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Spontaneous formation of kagome network and Dirac half-semimetal on a triangular lattice
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In spin-charge coupled systems, geometrical frustration of underlying lattice structures can give rise to
nontrivial magnetic orders and electronic states. Here we explore such a possibility in the Kondo lattice model
with classical localized spins on a triangular lattice by using a variational calculation and simulated annealing. We
find that the system exhibits a four-sublattice collinear ferrimagnetic phase at 5/8 filling for a large Hund’s-rule
coupling. In this state, the system spontaneously differentiates into the up-spin kagome network and the isolated
down-spin sites, which we call the kagome network formation. In the kagome network state, the system becomes
Dirac half-semimetallic: The electronic structure shows a massless Dirac node at the Fermi level, and the Dirac
electrons are almost fully spin polarized due to the large Hund’s-rule coupling. We also study the effect of off-site
Coulomb repulsion in the kagome network phase where the system is effectively regarded as a 1/3-filling spinless
fermion system on the kagome lattice. We find that, at the level of the mean-field approximation, a +/3 x +/3-type
charge order occurs in the kagome network state, implying the possibility of fractional charge excitations in this
triangular lattice system. Moreover, we demonstrate that the kagome network formation with fully polarized

Dirac electrons are controllable by an external magnetic field.
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I. INTRODUCTION

The ferromagnetic (FM) Kondo lattice model, often called
the double-exchange (DE) model [1-3], is one of the fun-
damental models for correlated electron systems. It has been
extensively studied for a long time, mainly for understanding of
the physical properties of perovskite manganese oxides [4,5].
The phase transition to the FM metallic state by decreasing
temperature and the colossal negative magnetoresistance are
well explained by the DE mechanism: An effective FM
interaction is induced by the kinetic motion of electrons under
the influence of the large Hund’s-rule coupling to localized
magnetic moments. On the other hand, the competition
between the FM DE interaction and the antiferromagnetic
(AFM) superexchange (SE) interaction between the localized
spins has also been studied intensively. In the early stage, a
spin canting state with a spin-flop type ordering was predicted
in the lightly doped region, which smoothly connects the AFM
insulating state at half filling and a hole-doped FM metal [3].
Later, the scenario was revisited; a phase separation (PS)
was found to take place between the AFM insulator and FM
metal, and hinders the canting state [6,7]. In addition, at the
commensurate 1/4 filling, the magnetic competition leads to
the first-order transition from the FM metal to an insulator
with a peculiar “flux”-type magnetic ordering [8,9].

Recently the FM Kondo lattice model has attracted renewed
interest from the viewpoint of geometrical frustration in
underlying lattice structures. In general, the geometrical frus-
tration leads to competition between different magnetic orders,
resulting in peculiar states, such as a complicated ordering,
liquidlike, and glassy states. Such peculiar magnetism signif-
icantly affects the electronic state of itinerant electrons and
gives rise to peculiar transport phenomena. A typical example
is the unconventional anomalous (or topological) Hall effect
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discovered in some pyrochlore oxides [10-12]. Theoretically,
the topological Hall effect is caused by the coupling of
itinerant electrons to a noncoplanar spin configuration with
nonzero spin scalar chirality [13—15]. Indeed, such a mech-
anism was investigated in many frustrated systems, such as
triangular [16-18], kagome [19-23], face-centered-cubic [24],
and pyrochlore lattices [25]. Fermi surface properties are
important for stabilizing such noncoplanar orders [26,27].
Other interesting phenomena are resistivity minimum [11,28]
and bad-metallic behavior [29,30]. These peculiar transport
properties were also discussed theoretically [31-34].

The competition between the FM DE interaction and the
AFM SE interaction has also been studied in geometrically
frustrated systems. For instance, a variety of magnetic phases
were predicted by the mean-field analysis in kagome and
pyrochlore lattice systems [35]. Monte Carlo studies were
done for a pyrochlore lattice system, unveiled bad-metallic
behavior [31], a peculiar PS [36], and a spontaneous spin
Hall effect by inversion symmetry breaking [37]. Triangu-
lar and checkerboard lattice systems were also studied by
Monte Carlo simulation, and scalar chiral ordered phases
were found [32,38]. Furthermore, the low density region
in the triangular lattice system was studied by variational
calculations, and a noncoplanar three-sublattice spin canting
order was found adjacent to a PS [39]. These results indicate
that the competition between the FM DE and AFM SE
interactions leads to much richer physics in geometrically
frustrated systems.

