the temperature, then our expression
stands for arbitrarily small β. However, this case is usually of
little physical interest.

(iii) β → 0; λ,ω = const. In this more physically relevant
case, we get the curious result that ZB must vanish together
with β. The system rapidly falls down to the atomic limit as
the temperature grows. It seems that ZB alone can provide a
reasonable effective description only for not very small values
of βωα . One can use the condition ZB � 1 to determine the
order of magnitude of the temperature where a description in
terms of ZB is still valid. Beyond this region, a more refined
theory of dynamical screening is needed.

Of course, it is far from obvious that the calculated tempera-
ture dependence of ZB plays any role in practical applications.
Indeed, for realistic plasmon frequencies ωα 
 10 eV, the
temperature which could grant considerable boson excitation
probabilities would be too high to observe interesting electron
correlation effects. Nonetheless, the obtained expression will
turn out to be useful for finding a connection between the
Lang-Firsov trick and the formalism presented below.

How can these insights be used within the slave rotor
framework employed as a solver technique for the DMFT
equations with dynamical interactions? A renormalization
of the hopping matrix translates into a renormalization of
the hybridization function �(iω), when a Hubbard-Holstein
model (or an equivalent Hubbard model with a dynamical
interaction) is mapped onto the Anderson model by DMFT.
The effective renormalization of �(τ − τ ′) in the slave rotors
picture is caused by a coupling term, �(τ − τ ′)eiθ(τ )−iθ(τ ′).
Obviously, the ZB factor thus corresponds to a specific
approximation to the second factor in this expression. One
could, for example, think of the following mean-field estimate
of the renormalization constant ZB :

ZB = 1

β

∫ β

0
dτ 〈e−iθ(τ )+iθ(0)〉at, (34)

where the subscript “at” indicates that the average value is
taken with the atomic limit action.

The imaginary-time integral in this expression means that
we are interested only in the low-energy fluctuations of the θ

field. Substituting Gat
X(τ ) into this expression, we rewrite the

integral,

ZB = exp

[
−

∑
α

λ2
α

ω2
α

coth(βωα/2)

]

×
∫ +1/2

−1/2
dx exp

[∑
α

λ2
α

ω2
α

cosh(βωαx)

sinh(βωα/2)

]
. (35)

If the adiabatic ratios λα/ωα are all small, the right-hand side
integral goes to 1, and our estimate of ZB becomes consistent
with the antiadiabatic-limit expression (33). While we could
use the improved estimate (35) for ZB to try reaching the
λα/ωα 
 1 region in practical calculations, we prefer to go a
bit further. In the next section, we introduce an approximation
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beyond DALA, in which � undergoes a dynamic rather then
a static renormalization.

VI. BEYOND DALA: THE OPTIMAL
MEAN-FIELD TREATMENT OF Shyb

We now come to the central idea of the present work.
The above discussion has addressed how dynamical screening
leads to a mass enhancement of the low-energy fermionic
degrees of freedom, as expressed by the bosonic renormaliza-
tion factor ZB . It also became clear, however, that replacing
the truly dynamical couplings between fermionic and rotor
degrees of freedom by a simple number introduces simplifica-
tions that are justified only in specific limits. In this section, we
will derive a more general dynamical renormalization scheme,
based on the slave rotor framework. More precisely, we will
construct an (in a sense to be specified) optimal bosonic
renormalization factor.

