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We investigate the effect of disorder on the dynamical spectrum of layered f -electron systems. With random
dilution of f sites in a single Kondo insulating layer, we explore the range and extent to which Kondo hole
incoherence can penetrate into adjacent layers. We consider three cases of neighboring layers: band insulator,
Kondo insulator, and simple metal. The disorder-induced spectral weight transfer, used here for quantification of
the proximity effect, decays algebraically with distance from the boundary layer. Further, we show that the spectral
weight transfer is highly dependent on the frequency range considered as well as the presence of interactions in
the clean adjacent layers. The changes in the low-frequency spectrum are very similar when the adjacent layers
are either metallic or Kondo insulating, and hence are independent of interactions. In stark contrast, a distinct
picture emerges for the spectral weight transfers across large energy scales. The spectral weight transfer over
all energy scales is much higher when the adjacent layers are noninteracting as compared to when they are
strongly interacting Kondo insulators. Thus, over all scales, interactions screen the disorder effects significantly.
We discuss the possibility of a crossover from non-Fermi-liquid to Fermi-liquid behavior upon increasing the
ratio of clean to disordered layers in particle-hole asymmetric systems.
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I. INTRODUCTION

Several surprises have emerged through extensive exper-
imental and theoretical investigations of layered correlated
systems over the last decade. The pioneering study of Ohtomo
et al. led to the discovery of a two-dimensional electron
gas at the interface of Mott insulating LaTiO3 and band
insulating SrTiO3 in atomically resolved heterostructures [1].
A dimensional driven crossover from metal to insulator transi-
tion [2] and an anomalous effective mass enhancement [3] was
observed by Yoshimatsu et al. in digitally controlled SrVO3

thin films. Theoretical predictions in this regard had been
reported and semiquantitatively explained by Okamoto et al.
in Ref. [4]. An early work in this regard may also be found in
Ref. [5]. In general, strongly correlated interfaces exhibit sev-
eral other unexpected properties such as superconductivity [6],
coexistence of ferromagnetism and superconductivity [7], and
electronic phase separation [8]. Such investigations have led to
a renewed focus on a number of intriguing aspects of layered
systems. Some of these issues are due to atomic reconstruction,
enhanced correlation effects due to reduced coordination
number and emergent energy scales owing to the presence
of disparate orbital, charge, and spin degrees of freedom [9].

A significant number of theoretical studies on the proximity
effects of electron-electron interaction in layered systems
have been carried out. Such studies include proximity effects
in Hubbard layers [10–18], Falicov-Kimball layers [19], or
f -electron superlattices [20,21]. Zenia et al. [12] demonstrated
that a Mott insulator transforms to a “fragile” Fermi liquid if
sandwiched between metallic leads. Helmes et al. [17] studied
interfaces of strongly correlated metals with Mott insulators.
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The rate of decay of the quasiparticle weight into the Mott
insulator was quantified and further corroborated in the spirit
of a Ginzburg-Landau mean-field treatment. Ishida and Lieb-
sch [15] investigated the effect of an interplanar Coulomb inter-
action using the cellular dynamical mean-field theory (DMFT)
and observed a nonlocal correlation induced reduction of the
proximity effect. Cluster extensions of DMFT were employed
by Okamoto et al. in Ref. [22] to examine the proximity
effect in superlattices involvng cuprates, predicting a novel
enhancement in the superconducting transition temperature.

Recent experimental investigations of heavy fermion (f -
electron) superlattices indicate a fascinating interplay of heavy
fermion physics, low dimensionality, and interface effects [23].
In the heavy fermion superlattices mCeIn3-nLaIn3, by re-
ducing the thickness of the CeIn3 layers grown on metallic
LaIn3, it was demonstrated that the dimensionality of the
f electrons and the magnetic order could be controlled.
These dimensionally confined heavy fermion systems then
displayed non-Fermi liquid properties that manifested as a
linear temperature dependence in resistivity, ρxx ∼ T , with
a T 2 behavior recovered on increasing the number of CeIn3

layers. This has been followed up with very recent theoretical
investigations of the Kondo effect and dimensional crossover
in f -electron superlattices [20,21,24]. Tada et al. [21] analyzed
the formation of heavy electrons in f -electron multilayers.
They demonstrated the existence of two (in-plane and out of
plane) coherence temperatures in such systems. This implies a
crossover in dimensionality of the heavy fermions from two to
three dimensions as the temperature and the geometry of the
system change. In a study of interfaces of Kondo lattice layers
and normal metals, Peters et al. [20] showed that such a cou-
pling transformed the full gap of the Kondo lattice layers into
a vanishing soft gap. They also demonstrated the strong influ-
ence of the Kondo effect on the density of states of the metallic
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layer. This proximity effect was further shown to be strongly
dependent on the number of noninteracting metallic layers.

Although the proximity effects of strong interactions have
been addressed quite rigorously, the effects of disorder have
not been considered. Incoherent scattering due to impurities
is inevitable in heterogeneous interfaces and therefore the
physical effects stemming from disorder could be significant.
In fact, in heavy fermion compounds, when magnetic sites are
substituted by nonmagnetic impurities a substantial reduction
of the coherence temperature Tcoh occurs [25]. Shimozawa
et al. studied the effects of Kondo hole disorder on epitaxial
thin films of divalent-Yb substituted CeCoIn5 [26]. It has been
shown by Kaul and Vojta [27] that a randomly depleted Kondo
lattice displays nanoscale inhomogeneities exhibiting distinct
non-Fermi liquid characteristics. Recently, it has also been
shown, in Ref. [28], that dynamical scattering from Kondo
holes also yield a non-Fermi liquid behavior for bulk systems.
Hence a theoretical study of Kondo hole substituted f -electron
interfaces is highly relevant.

In this work, we have explored the spectral dynamics of
a single substitutionally disordered Kondo-insulator layer at
the boundary of several clean layers of which three types
have been considered: (i) noninteracting metals, (ii) band
insulators, and (iii) strongly interacting Kondo insulators. We
have investigated the penetration of disorder-induced impurity
scattering into the proximal layers. An interplay of interactions
and Kondo hole disorder lead to significant differences in the
spectral weight transfer at low frequencies versus the overall
spectrum. We argue that, for non-particle-hole symmetric
systems, the systematic addition of clean interacting layers to
the substitutionally disordered interface could lead to a gradual
crossover from non-Fermi liquid to Fermi liquid behavior.
The paper is organized as follows. The model and methods are
described in the next section. The results and discussion follow
in Sec. III. Our conclusions are presented in the final section.

II. MODEL AND METHOD

The Hamiltonian of a heavy fermion layered system may
be constructed through a slight generalization of the standard
periodic Anderson model (PAM) as

H = −
∑
ijασ

t
||
iαjα(c†iασ cjασ +H.c.) +

∑
iασ

Vα (f †
iασ ciασ + H.c.)

+
∑
iασ

(εcαc
†
iασ ciασ + εf αf

†
iασ fiασ )

+
∑

α

Uαnf iα↑nf iα↓−
∑
iασ

t⊥αα+1(c†iασ ciα+1σ +H.c.),

(1)

where t
||
iαjα represents the in-plane hopping between the

conduction band (c-electron) orbitals at sites i and j , in the
plane α; εcα and εf α are the on-site energies of the c and f

electrons, respectively; Vα is the hybridization between the
heavy f and the c electrons in the plane α; Uα is the on-site
Coulomb repulsion between two electrons occupying an f

orbital in the plane α; and t⊥αα+1 represents the interplane
hopping between the delocalized c orbitals. We explicitly
assume here that the f orbitals being local have negligible
overlap between the layers.