In this paper we investigate magnetic and electronic phases
induced by the competition between the FM DE and AFM SE
interactions on a triangular lattice. We study the ground state
of the FM Kondo lattice model with the AFM SE interaction
by complementarily using the variational calculation and the
simulated annealing. We find that a four-sublattice collinear
ferrimagnetic phase appears in the large Hund’s-rule coupling
region at a commensurate 5/8 filling. In this phase, the
triangular lattice system is spontaneously differentiated into a

©2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.91.155132

YUTAKA AKAGI AND YUKITOSHI MOTOME

kagome network (KN) composed of up-spin sites and isolated
down-spin sites. Under the KN formation, the electronic
structure shows a Dirac node with linear dispersion, and the
Fermi level at 5/8 filling is located just at the Dirac node.
The Dirac electrons are almost fully spin polarized by the
large Hund’s-rule coupling. A similar Dirac half-semimetal
was also found at 1/3 filling in a different ferrimagnetic phase
in the absence of the AFM SE interaction [40]. In our KN
state, however, excess electrons over half filling are effectively
regarded as spinless fermions on the kagome lattice at 1/3
filling. This leads us to study the effect of the off-site Coulomb
repulsive interaction between itinerant electrons in the KN
phase from the interest of a fractional charge excitation on
a triangular lattice. We also clarify the effect of an external
magnetic field on the KN formation with half-semimetallic
Dirac electrons.

The organization of this paper is as follows. In Sec. II we
introduce the model and theoretical methods used in this paper.
After introducing the FM Kondo lattice model in Sec. I A,
we describe the details of the variational calculation and
simulated annealing in Secs. IIB and IIC, respectively. In
Sec. III we present the results for the KN phase. We discuss
the ground-state phase diagram obtained by the variational
calculation (Sec. III A), the electronic structure in the KN
phase (Sec. III B), and the stability of the KN phase examined
by the simulated annealing (Sec. III C). In Sec. III D we present
the mean-field results for the effect of the electron-electron
interaction between nearest-neighbor sites and discuss the
possibility of fractional charge excitations. Moreover, we
discuss a controllability of the Dirac half-semimetal, magnetic
supersolid, and fractional charge excitations by an external
magnetic field in Sec. III E. Finally, Sec. IV is devoted to a
summary. In the Appendix we present the results of variational
calculations for the effect of single-ion anisotropy on the KN
phase.

II. MODEL AND METHOD

In this section we introduce the model and methods.
The model is given in Sec. II A. Details of the variational
calculation and the simulated annealing are described in
Secs. II B and I1 C, respectively.

A. Kondo lattice model

We consider a Kondo lattice model on a triangular lattice,
whose Hamiltonian is given by

My =—t ) (c]ycja+He)

(i,j),e
—Ju Z CiaGaﬁCi,ﬁ -S; + Jar Zsi -S;. ()
i, B (i,J)

The first term describes the hopping of itinerant electrons,
cia(ciya) is a creation (annihilation) operator for an itinerant
electron with spin « on site i, and ¢ is the transfer integral.
The sum (i, j) is taken over the nearest-neighbor sites on the
triangular lattice. The second term denotes the FM Hund’s-rule
coupling between itinerant electron spins and localized spins,
Jy is the coupling constant, 6,5 = (ajﬂ,aofﬂ,ajﬂ) are Pauli
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matrices, and S; is a localized spin on site i. The last term
describes the AFM SE interaction with the coupling constant
Jar between the nearest-neighbor localized spins (Jag > 0).
Here we consider classical spins for S; with |S;| = 1. Note that
the sign of Jy is irrelevant unless localized spins are quantum
ones. Hereafter, we take + = 1 as the unit of energy, the lattice
constant ¢ = 1, and the Boltzmann constant kg = 1.

B. Variational calculation

In the present study we are interested in the ground-state
(zero-temperature) phase diagram of the model in Eq. (1) in the
parameter space of the electron filling n = ﬁ Zm<0§,acz~,a>
(N is the total number of sites), Jy, and Jar [see Figs. 1(a)
and 1(b)]. In order to obtain the global structure of the
phase diagram, we adopted a variational method in which
we compare the ground state energies of possible ordered
states. The method is the same as those used in the previous
studies [17,39], but we describe the details below for making
the paper self-contained. The method is just used for readily
searching parameter regions where possible interesting phases
emerge. As a complementary method, we adopt the simulated
annealing (Sec. IIC) to check the stability of the remarkable
state that we are particularly interested in, the KN state (4e) in
Fig. 1(c).