To this end, we consider a class of effective spinon-only
models with modified hybridization functions �̃(τ ),

S̃hyb[f̄ ,f ] =
∫∫ β

0
dτdτ ′ ∑

σ

f̄σ (τ )�̃(τ − τ ′)fσ (τ ′). (36)

Whenever an action S of a physical system is replaced by
a simpler “trial” action S̃, it is convenient to apply Feynman’s
variational criterion to estimate what is the best choice of the
parameters of S̃,

F(�̃) = 〈S − S̃〉S̃ − ln Z̃ + ln Z = min ,

Z̃ ≡
∫

e−S̃D[f̄ ,f ], Z ≡
∫

e−SD[f̄ ,f ]. (37)

We are going to calculate the variation of Feynman’s
functional with respect to �̃(τ ) which parametrizes the
trial action S̃ = Sat + S̃hyb + Sdyn. Doing so, we obtain an
extremum condition,∫∫ β

0
dτ ′′dτ ′′′ ∑

σ

δG̃f,σσ (τ ′′′ − τ ′′)
δ�̃(τ − τ ′)

×[
�̃(τ ′′′ − τ ′′) − �(τ ′′′ − τ ′′)Gat

X(τ ′′′ − τ ′′)
] = 0. (38)

An apparent solution of this equation is �̃(τ ) =
�(τ )Gat

X(τ ). This means that the atomic limit estimate
〈eiθ(τ )−iθ(τ ′)〉 
 Gat

X(τ − τ ′) is indeed the best “modulation”
function within the proposed ansatz. The procedural change
from DALA+LF to the proposed approximation consists
of using Gat

X(τ − τ ′) instead of ZB as a prefactor of the
hybridization function. Such a change does not introduce much
additional complication, yet it allows one to achieve better
results for intermediate values of the adiabatic parameter.

The proposed approach is summarized in Fig. 2. The part
of the scheme inside the dashed box is a DMFT loop involving
only spinon degrees of freedom. The effective Anderson
impurity model is solved with an impurity model solver for
static interactions, e.g., a standard continuous-time quantum
Monte Carlo (CTQMC) solver. The screened values U0, μ̃ and
an arbitrary initial guess for � are used as input parameters
of the first solver run. The resultant spinon Green’s function

FIG. 2. Scheme of the DMFT loop within the approximation
proposed in Sec. VI. The highlighted box would be �̃(τ ) = �(τ )
in DALA and �̃(τ ) = ZB�(τ ) in DALA+LF.

Gf (τ ) is then multiplied by Gat
X(τ ) in order to obtain the

impurity Green’s function of physical electrons.
In the next step, a standard DMFT self-consistency pro-

cedure is performed and an updated hybridization function
�(τ ) for the electrons is constructed. Within the optimized
BFA approximation, �(τ ) is replaced by �̃(τ ) = �(τ )Gat

X(τ ).
In this modulated form, the hybridization function is used as
input data for the next solver run. The loop is repeated until
Gf (τ ) converges with a prescribed accuracy.

Schemes for DALA and DALA+LF would differ only in
the way �̃(τ ) is obtained from �(τ ) (multiplication by 1 and
ZB , respectively).

VII. INTERPRETATION OF THE “OPTIMAL BOSE
FACTOR APPROACH”

Before heading to the actual results, we would like to
discuss the physical meaning of the modifications included in
the “optimal Bose factor approach.” To this end, we start from
the DMFT self-consistency condition, which—for a lattice
with a bare dispersion law of electrons ε = ε(�k)—reads

1

iωn + μ − �(iωn) − �AHM(iωn)

= 1

�BZ

∑
�k

1

iωn + μ − ε(�k) − �AHM(iωn)
. (39)

Here, �AHM(iωn) is the self-energy of the auxiliary Anderson-
Holstein model. Unfortunately, there is no simple form of
this expression written in terms of �̃, Gf , and Gat

X; any such
equation in the frequency domain would inevitably contain
convolutions, but not products. However, for the particular
case of the Bethe lattice with infinite coordination number, the
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FIG. 3. Spectral functions corresponding to �̃(τ ) at the first iteration of the self-consistency loop within different approximations and for
different values of the adiabatic parameter λ0/ω0 (β = 20). The unmodulated (or, equivalently, DALA) spectral function is defined to have a
semielliptic shape, ρ(ε) = θ (1 − |ε|)√1 − ε2/2π .