For an isolated Kondo insulator, the c- and f -electron
Greens functions are given by

Gc(ω) =
[
ω+ − V 2

ω+ − �f (ω)
− �(ω)

]−1

, (2)

Gf (ω) =
[
ω+ − �f (ω) − V 2

ω+ − �(ω)

]−1

. (3)

In Eq. (2), we define a purely local, effective, conduction
electron self-energy, which is related to the f -electron self-
energy by, �c(ω) = V 2

ω+−�f (ω) , �f (ω) being the conventional
self-energy of the f electrons in a PAM. Correspondingly,
since the c electrons are itinerant, the �(ω) defined for
conduction electrons is the true hybridization (with the host)
while the quantity appearing in the f -Green’s function,
namely, V 2

ω+−�(ω) = �eff(ω) is an effective hybridization for
the otherwise localized f electrons. Now, a Kondo insu-
lator assumes a low-energy Fermi-liquid form of �f (ω) ∼
�R

f (0) − (1/Z − 1)ω, which yields �c

ω→0∼ ZV 2/ω+, where
Z = (1 − ∂�f /∂ω)−1 is the f -electron quasiparticle weight.
The �c(ω) thus incurs a divergence at ω = 0, thus leading to
a gap in the corresponding spectra.

Equation (3) connects to an effective impurity model
inherent to the DMFT single impurity form given by Gf (ω) =
[ω+ − �f (ω) − �eff]−1 with �eff(ω) = V 2

ω+−�(ω) being the
effective hybridization seen by the f electrons and needs to be
determined self-consistently. This self-consistent hybridiza-
tion thus depends on the �(ω), which is thus determined
self-consistently within DMFT. This is therefore termed as
the self-consistently determined hybridization function for the
c electrons.

For a system of coupled heavy fermion layers, the layer
resolved Green’s functions, Gcc

αα for the c orbitals, may be
obtained through an equation of motion method, applied
in real space [19]. For an N -layered system, the entire
matrix of the c-Green’s functions is given by the following
expression:

Ĝcc(ω,k||) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1 − ε(k||) −t⊥ 0 . . .

−t⊥ λ2 − ε(k||) −t⊥ . . .

0 −t⊥ λ3 − ε(k||) . . .

...
...

. . .
...

0 0 . . . λN − ε(k||)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1

, (4)
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with λα = ω+ − εcα − �cα , ω+ = ω + iδ, and k|| denotes the
Bloch vector along the planar direction. Equation (4) assumes
the existence of translational invariance along the in-plane
direction. The term �cα is the c self-energy arising due to the
hybridization with the correlated f orbitals, related to the �f α

as described before. It is to be noted that the term �cα for
each layer shall be related to �f α in the same manner as for
an isolated heavy fermion layer, because we have neglected
the interlayer f -orbital hopping. However, now one needs to
self-consistently derive an effective Anderson impurity model
and hence �f α for each layer utilizing the full matrix structure
of the local c-Green’s functions (4). The above expression is
not restricted to the PAM, and can be used in more general
situations, e.g., if the c orbitals were correlated and thus had
an intrinsic self-energy. Thus the λα are determined by the
Hamiltonian of the αth layer. Note that the band insulator is
constructed using a fictitious noninteracting localized orbital
that plays no role except to hybridize with the conduction
orbital and create a band gap. Thus in our calculations, the

band insulators have a �cα(ω) = V 2
α

ω+ . For the noninteracting
metallic system, there exists no f orbitals and hence V = 0
thus giving �cα(ω) = 0. For the Kondo insulators, �c(ω) =

V 2

ω+−�f (ω) . Therefore λα in Eq. (4) is given by ω+ − V 2
α

ω+ , ω+

and ω+ − V 2
α /(ω+ − εf − �f α) for band insulators, metals,

and Kondo insulators, respectively, with �f α being the local
f self-energy in the αth layer. Within dynamical mean-field
theory, where the local approximation is valid, an impurity
solver is needed to obtain the f self-energy. We have employed
the local moment approach to solve the effective self consistent
impurity problem.

The local c-Green’s functions are given by a k|| summation
of the Ĝcc(ω,k||) matrix. In order to avoid the numerically ex-
pensive step of summation over kx,ky for each frequency ω, we
employ the method used in Ref. [17]. If the inverse c-Green’s
function matrix, (Ĝcc)−1(ω,k||) [in Eq. (4)] is denoted as M̂ ′,
such that M̂ ′ = M̂ − ε(k||)I, I being a unit matrix; a similarity
transformation may be then used to transform the M̂ matrix
into diagonal form, such that, M̂ = Ŝ Diag[�1,�2, . . .] Ŝ−1, Ŝ

being the unitary matrix that diagonalizes M̂:

Ĝcc(ω) = Ŝ

⎛
⎜⎜⎝

H [�1] 0 0 . . .

0 H [�2] 0 . . .

0 0 H [�3] . . .
... . . .

... . . .

⎞
⎟⎟⎠Ŝ−1, (5)

where the Hilbert transform, H [z] = ∫ ∞
−∞ dερ0(ε)(z − ε)−1

over ρ0(ε), the noninteracting planar density of states, repre-
sents the result of the k|| summation and Ŝ is the similarity
transformation matrix diagonalizing M . The N eigenvalues of
M are denoted by �r with r = 1, . . . ,N . The above procedure
is valid as long as the band dispersion is the same for
every layer. Within layer-DMFT, each layer is treated as a
single-impurity embedded within a noninteracting host. Thus
the c-Green’s function for the αth layer may be written as

Gcc
αα(ω) =

N∑
r=1

Sαr H [�r ] (S−1)rα (6)

= 1

λα(ω) − �α(ω)
, (7)

where λα(ω) = ω+ − εcα − �cα and �α(ω) is the host hy-
bridization for the αth PAM layer and N is the total number
of layers. Note that Eqs. (6) and (7) become the definition of
�α(ω). In all the calculations, we set the f -orbital site energy,
in the αth layer, εf α = −Uα/2, where Uα is the interaction
strength present only on the localized f orbitals of the αth
layer and the c-orbital site energy, εcα = 0, such that the
chemical potential, eμ = 0, on all the layers. Thus the Luttinger
sum rule implemented on the local quantities, given by
IL = Im

∫ 0
−∞

dω
π

∂�f α(ω)
∂ω

G
f
α (ω) = 0, is always satisfied locally

on each layer. The temperature T is set to zero.
An alternative way to approach this problem is through a

Feenberg self-energy approach [29]. Consider any site on the
αth layer. The �α(ω) for this site may be written as a sum of self
avoiding walks on the entire lattice with the lines representing
hopping (intralayer given by −t || and interlayer by t⊥), and the
vertices being the site-excluded Green’s functions [29]. The
definition of the hybridization through equations (6) and (7)
is a practical route to summing all these diagrams. The local
approximation of DMFT implies that the full self-energy is
momentum independent, hence the λr will get modified if
interactions are included on the rth layer. However, since that
is a local change, the diagrams for the �α(ω) do not change.
This implies that the definition of the host hybridization in
the presence of interactions remains the same as that for the
noninteracting case within DMFT, albeit computed with a new
set of λr . Including Kondo-hole disorder on the rth layer within
the coherent potential approximation (CPA) does not change
this definition and is hence tantamount to redefining λr in the
following way [28]:

1

λr (ω) − �r (ω)
= 1 − p

γr (ω) − �r (ω)
+ p

γ0r (ω) − �r (ω)
, (8)

where γr (ω) = ω+ − εcr − �cr represents the sites with f

electrons and γ0r (ω) = ω+ − εcr represents the Kondo hole
sites. Thus, for a given set of �cr (ω), the λr (ω) and �r (ω)
need to be determined self consistently by combining Eqs. (6)
and (7) with Eq. (8). A practical computational procedure is
the following. Step 1: guess a set of �r (ω) and use them to
find λr from equation (8). Step 2: use these λr in Eqs. (6)
and (7) to find a new set of �r (ω). Go back to step 1 until
convergence is achieved. The obtained λr (ω) may be used to
define a disorder-averaged self-energy for the rth layer as

�CPA
cr (ω) = ω+ − εcr − λr . (9)

The self-consistent interacting impurity problem is solved
here using the local moment approach (LMA). The LMA is
a diagrammatic perturbation based approach, built around the
two broken-symmetry, local moment solutions (μ = ±|μ0|)
of an unrestricted Hartree-Fock mean-field approximation.
Spin-flip dynamics are subsequently built in through an
infinite-order resummation of a specific class of diagrams that
embody transverse spin-flip processes. A key ingredient of
LMA is the symmetry restoration condition which is equivalent
to imposing adiabatic continuity to the noninteracting limit,
and is hence crucial to recovery of Fermi liquid behavior and
the emergence of a low-energy scale. Any violation of this
condition signals a quantum phase transition to another phase
such as a local moment phase. By construction, the scope of
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LMA is limited to investigations of Kondo physics, and a gen-
eralization of the method to ordered phases or cluster problems
is not straightforward. Moreover, the practical implementation
of the resummation is through a random phase approximation,
which introduces certain undesirable features in the transverse
spin polarization propagator (see Ref. [30]). Nevertheless,
the LMA has been found to benchmark excellently against
numerical renormalization group (NRG) [31], and Bethe
ansatz for the SIAM and the Kondo problem, respectively [30].
It has henceforth been employed in studies on Kondo insulators
and heavy fermion systems [32–35]. It has also been used in
studying specific cases of impurity systems with many orbitals,
the pseudogap Anderson model and the gapped Anderson
impurity model [36]. The study on the soft gap Anderson
model has also been compared to NRG in Ref. [37]. The
extension to finite disorder may be found in Ref. [28]. We
combine LMA, CPA, and the inhomogeneous DMFT [19] to
explore the effect of disorder and interactions in layered-PAM
systems.

At this point it is worth mentioning that although the DMFT
systematically incorporates the dynamical effects of strong
correlation by its construction, it ignores the feedback of the
spatially nonlocal intersite correlations into single particle
quantities in either the charge channel (nearest-neighbor)
or the spin channel (exchange). Particularly, here, in the
context of heavy fermion systems the investigation of the
competition between the Kondo effect and the Rudderman-
Kittel-Kasuya-Yosida (RKKY) interaction is therefore beyond
the scope of DMFT. The Coherent Potential Approximation
(CPA) is also a single site approximation. In the present
context, the CPA equations lead to a self-consistently ob-
tained disorder averaged f -electron self-energy, �CPA

f (ω)
that is equal for all sites. Hence the CPA too cannot
describe physical scenarios stemming from beyond mean-
field disorder effects. For example, effects like Anderson
localization or non-Fermi liquid physics that occur due to a
distribution of Kondo scales cannot be explored within this
approach. Our investigation is therefore a minimal model
that may look at the some effects of disorder in layered
systems.

III. RESULTS

We have explored the proximity effects of a Kondo
hole-disordered heavy fermion layer in thin films, by study-
ing geometries where the substitutionally disordered Kondo
insulator is in proximity to several clean interacting or
noninteracting layers. Before we delve into results obtained
using the numerical implementation of the local moment
approach within inhomogeneous DMFT, we present a few
general results that are exact within this framework of layered
systems.

A. Analytical results for a few special cases

Using the equations detailed in Sec. II, it is easy to obtain
closed-form expressions for the Green’s functions in certain
simple cases. We present and discuss a few results for a
noninteracting layered system, a bilayer and a trilayer system.

1. Non-interacting case

For N -identical layers the matrix on the right-hand side of
Eq. (4) has the structure of a symmetric tridiagonal Toeplitz
matrix [38]. The complete eigenspectrum and corresponding
eigenvectors for such a matrix are known in closed form [38],
and hence may be used in combination with Eq. (4) to find
the exact Green’s functions for the nth layer of a system of
N identical noninteracting metallic layers (see also Ref. [39]).
The density of states at a fixed ω as a function of layer-index
becomes

An(ω) = 2

N + 1

N∑
m=1

sin2

(
mnπ

N + 1

)
ρ0

(
ω+2t⊥ cos

mπ

N + 1

)
.

(10)

With the replacement of ω by ω − V 2/ω in the above
equation, the result describes N identical noninteracting
band-insulators also.

An(ω), shown in Fig. 1, exhibits oscillatory behavior for all
ω values except ω = 0 where a monotonic decay is observed.
These well-known surface Friedel oscillations arise because
the Fermi surface of the infinite metallic system has been
perturbed by the presence of terminal surfaces [19,10].

2. Bilayer systems: general considerations

For a bilayer system, the Green’s functions are given by

G11(ω) = a H [�+] + b H [�−], (11)

G22(ω) = a′ H [�+] + b′ H [�−], (12)

where

�± = 1

2
(λ1 + λ2 ±

√
(λ1 − λ2)2 + 4t2

⊥),

λr = ω+ − εc − �cr (ω), r = 1,2, (13)

0
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-0.05

0

A
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r(ω

) −
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lk

(ω
)

1 10 100

layer index

-0.05

0

ω=0

ω=0.3

ω=0.9

ω=1.8

FIG. 1. (Color online) The change in layer density of states
(compared to the bulk) as a function of layer index, for various
frequencies. The result was obtained using Eq. (10) for a system
of 500 layers. The bare density of states for each layer ρ0(ε) is chosen

to be of semielliptic form, ρ0(ε) = (
√

1 − ε2/t2
||)/(2πt||).
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a = �+ − λ2

�+ − �−
and b = λ2 − �−

�+ − �−
, (14)

a′ = − λ1 − �+
�+ − �−

and b′ = λ1 − �−
�+ − �−

, (15)

and H [z] represents the Hilbert transform with respect to the
noninteracting layer density of states. These equations may
now be analyzed for a few specific cases.