For the current model on the triangular lattice, we consider
14 different types of ordered states up to four-site unit cell,
as shown in Fig. 1(c). Figure 1(c)(1a) shows a FM order.
Figures 1(c)(2a) and 1(c)(2b) show two-sublattice orders:
(2a) a collinear stripe order and (2b) a stripe order with
a canting angle 6. Figures 1(c)(3a)-1(c)(3d) show three-
sublattice orders: (3a) a 120° noncollinear order, (3b) a
noncoplanar umbrella-type order with angle 6 (canted in the
normal direction to the coplanar plane from the 120° order)
which was discussed in Ref. [39], (3c) a coplanar order with
canting angle 6 for two spins from 120° order, and (3d) a
2:1-type order with two parallel spins that have angle 6 to the
remaining one. Figures 1(c)(4a)—1(c)(4g) show four-sublattice
orders: (4a) an all-out-type order which was discussed in detail
in Refs. [17,26], (4b) a two-in two-out-type order, (4c) a
three-in one-out-type order, (4d) an all-out-type order with
canting angle 6 for three spins, (4e) a 3:1 collinear order, (4f)
a coplanar order with a 90° flux-type configuration, and (4g) a
3:1 canted order which is a four-sublattice version of the (3d)
phase.

Among the various ordered states, we are particularly
interested in the four-sublattice ferrimagnetic order (4e) in this
paper. The magnetic ordering structure is collinear with three-
up one-down spin configuration per four sites; the up-spin
sites comprise a kagome lattice in the triangular lattice, and
the down-spin sites are at the centers of the six-site hexagons
in the up-spin kagome network, as shown in Fig. 1(c)(4e). We
call this state (4e) the kagome network (KN) phase hereafter.

In the calculation of the energy for each state at zero
temperature, we computed the integral over the first Brillouin
zone by approximating it by the sum over grid points of
1600 x 1600. We carefully checked the possibility of elec-
tronic PS by comparing the grand potential as a function of the
chemical potential [17]. In general, in the spin-charge coupled
systems like the present model in Eq. (1), PS takes place
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FIG. 1. (Color online) Ground-state phase diagrams for the model (1) on a triangular lattice as functions of (a) n and Jy at Jagp = 0.12, and
(b) Jar and Jy at n = 5/8. The vertical thick (thin) dashed lines at n = 1/4, 1/2, and 3/4 (n = 1/8 and 5/8) in (a) indicate gapful insulating
(zero-gap semiconducting) regions. PS stands for the phase-separated region (see the text in Sec. II B for details). The thick black line atn = 0
represents that the (3a) 120° coplanar ordered phase is stabilized at zero doping. In (b) we ignore the possibility of PS. (c) Ordering patterns of
localized spins used in the variational calculations: (1a) FM order, (2a) and (2b) two-sublattice orders, (3a)—(3d) three-sublattice orders, and

(4a)—(4g) four-sublattice orders (see the text in Sec. II B for details).

are located on the two-dimensional lattice shown in each left panel.

between different magnetic phases, as the electron density
jumps at the transition [6,7]. Thus, two phases located on each
side of PS coexist in the PS region, e.g., the (3a) and (4a)
phases exist together in the PS region for 3/4 < n < 0.87 at
Ju = 20. For the states (2b), (3b), (3¢), (3d), (4d), and (4g),
we optimized the canting angle 6. Note that (2b) with 6 = ,
(3b) with 6@ = 7, (3¢c) with & = 0, (4d) with 6 = cos~1(—1/3),
6 = cos’1(+1/3), 0 = m, and (4g) with & = 7 are equivalent
to (2a), (3a), (3a), (4a), (4c), (4e), and (4e), respectively.
Although an incommensurate order might take place for a
general filling, we consider only uniform q = 0 orders with
the magnetic unit cells listed above.