actual equation simplifies to

�̃(τ ) = t2[Gat
X(τ )

]2
Gf (τ ), (40)

i.e., the DMFT loop for the spinons is built using a chargon-
screened hopping parameter t(τ ) ≡ tGat

X(τ ). For comparison,
in DALA one has the screening coefficient equal to

√
Gat

X(τ )
and, in DALA+LF, to

√
ZBGat

X(τ ).
The proposed optimized Bose factor ansatz has an impor-

tant advantage over DALA+LF: It leads to a redistribution of
the spectral weight of �(τ ) rather than to a change of the full
weight. Indeed, the full weight is conserved and is equal to a
discontinuous jump of �̃(τ ) at zero time:

�̃(−0) − �̃(+0) = �(−0)Gat
X(−0) − �(+0)Gat

X(+0)

= �(−0) − �(+0). (41)

One can thus think of the approximation as replacing
the simplistic band renormalization by a weight-conserving
transformation of the noninteracting density of states. We
illustrate this fact by plotting in Fig. 3 the modifications

induced onto the hybridization function corresponding to a
model with semielliptic density of states. This quantity thus
corresponds to the effective hybridization function for the
Bethe lattice—�̃(ε) as defined in Eq. (40)—at the first iteration
of the above-discussed self-consistency loop. As seen in the
figure, there is always a low-frequency region of the density of
states (DOS) (perhaps narrow enough) in which the effect of
DALA+LF (multiplication by ZB) is almost the same as from
the optimized BFA. However, the disagreement grows stronger
outside this region, as a value of the adiabatic parameter λ0/ω0

increases. In the deep antiadiabatic limit (upper left plot),
only a small part of the spectral weight is transferred to the
plasmonic satellites and DALA+LF indeed works well. For
a larger value of λ0/ω0 and a small characteristic frequency
(upper right plot), a substantial part of the spectral weight
is pulled out from the center of the conduction band. It is
then transferred to a newly formed pair of “wings,” which
effectively extend the bandwidth. The most drastic change
of the DOS occurs in the intermediate and adiabatic regimes
(lower plots). Not only is a major part of the spectral weight
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transferred to the plasmonic satellites, but also the conduction
band may completely change its shape and widen due to
merging with the satellites.

VIII. TECHNICALITIES

To solve the effective impurity model, we employed a
hybridization expansion Monte Carlo solver (CT-HYB), which
is part of the TRIQS application suite [42]. The result of the
impurity solver is a Green’s function in imaginary time, which
is dressed by GX(−τ ) according to the BFA (see Fig. 2).

A note should be made about the analytic continuation
procedure used. We use Padé approximants to reconstruct
the bosonic spectral function B(ε) and Sandvik’s stochastic
algorithm [43] for the spectrum of spinons Af (ε). Doing
the convolution (25) proves to be problematic due to the
divergence of the Bose-Einstein distribution at zero energy. To
circumvent this difficulty, we use an auxiliary spectral function
B̃(ε), reconstructed from Gat

X(τ ) − ZB . By construction, B̃(ε)
has a zero at ε = 0, which compensates the divergence of the
integral kernel. The resulting density of states is immediately
obtained as A(ε) = Af ∗B̃ + ZBAf (ε) [convolution in the
sense of (25)].

IX. COMPARISON OF DIFFERENT APPROACHES

In order to compare the three schemes described in the
previous sections (DALA, DALA+LF, and the optimized
BFA), we have performed several series of DMFT runs for
the Hubbard-Holstein model on a Bethe lattice.

The unit of energy is set to the half bandwidth of the bare
dispersion of the lattice. Each of the six cases is defined
by an unscreened value of on-site interaction U∞ and by
parameters of a single bosonic resonance (λ0,ω0). Inclusion
of more bosonic modes would not require a significantly
larger numerical effort. However, the resulting spectra are
easier to interpret if only one bosonic excitation is present.
The adiabatic parameter λ0/ω0 is varying from 0.1 (truly
antiadiabatic regime) to 0.8 (intermediate regime).