3. A clean Kondo insulator-metal bilayer system

As a first application of Eqs. (11) and (12), we consider
a Kondo-insulator-metal interface. The paramagnetic Kondo
insulator is just a renormalized band insulator, hence in the
particle-hole symmetric limit, εc = 0 and �c(ω) = V 2/(ω+ −
εf − �f ). In the low-frequency limit, the Fermi-liquid form

of the f self-energy may be used to get �c

ω→0∼ ZV 2/ω+,
where Z = (1 − ∂�f /∂ω)−1 is the f -electron quasiparticle
weight. Thus λ1 = ω+ − ZV 2/ω+ for the Kondo insulator
and λ2 = ω+ for the noninteracting metal. Given these, the
c-spectral functions Al(ω) = −ImGc

ii(ω)/π for the Kondo
insulator (i = 1, l = KI ) and metal (i = 2, l = M) layers
in the low-frequency limit are given by

AKI(ω)
ω→0∼

(
ωt⊥
ZV 2

)2

ρ0

[
ω

(
1 + t2

⊥
ZV 2

)]

+
[

1 −
(

ωt⊥
ZV 2

)2]
ρ0

[
ω

(
1 − t2

⊥
ZV 2

)
− ZV 2

ω

]
,

(16)

AM (ω)
ω→0∼

[
1 −

(
ωt⊥
ZV 2

)2]
ρ0

[
ω

(
1 + t2

⊥
ZV 2

)]

+
(

ωt⊥
ZV 2

)2

ρ0

[
ω

(
1 − t2

⊥
ZV 2

)
− ZV 2

ω

]
. (17)

From the above expressions, we see that the presence of
interlayer coupling (t⊥ > 0) leads to a linear mixing of the
Kondo-insulator and metallic layer spectra in all layers. In
AKI(ω), the first term contributes a quadratically vanishing
spectral weight into the hybridization gap, while the second-
term leads to the usual gapped spectrum of the Kondo insulator.
In AM (ω), the first term implies that the spectrum of the
noninteracting metal is strongly renormalized by the proximity
to the Kondo insulator, and a Kondo resonance like feature
must emerge in the vicinity of the Fermi level. The second
term is gapped at the Fermi level, but should lead to a step like
feature at ω ∼ ZV 2. Thus the metallic states tunnel into the gap
of the Kondo insulator giving rise to a quadratically vanishing
gap, while the strongly correlated Kondo insulator tunnel into
the noninteracting metal leading to strong renormalization
of the noninteracting spectrum. In the Kondo insulator, the
f -electron spectrum is related to the c-electron spectrum
through A

f

KI(ω) = (Z2V 2/ω2)AKI(ω) in the limit ω → 0. Due
to the tunneling of the metallic states into the Kondo insulator,
the f spectrum thus becomes gapless. These proximity effects
are quite general and only assume a linear expansion in
frequency of the real part of the f self-energy. Similar
results have been observed numerically in a recent study on

a single Kondo insulator embedded in a three-dimensional
noninteracting metallic host [20] and in a theoretical analysis
of the surface density of states of heavy fermion materials [24].
This physical scenario of “Kondo proximity effect” was used
to qualitatively explain the experimental surface spectra of
CeCoIn5 reported by Aynajian et al. [40].

4. A clean Kondo insulator-band insulator bilayer system

Next, we consider a Kondo-insulator-band-insulator inter-
face. For the band insulator, λ2 = ω+ − V 2/ω+. Thus the
spectral functions are again given by a linear mixing of
the Kondo and the band insulator spectra. A low-frequency
analysis similar to the one carried out above for the Kondo
insulator-metal system leads to the following. The gap in the
Kondo insulator is well known to be substantially reduced
compared to the band insulator due to the exponentially small
quasiparticle weight factor Z arising in the strong-coupling
limit. Thus, from our analysis, we see that the Kondo insulator
spectrum close to the Fermi level remains almost unchanged.
However, in the frequency region where the band insulator
had a gap, but the Kondo insulator had states, a quadratically
vanishing spectral weight tunnels in from the Kondo insulator
layer into the band insulator.

5. A dirty Kondo insulator-metal bilayer system

In this section, we consider, in detail, a substitutionally
disordered-Kondo-insulator interfaced with a noninteracting
metal. The random substitution of f sites in the Kondo
insulator-layer leads to Kondo hole disorder, which is known to
lead to an impurity band at the Fermi level [41,42]. Specifically,
λ1 becomes complex because of the static contribution to the
self-energy from scattering by impurities [28]. Thus λ1 =
ω+/Z + i�0, where Z is the local f -electron quasiparticle
weight and �0 = −Im�CPA

c (0) is the scattering rate at the
Fermi level. In a previous paper [28], we showed that �CPA

c

may be related to �c through a cubic equation if ρ0(ε) has a
semielliptic form that corresponds to an infinite-dimensional
Bethe lattice. This equation, if used for a single isolated Kondo
insulator, yields that

�CPA
c (0) = −it||

1 − p

2
√

p
. (18)

Thus, at the Fermi level, the conduction electrons acquire
a self-energy that is nonanalytic in the concentration of
Kondo holes, p. It was also shown in Ref. [42] that the
f electron self-energy acquires a 1/

√
p dependence when

p → 0. However, in the presence of interlayer coupling, �0

becomes a complicated function of t⊥ and t|| and we have not
been able to find a simple closed form expression like Eq. (18)
for the bilayer case. Nevertheless, numerical calculations lead
us to the conclusion that �0 does retain the same form as the
isolated layer case.

Our natural focus is on the strong coupling regime of
the Kondo insulator, where the quasiparticle weight becomes
exponentially small, i.e., Z → 0. In such a situation, and with
λ1 = ω+/Z + i�0 and λ2 = ω+, the values of �± in Eq. (13)
may be simplified to

�±
Z→0−→ 1

2

(
λ1 ±

√
λ2

1 + 4t2
⊥
)
. (19)
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The coefficients of the Hilbert transforms in Eqs. (11) and (12)
are given by

a → �+√
λ2

1 + 4t2
⊥

b → −�−√
λ2

1 + 4t2
⊥

,

a′ = b and b′ = a . (20)

These equations are quite easy to analyze at the Fermi level
(ω = 0). In fact, the results from this analysis do not assume
strong coupling, because if we substitute ω = 0 in the above
expressions, the quasiparticle weight does not appear in them.
Hence the following results are valid for any coupling strength.
At the Fermi level, the eigenvalues are given by

�± = i

2

(
�0 ±

√
�2

0 − 4t2
⊥
)
. (21)

�0 is a monotonically decreasing function of the Kondo hole
concentration [see equation (18)] and hence in the dilute
limit (p → 0), the eigenvalues will be purely imaginary;
with increasing p, �± become degenerate at �0 = 2t⊥, which
translates to a specific concentration, pd . In general, pd is a
complicated function of �0. However, we have numerically
verified that when the ratio t⊥/t|| 
 1, Eq. (18) can be used
as an estimate of pd for multi-layer systems. For such a
regime pd = (

√
1 + (2t⊥/t||)2 − 2t⊥/t||)2. For p > pd , the

two eigenvalues have the same imaginary part but differ in
the real part. It turns out that the density of states at the Fermi
level can be easily obtained in two limits: the dilute limit
(p → 0) and the degenerate limit (�0 = 2t⊥ or p = pd ). We
proceed to obtain these.