C. Simulated annealing

In order to check the stability of the KN state (4e) against
other ordered states having larger unit cells, we used the
simulated annealing method. The simulated annealing is a
technique for the optimization of a given function in the
large parameter space [41]. It is often used to obtain a

The numbers in (3a) and (4a) indicate the sublattices at which the spins

candidate for the ground state in complicated systems. In the
present case we considered an enlarged magnetic unit cell
including 12 sites (see the inset of Fig. 3), and optimized
the localized spin configuration by the simulated annealing.
Namely, temperature T is decreased gradually, and at each T,
the spin configuration is updated by the Monte Carlo sampling.
The cooling process is done in the geometrical way, i.e.,
Tiv1 = aTy (0 < o < 1), where T is the temperature in the
kth step. For instance, we take o = 0.93, the initial temperature
T, = 0.1, and k = 132 for the final step of cooling in the
calculations (the final temperature is Tj3, ~ 7.4 x 107%) in
Secs. [II C and IITE.

In the Monte Carlo sampling at each 7, we adopted
the standard technique used for the model in Eq. (1) [6].
The partition function of the present system is given by
Z = Trs, Treexp[—B(H — wN.)], where Tris,; and Trg are
traces over classical localized spin degrees of freedom and
fermion degrees of freedom, respectively. Here g = 1/T is
the inverse temperature, w is the chemical potential, and N, is
the total number operator for fermions. In the Monte Carlo
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simulation, Trs,, is calculated by using the Markov-chain
Monte Carlo sampling. The updates are done by the single-spin
flip on the basis of the standard Metropolis algorithm. In order
to obtain the Monte Carlo weight, the trace Trg is calculated
by the exact diagonalization of the Hamiltonian for a given
spin configuration. In the calculation we took the summation
over grid points of 10 x 10 in the (folded) first Brillouin zone,
which means that the effective system size is 12 x 10 x 10. It
is crucial to take such a large system size in the calculations
for the KN phase; since the KN phase has a Dirac node at
the Fermi level as discussed in Sec. III B, sufficiently dense
grid points in the momentum space are necessary to take into
account the energy contribution from the low-energy linear
dispersion.

III. RESULTS AND DISCUSSIONS

In this section we present the results obtained by the
variational calculation and the simulated annealing introduced
in Secs. II B and I C, respectively. We first present the phase
diagrams obtained by the variational calculation in Sec. IIT A.
We show that the system exhibits the KN phase at 5/8 filling.
In Sec. III B we discuss the characteristic electronic structure
of the KN phase, the massless Dirac node. Next we discuss
the stability of the KN phase by the simulated annealing
in Sec. IIC. In Sec. IIID we consider the effect of the
electron-electron interaction between nearest-neighbor sites
V at the level of mean-field approximation. We present the
phase diagram as a function of V and Jap, and discuss the
robustness of the KN phase and the possibility of fractional
charge excitations. Finally, we discuss the effect of an external
magnetic field on the KN state by using the simulated
annealing in Sec. IIIE. We show that the system exhibits a
continuous transition between the KN state and a magnetic
supersolid.

A. Phase diagram by the variational calculation

Figure 1(a) shows the result of the ground-state phase
diagram as a function of the electron filling » and the Hund’s-
rule coupling Jy at Jap = 0.12. As the AFM SE interaction
Jar favors the 120° Néel order on the triangular lattice, the (3a)
state appears in a broad parameter region as shown in the figure.
The phase diagram shares many aspects with the previous
results in Refs. [17,39]: for instance, (4a) all-out chiral phases
atn = 1/4 and 3/4, and (3b) umbrella-type ordered phase in
the low density region.

The new finding, however, is the KN state (4e) emerging
at n = 1/8 and 5/8. As described in Sec. II B, the magnetic
structure consists of the up-spin kagome network in the triangle
lattice and the down-spins at the remaining sites, as shown in
Fig. 1(c)(4e). To further confirm the stability of the KN phase
within the variational calculation, we consider all the possible
magnetic orders in a larger 12-site unit cell (see the inset of
Fig. 3) by replacing the localized spins by the Ising spins.
Namely, near the parameter regions in which the KN phase is
found in Fig. 1(a), we enumerate the energies for 2!2 states
(including the equivalent states from the symmetry point of
view) and compare them to find the lowest energy state. This
procedure corresponds to the full parameter search within the
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12-sublattice collinear spin configurations. We find that the
KN state is the lowest energy state at and around n = 5/8,
while it is not at and around n = 1/8. The result suggests that
the (4e) phase near n = 1/8 is taken over by another ordered
state with a larger unit cell, but that at and around 5/8 filling is
stable, at least, up to the 12-site unit cell in the Ising limit. The
stability of the 5/8-filling phase will be further confirmed by
the simulated annealing in the Heisenberg case in Sec. IIIC.
For these reasons, we consider only the 5/8-filling KN state
hereafter.