In all cases, the value of U∞ is chosen in a way to put the
DMFT loop close to the paramagnetic Mott transition point:
U0 = 2.4, β = 60 [44]. We perform calculations at half filling
by choosing the chemical potential as μ = U∞/2 − 2λ2

0/ω0,
such as to ensure the particle-hole symmetry of the effective
Anderson model.

The spectral functions are shown in Fig. 4. The insets depict
imaginary-time Green’s functions Gf (τ ), which are directly
measured by the CT-HYB solver. Figures 4(a)–4(c) show the
cases where DALA, DALA+LF, and the optimized BFA agree
on the metallic type of the solution. For a very high plasmon
frequency and a small value of the adiabatic parameter
[Fig. 4(a)], the satellites are barely visible; as the frequency
approaches U0/2, the satellites become more pronounced.
Spectra depicted in Figs. 4(d)–4(f) are of the insulator type
as seen by DALA+LF and by the optimized BFA, but not by
DALA. Depending on the plasmon frequency, the satellites are
either completely masked by the Hubbard subbands [Fig. 4(d)]
or well pronounced and contain a considerable part of the
spectral weight [Fig. 4(e)]. In the extreme case of a low fre-
quency but strongly coupled bosons [Fig. 4(f)], the spectrum is

comblike with the shape of the “teeth” replicating the Hubbard
bands.

As one can see, there is a qualitative difference between
DALA and the other two approximations, which is easily
understood. DALA tends to underestimate the reduction of the
DOS at the Fermi level caused by the bosons, and is thus biased
towards the metallic phase. At the same time, differences
between DALA+LF and the optimized BFA are quite subtle,
if visible. The discrepancy could be more pronounced at
higher temperatures, where Gat

X(τ ) would be approximately
constant on a smaller part of the interval [0; β] (see Fig. 1).
This issue is illustrated by spectral functions at higher
temperatures presented in Figs. 5 (β = 10) and 6 (β = 3).
The differences between DALA+LF and the optimized BFA
seem to be of the highest importance when energies of the
bosonic resonance ω0 and of the atomic level U0/2 are
comparable.

Finally, we discuss an interesting feature of the physical
spectral functions A(ε) plotted in Fig. 4. Indeed, in a Fermi
liquid with local self-energy—in its coherent low-temperature
regime—one expects the value of the spectral function on the
Fermi level to coincide with the value of the noninteracting
density of states. This “pinning condition” is violated in our
spectra. We checked that this is a finite-temperature effect
which is more pronounced in the optimized BFA calculations
as compared to the DALA results. The “better” pinning is,
however, an artifact of the underestimated correlation strength
by DALA.

X. SUMMARY AND PERSPECTIVES

In the present paper, we have introduced a systematic
approach to the Hubbard-Holstein model, inspired by the slave
rotor transformation proposed by Florens and Georges.

We have given a derivation and clarified the physical
meaning of existing methods, such as the dynamic atomic limit
approximation (DALA) and DALA combined with a Lang-
Firsov procedure (DALA+LF). DALA, being an effective tool
to describe dynamic screening in solids, was originally derived
from an intuitively chosen ansatz. DALA+LF is an improved
version of DALA, which better describes the boson-induced
narrowing of the conduction band. However, DALA+LF
suffers from a spectral weight loss issue which should be
treated with care. The proposed approach demonstrates that
both DALA and DALA+LF can be understood as simple
approximations made on the fluctuating rotor-dependent factor
exp[iθ (τ ) − iθ (τ ′)].

Apart from this, we have found an approximation to the
exponential factor, which is optimal in the sense of Feynman’s
variational criterion. This “optimized BFA” approximation is
closely related to DALA+LF, but does not suffer from spectral
weight loss issues. It can also be used together with static-U
impurity solvers and allows one to reconstruct spectra with a
rich resonance structure.