In the dilute limit, �0 � t||,t⊥, so �+ → i(�0 − t2
⊥/�0)

and �− → it2
⊥/�0. For purely imaginary arguments (z = iη),

the Hilbert transform with respect to a semi-elliptic density of
states may be written in closed form as

H(iη) =
∫

ρ0(ε)

iη − ε
= −2 i

t||
[
√

1 + η̄2 − η̄], (22)

where η̄ = η/t||. So the Hilbert transform is also purely
imaginary, which can be expected in the particle-hole sym-
metric limit. Using the above Hilbert transform result and the
simplification of the eigenvalues in the dilute limit, the density
of states of the Kondo insulating layer and the noninteracting
metallic layer are given by [to O(1/�2

0)]

AKI(ω = 0)
p→0−→ 1

π�0

(
1 − 2t2

⊥
�0t||

)
, (23)

AM (ω = 0)
p→0−→ 2

πt||

(
1 − t2

⊥
�0t||

+ t2
⊥

�2
0

)
. (24)

Note that in all the equations above and below, AKI(ω) denotes
the c-electron spectral function of the Kondo insulator. The
above equations reveal the proximity effect of disorder on the
two layers. In the absence of interlayer tunneling, the impurity
band in the Kondo insulator grows as

√
p with increasing

Kondo hole substitution (since �0 ∼ 1/
√

p in the dilute limit);
and the metallic layer has a fixed density of states (= 2/(πt||))
at ω = 0. When t⊥ is turned on, the impurities introduced in
the Kondo insulating layer affect the density of states of the
noninteracting clean metallic layer, and the relative change in

the density of states with respect to the isolated layers (t⊥ = 0)
case is ∼√

p for both layers.
In the degenerate limit, �0 = 2t⊥, the eigenvalues are

degenerate, and Eqs. (11) and (12) cannot be used. We revert
back to the basic equation (5) and after a bit of algebra, obtain
the density of states of the two layers as

AKI(ω = 0)
p=pd−→ 2

πt||

(
tr − √

1 + t2
r

)2

√
1 + t2

r

, (25)

AM (ω = 0)
p=pd−→ 2

πt||

1√
1 + t2

r

, (26)

where tr = t⊥/t|| is the ratio of the interlayer to intralayer
hopping. We have seen that the metallic layer acquires a Kondo
resonance at the Fermi level due to the proximity to the Kondo
insulator. Since in the concentrated limit (p → 1), the entire
system simply becomes a noninteracting metallic bilayer, the
density of states must approach the value of ρ0(t⊥). It can also
be shown that, the AM (ω = 0) > ρ0(t⊥). This implies that both
the metallic layer and the Kondo insulating layer experience
a monotonic change in the density of states with increasing
Kondo hole concentration; the Kondo insulating layer steadily
transforming into a single-impurity system.

6. Symmetric trilayer systems

Another class of systems, for which closed form expres-
sions may be readily obtained is a set of three layers in which
the outer two layers are identical in all respects while the
middle layer is different. The c-Green’s function for such a
system (denoted by 1-2-3) is given by

G11(ω) = G33(ω) = 1
2H [λ1] − t2

⊥(a H [�+] + b H [�−]),
(27)

G22(ω) = a′ H [�+] + b′ H [�−], (28)

where

�± = 1

2
(λ1 + λ2 ±

√
(λ1 − λ2)2 + 8t2

⊥),

λr = ω+ − εc − �cr (ω),

a = 1

(λ1 − �+)(�+ − �−)
and

b = −1

(λ1 − �−)(�+ − �−)
,

a′ = − λ1 − �+
�+ − �−

and b′ = λ1 − �−
�+ − �−

.

For the trilayer system, if the layers are uncoupled (t⊥ = 0)
then the Green’s functions should be simply given by Gii(ω) =
H [λi]. In order to approach the uncoupled layers limit, in
the equations above, the limit of t⊥ → 0 must be taken with
care. We have investigated the symmetric trilayer system in
several situations, that are similar to the ones discussed for
the bilayer system. One of these is a Kondo insulator, which
could be clean or substitutionally Kondo hole disordered,
sandwiched between two metallic or band-insulating layers.
The conclusions reached in such cases were found to be
qualitatively very similar to those in the bilayer systems,
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hence we now proceed to larger systems and investigate the
penetration of disorder into several clean, noninteracting or
interacting layers. In the next section, we discuss full numerical
solutions using the formalism described in Sec. II.

B. Numerical results

It is evident that the spectral changes in the c- and f -
electron Green’s functions are a combined effect of the three
physical parameters in the problem, namely: (i) interlayer hop-
ping t⊥, (ii) interaction U , and (iii) Kondo hole concentration
(p). In order to disentangle the sole effect of disorder from
the results, we first discuss briefly the noninteracting and
clean layered systems. Then, we add interactions and note
the combined effect of inter layer coupling and interactions.
Finally, we add disorder and by comparing the obtained spectra
to those of the nondisordered case, we isolate the proximity
effects of disorder, which represents the main objective of this
paper. We study three different cases, with a single substitu-
tionally disordered Kondo insulator layer next to (a) several
band insulator, (b) several uncorrelated metal, and (c) several
clean Kondo insulator layers. These three cases will be referred
to as disordered Kondo insulator-band insulator, disordered
Kondo insulator-metal and disordered Kondo insulator-Kondo
insulator, respectively. A schematic of the geometries is shown
in Fig. 2. The number of clean layers has been varied from
1 to 11. The clean metals are just U = 0 layers with a
simple tight-binding Hamiltonian. In the disordered Kondo
insulator-Kondo insulator case, all the Kondo-insulating layers
including the disordered layer have the same U and V .
All of the numerical results have been obtained by using a
semi-elliptic bare density of states for each layer, namely,

ρ0(ε) = (
√

1 − ε2/t2
||)/(2πt||), with t|| = 1 as the unit of

energy. We begin this section by considering the effects of t⊥
only, in a clean, noninteracting, f -conduction-electron system,

FIG. 2. (Color online) Schematic of the geometry considered in
this work. While the boundary layer is chosen to be a dirty Kondo
insulator, the proximal layers are clean. Three distinct possibilities for
these clean layers have been investigated, namely: band-insulators,
metals, or Kondo insulators.

interfaced with several noninteracting metals or several other
noninteracting f -conduction-electron systems.

1. Effects of interlayer hopping: t⊥ �= 0, U = 0, p = 0

In Fig. 3, the layer-resolved c-spectra for a single band
insulator coupled to 11 metallic layers is shown. Since the
entire system is particle-hole symmetric, we choose to display
only the ω > 0 spectrum on a logarithmic energy scale. The
spectrum for an isolated band insulator layer is shown as a
dashed line in both panels. From the top panel of Fig. 3, we
observe that the presence of t⊥ between a metallic layer next
to a band insulator leads to the tunneling of metallic states into
the otherwise large hybridization gap of the band insulator.
We had predicted earlier, in Sec. III A 4, that the presence
of t⊥ leads to a quadratic rounding off of the band insulator
band edge, which is evident when compared with the hard
band edge of the isolated layer’s hybridization gap (dashed
line). The multiple Friedel oscillations due to a nonzero t⊥
are also visible in Fig. 3. Although the predictions were exact
for a bilayer system, the layer resolved spectra follow the
same qualitative changes in this multi-layered system. These
oscillations naturally attenuate sharply in the layers that lie
far from the boundaries. However, for all the finite-layer
systems that we have studied, these oscillations are present.
Nevertheless, as Freericks et al. discussed in Ref. [19], and also
found by us, the amplitude of these oscillations in the surface
layers become frozen-in once the system becomes large

10-2 10-1 100 101

ω
0

0.2

0.4

0.6

Layer (L)1
L2
L3
L4
L5
L6
isolated BI

0

0.2

0.4

0.6

BI-BI

BI-M

A
c(ω

)
A

c(ω
)

FIG. 3. (Color online) Spectral density of the c electrons in the
presence of nonzero interlayer coupling for a single band insulator
layer (L1) at one end of an 11-layer (L2-L12) metallic system (top)
and a single band insulator at one end of an 11-layer band insulating
system (bottom) plotted on a logarithmic energy scale. The model
parameters are t⊥ = 0.5, U = 0, V = 0.44. Note that only ω > 0 part
of the spectrum is displayed, which is sufficient because of particle
hole symmetry in the present problem. The spectrum of an isolated
band insulator layer is shown as a dashed line to contrast the changes
brought about because of the additional layers.
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(�10 layers in practice). Next, we explore the combined effect
of interlayer coupling and interactions.