All main models and methods mentioned in the paper, as
well as their relations, are summarized in Fig. 7.

A direct comparison of the methods shows that the results
of the optimized BFA are close to those of DALA+LF at low
temperatures, but the difference should arguably be larger for
higher temperatures, when more boson excitations come into
play.
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An obvious further development of the proposed method
will be a generalization to multiband models. This task seems
straightforward, in full analogy to DALA. Another interesting
possibility is the calculation of higher correlation functions.

Indeed, transformation (7) together with expressions for higher
atomic correlators of rotors gives a simple way to calculate
such quantities [see (A5) in Appendix A]. This could be of
special interest in the context of the dual boson approach [45].

(a) λ0/ω0 = 0.1 (b) λ0/ω0 = 0.2

(c) λ0/ω0 = 0.25 (d) λ0/ω0 = 0.5

(e) λ0/ω0 = 0.5 (f) λ0/ω0 = 0.8

FIG. 4. (Color online) Local spectral functions of the Hubbard-Holstein model calculated within three different approximations and for six
sets of parameters. Spinon Green’s functions Gf (τ ) produced by the DMFT loop are shown in an inset.
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(a) λ0/ω0 = 0.2

(b) λ0/ω0 = 0.5

(c) λ0/ω0 = 0.5

FIG. 5. (Color online) Local spectral functions of the Hubbard-
Holstein model (β = 10). Insets: Spinon Green’s functions Gf (τ )
produced by the DMFT loop.

(a) λ0/ω0 = 0.2

(b) λ0/ω0 = 0.5

(c) λ0/ω0 = 0.5

FIG. 6. (Color online) Local spectral functions of the Hubbard-
Holstein model (β = 3). Insets: Spinon Green’s functions Gf (τ )
produced by the DMFT loop.
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Hubbard-Holstein
model

Action (12)-(13)

Spinon-rotor model
(14)-(17)

DALA DALA+LF Optimized BFA

Boson-polaron model

Low-energy
effective model

Lang-Firsov
transformation

Projection on 0-boson sector [24]

DMFT

Anderson-Holstein
impurity model

Hubbard–Stratonovich
decoupling

Slave rotor
transformation

DMFT/slave rotor: Approximations 

FIG. 7. Relations between some models and methods described
in the paper.
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APPENDIX A: CORRELATION FUNCTIONS
IN THE ATOMIC LIMIT

A general 2n-point correlation function of slave rotors is
defined as the following average value:

GX(τ1 . . . τn; τ ′
1 . . . τ ′

n) = 〈eiθ(τ1)−iθ(τ ′
1)+···+iθ(τn)−iθ(τ ′

n)〉. (A1)

In the atomic limit, the averaging is performed with the action
Sdyn[θ ] given by Eq. (17). In spite of the fact that Sdyn is
quadratic in the phase variable θ (τ ), there is no standard Wick’s
theorem, since θ (τ ) enters the definition of the correlation
function in an exponential form. Nonetheless, the calculation
of the higher-order correlators is straightforward.

By definition, we have

Gat
X(τ1 . . . τn; τ ′

1 . . . τ ′
n)

=
∫
D[θ ]eiθ(τ1)−iθ(τ ′

1)+···+iθ(τn)−iθ(τ ′
n)−Sdyn[θ]∫

D[θ ]e−Sdyn[θ] . (A2)

The phase field fluctuating in imaginary time is represented
as a sum over all bosonic Matsubara frequencies except ν = 0,

θ (τ ) = 1

β

∑
ν �=0

θνe
−iντ .