2. Combined effect of interlayer hopping and interactions:
t⊥ �= 0, U �= 0, p = 0

In Fig. 4, we show the layer-resolved c spectra for a single
Kondo insulator and 11 metallic layer system (top panel) and
a single Kondo insulator and 11-band insulator layer system
(bottom panel). In this bottom panel, due to the presence of
finite density of states in the proximal Kondo insulator, we
see that the c spectra of the second neighboring band insulator
layer acquires a quadratic rounding off around the band edge.
The farther band insulator layers are however inert to these
effects.

The top panel of Fig. 4 shows that, for a metallic layer
adjacent to a Kondo insulator, the proximity effect results in
a Kondo-like resonance at the Fermi level of the otherwise
noninteracting metal. This is consistent with the numerical
renormalization group results of Peters et al. on Kondo
superlattices and the emergent Kondo proximity effect as
discussed in Ref. [20]. An insight into this can already be
realized by looking at the analytical predictions of Sec. III A 3.

10-3 10-2 10-1 100 101 102
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0.4
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0.8
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isolated KI

0

0.2

0.4

0.6

1 2
0

0.1

0.2

1 2
0

0.1

0.2

KI-BI

KI-M

A
c(ω

)
A

c(ω
)

U=2.6

U=2.6

FIG. 4. (Color online) Layer-resolved spectral function for the
c electrons due to nonzero interlayer hopping and interactions. A
single Kondo insulator layer (L1) is coupled to an 11-layer metallic
system (top) and an 11-layer band insulating system (bottom). The
spectra for the nearest (L2) and second nearest (L3) metallic (top),
and the band insulator (bottom) are shown. For both panels interlayer
hopping, t⊥ = 0.5 and c-f hybridization is set to V = 0.44 for both
the Kondo insulators and the band insulators, Coulomb repulsion in
the Kondo insulating layer U = 1.7 in the main panels and U = 2.6
in both insets. For comparison, the c-DOS of an isolated Kondo
insulator and an isolated band insulator is also shown as (black)
dashed (top and bottom) and (blue) dashed-dotted lines (bottom),
respectively. The insets show the Hubbard bands that emerge as a
result of their proximity to the coupled Kondo insulator. This effect
is visibly detectable only until the second nearest-neighbor layer.

Thus the low-energy analysis of Sec. III A although derived for
bilayer (Kondo insulator-band insulator and Kondo insulator-
metal) systems, remain robust even when the number of
band insulator or metal layers is increased. Proximity to a
strongly interacting Kondo insulator induces changes not only
at low energies such as the Kondo scale, but also at high
energies such as Hubbard bands. The adjacent noninteracting
band-insulating or metallic layers also acquire minute Hubbard
bands indicating the tunneling of electron correlations into the
noninteracting layers. Similar effects occur even in bulk heavy
fermions, modeled by the periodic Anderson model, where
although the U is present only for f electrons, the mixing
between c and f electrons through the hybridization produces
Hubbard bands in the spectrum of the conduction band
electrons. Whether the single Kondo insulator is coupled to
band-insulating or metallic layers, these high energy proximity
effects are the same, which is evident from the insets of Fig. 4.
Now we proceed to explore the spectral modifications induced
in the layer resolved spectra when we introduce Kondo holes
in the boundary Kondo insulator layer.

3. Effects of Kondo hole disorder in the boundary layer

The effects of Kondo-hole disorder in the bulk PAM have
been extensively investigated [25,28,41,42]. It is well known
that there is a crossover from coherent lattice behavior to
incoherent single-impurity behavior as the disorder p changes
from zero to one [25,28]. Such a crossover is reflected in
all physical quantities, including resistivity, thermopower and
density of states. For layered systems, the range and extent
of disorder effects may be quantified through a measurement
of integrated spectral weight difference in a given frequency
interval |ω| � λ. We define χν(p,p0; α; λ), as the spectral
weight difference of the αth layer, computed through

χν(p; p0; α; λ)

=
∫ λ

−λ

dω |A(p; {Uβ}; α; ω) − A(p0; {Uβ}; α; ω)| (29)

for a set of fixed interaction strengths {Uα}. Here, ν = c/f

and A(p; {Uβ}; α; ω) = −ImGα(p; {Uβ}; ω)/π is the spectral
function of the αth layer’s when the Kondo hole concentration
is p. Physically, this quantity represents the extent to which
the layer density of states changes when disorder goes from
p0 to p or vice versa when all other parameters are fixed.
We have employed nc = 1 and nf = 1 for an isolated Kondo
insulator layer. We have observed that for an isolated layer,
the spectral weight difference between the disordered and the
clean case integrated over all frequencies [with the cutoff λ →
∞ in Eq. (29)] rises rapidly as a function of increasing p and
roughly saturates at the “maximally random” concentration
of p ∼ 0.5 The spectral weight difference at p ∼ 0.5 is large
when compared with either clean case (p = 0) or the p → 1−
single-impurity case. Hence we choose a fixed disorder p =
0.5 on the boundary layer in all of our subsequent discussion,
unless otherwise mentioned. The rest of the layers are chosen
to be clean.

With the experimental realizations of CeIn3/LaIn3 super-
lattices [23] and thin films of nonmagnetic Yb substituted into
CeCoIn5 [26], the possibility of having an interface between
a Kondo hole disordered layer and a clean layer cannot be
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FIG. 5. (Color online) The c-electron spectra of the respective layers as denoted in the panels for a single disordered Kondo insulator
interfaced with an 11-layer metallic (M) (left) or band insulating (BI) (right) system for a clean (p = 0) (solid black) and a disordered (p = 0.5)
Kondo insulating (KI) layer (solid red). For the disordered Kondo insulator, this represents the CPA average of −�GCPA/π . The model
parameters are t⊥ = 0.5, V = 0.44, U = 1.7.

ignored. We focus on the following questions: how does the
random dilution of f electrons in a single Kondo insulator
boundary layer (see schematic Fig. 2) affect the dynamics of
the electrons in the adjoining clean layers? How far do the
disorder effects penetrate? And does this range get enhanced
or suppressed by the presence of interactions?

In order to answer these questions, we therefore investigate
the interface of a single disordered Kondo insulator and
several clean layers that could be noninteracting metals or
band-insulators or strongly interacting Kondo insulators. We
start our discussion with a system of 12 layers where the
boundary layer is a disordered Kondo insulator and the rest
of the layers are noninteracting metals. We refer to this as a
disordered Kondo insulator-metal system. The proximity of
a clean Kondo insulator to a metal leads to (i) a quadratic
band bending at the Kondo hybridization band edge of
the Kondo insulator layer and (ii) appearance of a Kondo
resonance and a strongly renormalized low energy spectra
induced by the “Kondo proximity effect.” This has already
been discussed earlier for a bilayer Kondo insulator-metal
interface. In the presence of disorder, it is well known that
Kondo holes introduce an impurity band in the center of the
Kondo hybridization gap [41]. This impurity band then fills
up the gap with increasing disorder concentration, leading to
a continuum of metallic states spanning the entire gap. This
observation holds here too as seen in the panel (i) of Fig. 5.
This phenomenon due to Kondo holes manifests itself in both
the CPA averaged c-electron spectra and the local (impurity)
f -electron spectra of the disordered Kondo insulator (not
shown here). Additionally, the Hubbard bands get depleted
due to the presence of Kondo holes. The important aspect
however, is that these disorder effects do not just remain
confined to the disordered layer but also penetrate into the
neighboring clean layers depicted in the lower panels of Fig. 5.
Disorder in fact destroys the proximity effects of interactions.
The Kondo resonance in the adjoining metallic layer at zero

disorder appreciably reduces in intensity when the Kondo hole
concentration, p is 0.5 and tends to disappear as p increases.
This is more clearly visible from Fig. 6. The low-energy
spectra of the farther neighbors also acquire visible low-
energy spectral changes that evolve with change in disorder
concentration, tending to crossover to the noninteracting limit
of a clean metal/metal interface, as seen from Fig. 6. The
tiny Hubbard bands in the noninteracting layers also disappear
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FIG. 6. (Color online) Spectral evolution at low energies for the
disordered Kondo insulator (i) and the proximal clean metals [(ii)–
(iv)]. A system of a single disordered Kondo insulator and 11 clean
metallic layers is used. The respective layer-resolved metallic spectra
corresponding to a 12 layer metal-metal (M-M) system is also shown
for comparison. The model parameters are the same as used in Fig. 5
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with increasing disorder. This can be expected qualitatively
because introducing Kondo holes implies that sites with f

orbitals in the boundary layer are randomly being replaced by
noninteracting sites, hence the effects of interactions should
get mitigated not only in the layer but also in the adjoining
layers.

The penetration of Kondo holes into proximal band insu-
lating layers is however different (than the proximity to metals
discussed above). The exponentially larger noninteracting
hybridization gap of the proximal band insulators prohibit
electrons from tunneling into the insulating gap. Thus disorder-
induced spectral changes in proximal band insulators remain
confined to the band edges and the high energy Hubbard bands.
To this end, we refer back to our discussion on the Kondo
insulator/band insulator bilayer interface in Sec. III A 4. There
we realized that, around the band edges of the proximal band
insulator, where the Kondo insulator has available states, a
quadratic band bending would occur owing to the interlayer
coupling. If the clean layers are also interacting Kondo-
insulators, the proximity effects of disorder span over all
frequency scales, from the universal, hybridization gap scale
to the nonuniversal, Hubbard bands. This shall be discussed
now.

The boundary layer metallic states introduced by Kondo
hole disorder now tunnel into the adjoining Kondo insulator,
causing the quadratic bending of the gap in the adjacent
layer (see Fig. 7). This tunneling effect does propagate into
the further layers, but is attenuated by the ω2 factor and is
hence too small to be observed. The mechanism of penetration
of the Kondo hole disorder-induced metallic states from
the disordered Kondo insulator to the coupled clean Kondo
insulator is thus physically very similar to that of a clean
metal interfaced with a clean Kondo insulator [see Eqs. (16)
and (17)].

In the disordered Kondo insulator layer, spectral weight
transfer occurs across all scales. It is well known that Kondo
hole substitution results in a coherent lattice to an incoherent

single-impurity crossover. This manifests in the transfer
of weight from high-energy Hubbard bands to the Kondo
resonance. Concomitantly, the hybridization experienced by
the interacting sites in the boundary layer crosses over to a
featureless noninteracting lineshape. The adjacent layers get
strongly affected by these changes and the spectral weight
transfer occurs across all energy scales in the nearest-neighbor
Kondo insulator as well. The Hubbard bands in the second
layer too acquire an explicit Kondo hole induced depletion.
Although there exists no explicit interlayer f -c hybridization
the f electrons in the clean layers get strongly influenced by the
presence of Kondo holes in its adjacent layer. This is because
the f -e−s of the proximal clean layers see a self-consistently
determined layer dependent host hybridization function, S(ω),
as can be seen from Eq. (7). We now quantify the spectral
weight transfers focusing on the role of interactions in the
proximity effects of disorder.

As explained earlier, the spectral weight difference between
the spectra, with and without disorder, integrated in a given
frequency interval, represents one measure of the proximity
effect of disorder. We have chosen two frequency intervals:
(i) a “low-frequency” interval defined by |ω| � �BI, where

�BI = 1
2 (−t|| +

√
t2
|| + 4V 2), represents the hybridization gap

edge of an isolated band insulator and (ii) the entire frequency
range. This classification into low frequencies and all fre-
quencies is done to emphasize that the low-frequency spectral
changes could be tiny [∼ωLρ0(0), which is exponentially small
in strong coupling] but affect low-temperature properties,
especially transport, in a major way. The spectral changes
over all frequencies will show up in photoemission and optical
properties measurements, and hence are important from a
different perspective. Since the Kondo holes are introduced
only in the boundary layer, the spectral weight transfers would
be maximal there. Moving away from the disordered Kondo
insulator layer, the changes in the spectra due to the boundary
layer disorder must decrease. Indeed, this expectation is borne
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FIG. 7. (Color online) (Left) The layer resolved c-electron spectra of a single disordered Kondo insulator coupled to 11 clean Kondo
insulating (KI) layers. The respective layers are denoted in the panels. (Right) The same for the CPA averaged f electrons of the disordered
Kondo insulator and the interacting f electrons of the clean Kondo insulators. The parameters used are t⊥ = 0.5, V = 0.44, U = 1.7
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FIG. 8. (Color online) The integrated spectral weight difference
[between the disordered and the clean systems, see Eq. (29)] as a
function of the layer index for a system of a single doped Kondo
insulator interfaced with (a) 11 clean band insulators (black); (b) 11
clean Kondo insulators (red) and (c) 11 metallic layers (green). The
main panel is the spectral weight difference with a cutoff, λ → ∞. In

the inset, �BI = 1
2 (−t|| +

√
t2
|| + 4V 2), representing the hybridization

gap edge of an isolated band insulator, has been used as the cutoff
(λ) in energy space to get the spectral weight difference at “low”
energies (|ω| < �BI). The dot-dashed lines are algebraic decay fits,
with black for (a) and (c), and red for (b). U = 1.7 in the Kondo
insulating layers, V = 0.44 in both the band insulating and Kondo
insulating layers, the interlayer hopping is set to t⊥ = 0.5.

out, as seen in Fig. 8. The spectral weight difference defined in
Eq. (29) decreases sharply with distance from the disordered
Kondo insulator layer for all the three cases considered
(interfacing the disordered Kondo insulator with either 11
metals, or 11 band/Kondo insulators) thus far. These spectral
weight changes quantify the proximity effects of disorder, in
the absence or presence of interactions. The fits of the spectral
weight difference (dot-dashed lines in figure. 8) show that the
proximity effects decay algebraically with increasing distance
from the boundary layer. Such a decay profile indicates that
changes made in the boundary layer can penetrate quite deep
into the system.