The ratio of the integrals in (A2) breaks up into a product
over all nonzero frequencies. Since θ (τ ) is real, its Fourier
components obey the condition θν = θ∗

−ν , and independent
integration variables in the path integrals above must be
amplitudes at positive frequencies only:

Gat
X(τ1 . . . τn; τ ′

1 . . . τ ′
n)

=
∏
ν>0

Iν(τ1 . . . τn; τ ′
1 . . . τ ′

n),

Iν(τ1 . . . τn; τ ′
1 . . . τ ′

n)

≡
∫ +∞
−∞ dθ ′

νdθ ′′
ν e

i
β

[θν (
∑n

k=0 e−iντk −e
−iντ ′

k )+c.c.]− 1
2β

ν2 |θν |2
Ū (iν)∫ +∞

−∞ dθ ′
νdθ ′′

ν e
− 1

2β

ν2 |θν |2
Ū (iν)

. (A3)

The integrals in (A3) are Gaussian and easily doable. The
resulting correlation function reads

Gat
X(τ1 . . . τn; τ ′

1 . . . τ ′
n)

= exp

⎡
⎣− 1

β

∑
ν>0

Ū (iν)

ν2

∣∣∣∣∣
n∑

k=1

(e−iντk − e−iντ ′
k )

∣∣∣∣∣
2
⎤
⎦ . (A4)

The transformation (7) immediately gives us the correlator
of physical electrons through the directly measurable correla-
tor of spinons,

G(τ1 . . . τn; τ ′
1 . . . τ ′

n)

= Gf (τ1 . . . τn; τ ′
1 . . . τ ′

n)Gat
X(τ1 . . . τn; τ ′

1 . . . τ ′
n). (A5)

There is a special case for this equation, which is of
high practical importance. If all values of τ are equal to
those of τ ′ (up to a possible index permutation), GX = 1 by
definition. Therefore, averaged quantities such as 〈N (τ )N (0)〉
or 〈Sz(τ )Sz(0)〉 are identical for physical electrons and spinons.

APPENDIX B: RENORMALIZATION FACTOR
ZB AT FINITE TEMPERATURES

At finite temperature, states with many bosons may effec-
tively participate in screening. Thus, a reasonable procedure
to calculate ZB would be to average the hopping term of ĤLF

over all bosonic states with a Gibbs weight distribution (for
simplicity’s sake, we focus on the model with a single boson
mode of energy ω0):

ZBtij d
†
iσ djσ ≡ tij Tr[c†iσ cjσ ρ̂B],

(B1)

ρ̂B = exp
(−βω0

∑
i b

†
i bi

)
Tr

[
exp

( − βω0
∑

i b
†
i bi

)] .

The calculation of the trace consists of two steps. In the first
step, we calculate the matrix element of c

†
iσ cjσ between states

with definite numbers of bosons ni . The hopping amplitudes tij
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are zero for i = j , so the matrix element factorizes as follows:

〈ninj |c†iσ cjσ |ninj 〉 = 〈ni |D̂(λ/ω0)|ni〉〈nj |D̂(−λ/ω0)|nj 〉, (B2)

where D̂(γ ) = exp(γ b† − γ ∗b) is a bosonic displacement operator. Using the Baker-Campbell-Hausdorff formula and a finite-
sum representation of the Laguerre polynomials Ln, we find

〈n|D̂(−λ/ω0)|n〉 = exp

(
− λ2

2ω2
0

) n∑
k=0

1

k!

(
− λ2

ω2
0

)k (
n

k

)
= exp

(
− λ2

2ω2
0

)
Ln

(
λ2

ω2
0

)
. (B3)

In the second step of the derivation, we do an actual averaging over a thermal state,

ZB = (1 − e−βω0 )2 exp

(
− λ2

ω2
0

) [ ∞∑
n=0

e−βω0nLn

(
λ2

ω2
0

)]2

= exp

[
− λ2

ω2
0

coth(βω0/2)

]
, (B4)

or, in the multiple bosons case,

ln ZB = −
∑

α

λ2
α

ω2
α

coth(βωα/2) = 1

π

∫ +∞

0

ImUret(ε)

ε2
coth(βε/2)dε. (B5)

This is the result announced in Sec. V.
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