Apart from the overall decay profile, there are subtle
aspects of the spectral weight difference that we highlight
now. The main panel in Fig. 8 shows the spectral weight
difference computed over all frequency scales (λ → ∞). The
spectral changes in the noninteracting as well as interacting
layers look similar up to the third layer, beyond which the
Kondo insulating layers are far less affected than the non-
interacting metallic or band-insulating layers. However, the
low-frequency spectral weight difference (λ = �BI), shown
in the inset, presents an entirely different picture. The band
insulators are seen to be least affected, since the spectral weight
difference drops rapidly by over a decade even for the layer
adjacent to the disordered Kondo insulator boundary layer. In
contrast, the metallic and Kondo-insulating layers experience

similar levels of spectral changes due to the disorder in the
boundary layer. Thus, when viewed over all scales, interactions
indeed screen the proximity effects of disorder. However, in
the neighborhood of the Fermi level, the presence of a spectral
gap makes the band-insulator immune to the changes in the
boundary layer, and the presence or absence of interactions is
irrelevant.

IV. DISCUSSION

For the results in the previous section, it is clear that Kondo
hole substitution in a single boundary layer does indeed affect
neighboring layers to varying degrees on different energy
scales. Although we have considered finite systems, a few
general remarks may be made for infinite, periodic structures.

A. f -electron superlattices

A superlattice structure comprises a periodic array of unit
cells, each of which consist of a finite number of (m)f -e− and
(n)c-e− layers. For example, in Ref. [23], (m,4)CeIn3/LaIn3

superlattices were grown and m was tuned. The authors
surmised that Kondo hole disorder at the Ce/La interface
is inevitable. As shown in Fig. 8, the extent of proximity
induced disorder effects is appreciable in the neighboring
layers. Owing to the periodic nature of a superlattice, it is
thus expected that this proximity effect would be even more
pronounced stemming from penetration of disorder effects
from the adjacent unit cells of the superlattice.

B. A scenario for disorder-induced non-Fermi liquid

Thus far, we have considered the particle-hole symmetric
limit. However, an interesting situation might emerge by
varying the chemical potential such that the system does not
have particle-hole symmetry. Dynamical effects of impurity
scattering even at the single-site mean field level have been
shown (in Ref. [28]) to lead to a non-Fermi liquid form of the
average self-energy. Thus the Kondo hole disordered layers
in such an array of f -electron layers would show non-Fermi
liquid behavior. The non-Fermi liquid nature of the Kondo hole
disordered layers would thus introduce a further anisotropy in
the system that would possibly manifest itself in the transport
properties of these systems. Moreover, if the Ce/La interfaces
in the superlattice unit cell are separated by a larger number of
clean layers, the non-Fermi liquid effects would be expected to
attenuate. Hence a non-Fermi liquid to Fermi liquid crossover
can be expected simply by increasing the ratio of the number
of layers to the number of Ce/La interfaces.

C. Anderson localization

One of the important consequences of disorder, ignored
in this work, is that of Anderson localization (AL). The
CPA employed here to treat disorder effects is incapable of
incorporating AL. The addition of coherent back-scattering
and deep trap physics beyond CPA should lead to profound
consequences for the adjacent layers. A first step in this
direction could be the incorporation of the (single site)
typical medium theory (TMT) [43] in the context of such
layered systems. A subsequent advancement would then be an
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systematic inclusion of nonlocal dynamical corrections to the
TMT. The typical medium-dynamical cluster approximation
(TMDCA) developed recently [44] has been found to be an
excellent approach for obtaining the correct phase diagram of
the noninteracting Anderson model. It would be interesting
to extend the TMDCA for interacting models and explore
the interplay of Anderson localization physics and strong
interactions in layered systems.

V. SUMMARY AND CONCLUSIONS

In this work, we have employed the inhomogeneous dynam-
ical mean-field theory [19] framework to obtain self-consistent
many-body solutions for layered Kondo hole substituted f -
electron systems. The substitutional disorder, treated within
the coherent potential approximation, was introduced in a
single boundary layer, and the consequent spectral changes
in the neighboring layers were explored. Three distinct types
of clean adjacent layers were considered: (a) noninteracting
metals (disordered Kondo insulator/metals), (b) noninteracting
band insulators (disordered Kondo insulator/band insulator),
and (c) several clean Kondo insulators.

Combining simple analytical expressions for bilayer and
trilayer systems with full numerical calculations using the
local moment approach, we have (a) explained the strong
renormalization of the low-energy spectra of the proximal
layers, (b) spectral interference among the layers in presence
of an inter-layer coupling (t⊥), and (c) a mechanism for pene-
tration of Kondo hole disorder-induced incoherence into clean
layers. We highlight the differences between three distinct
types of interfaces with a disordered Kondo insulator layer.
We also demonstrate that, in addition to a robust low energy
quasiparticle peak [20], proximity effects of interactions also
manifest through the appearance of minute Hubbard bands in
the neighboring noninteracting layers.

A finite concentration of Kondo holes leads to the formation
of an impurity band at the Fermi level in a Kondo insulator [41],
thus creating metallic states in the otherwise gapped insulator.
In the layered geometry, these disorder-induced metallic states
can further tunnel into the immediately neighboring clean
Kondo insulator, rendering a quadratic bending in its Kondo
hybridization gap edge. This further induces metallic states in

the f -e− spectra of the nearest-neighbor layer. These disorder-
induced states do propagate into the further layers but the
tunneling is attenuated by the ω2 factor for each layer and hence
is too small to be observed beyond the nearest-neighbor layer.
Introduction of disorder further destroys the proximity effect
of interactions. We showed that a manifestation of proximity
induced interaction effect, on the adjacent noninteracting
layers, is the appearance of tiny Hubbard bands and a proximal
Kondo effect induced low frequency spectral renormalization.
This proximity effect of interactions, on the noninteracting
layers, is mitigated when they are coupled to a disordered
Kondo insulator layer.

The presence of disorder induces spectral weight transfer
from the high-energy Hubbard bands to the low energy Kondo
scaling regime not only in the disordered Kondo insulator but
in the adjacent clean layers as well. We have quantified the
penetration of disorder effects in these interfaces through the
spectral weight difference function (29). The spectral weight
difference is maximum in the disordered Kondo insulator and
decays algebraically with distance from the disordered Kondo
insulator layer.

Our analysis implies that, while for thin films, the spectral
weight difference of the clean layers is appreciable only until
the third neighboring layer; for superlattice geometries, this
effect of penetration of disorder would be quite pronounced
due to the occurrence of multiple disordered interfaces.

We foresee a Fermi liquid to non-Fermi liquid crossover
in the transport properties across disordered interfaces by
tuning the number of disordered layers. The full study of such
a crossover and inclusion of localization effects beyond the
coherent potential approximation will be the subjects of future
projects.
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