As shown in Fig. 1(a), the (4e) KN state is not limited just
at n = 5/8 but appears in a narrow filling region around 5/8
filling (see also Fig. 6 in the Appendix). This is related to
the peculiar electronic structure of this state, as discussed in
Sec. III B. Atn = 5/8, however, the KN phase is stabilized in a
wide region of the parameter space of J5r and Jy. Figure 1(b)
shows the ground-state phase diagram atn = 5/8 as a function
of Jar and Jy. As shown in the figure, the KN phase (4¢) widely
extends to the large Jy region for an intermediate value of Jag.

We note that the (4d) phases appear adjacent to the (4e)
KN phase, as shown in Fig. 1(b). The (4d) state is a spin-
canted version of (4e), as shown in Fig. 1(c) [(4d) with6 = 7
corresponds to (4e)]. The (4d) phase is interesting because the
canted spins give a nonzero spin scalar chirality, leading to
the topological Hall effect. The possibility of this chiral state
was discussed also for the model defined on triangular-kagome
lattices [42].

Let us remark on the validity of the phase diagrams. Since
the phase diagrams are obtained by the variational calculation
while assuming a set of the variational states listed in Fig. 1(c),
the results might include artificial phases. This should be
carefully examined, in particular, in metallic regions where
an incommensurate magnetic order with a longer period is
anticipated [the ferromagnetic (1a) state is rather safe because
of the robust DE mechanism]. However, the insulating phases
are relatively trustworthy, as they are stabilized by opening
an energy gap under the commensurate magnetic order. For
instance, the (4a) states at n = 1/4 and 3/4 were confirmed
by several unbiased numerical simulations [18,32,43]. The
argument may be applied to the (4e) KN state that we are
particularly interested in, because it is a semimetallic state with
vanishing density of states accompanied by the commensurate
magnetic order, as discussed in Sec. III B. Indeed, in addition
to the enumeration of all the possible Ising states in the 12-site
unit cell discussed above, we will confirm the stability by the
simulated annealing in Sec. III C.

B. Dirac electrons in the kagome network phase

The KN phase found at n = 5/8 has a peculiar electronic
structure at the Fermi level: The Dirac node with linear
dispersion. In other words, the system is a Dirac semimetal
in the KN phase. This is understood as follows. First, let
us discuss the limit of Jy — oo. In this limit the hopping
amplitude between up- and down-spin sites becomes zero: The
up-spin KN and the isolated down-spin sites are completely
separated. Consequently, the electronic structure consists of
two independent contributions from them. The isolated down-
spin sites give rise to a flat band at ¢ = +Jy. Meanwhile, the
up-spin KN leads to two copies of the band structure, each
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FIG. 2. (Color online) (a) The band structure and (b) the density
of state at Jy = 10 in the spontaneous KN phase. Note that the band
structure does not depend on the value of Jar up to a constant energy
shift (we take Jag = 0 here). The blue (white) hexagon in the inset of
(a) indicates the folded (original) Brillouin zone. The band dispersions
are plotted along the symmetric line in the folded Brillouin zone.
The red (blue) color indicates the contributions from the majority
(minority) spins. The dashed line indicates the Fermi level located
just at the Dirac node at the K” point.

of which has the same form as that for the noninteracting
tight-binding model on the kagome lattice. The band structure
consists of two dispersive bands in the energy range of
—4t + Jg < & < 2t &+ Jy, in addition to a flat band at ¢ =
2t &+ Jy. Each pair of the two dispersive bands comprises a
Dirac node at ¢ = —t &+ Jy at the K” point in the Brillouin
zone. At n = 5/8, the lower four bands (two dispersive and
two flat bands) are fully occupied, while the upper bands are
occupied only up to the Dirac point; hence, the Fermi level is
located at the Dirac node in the upper two dispersive bands.

A similar situation is seen in the KN phase for finite but
much larger Jy than the noninteracting bandwidth. Figure 2
shows the electronic structure in the KN state at Jy = 10
(note that Jar does not change the electronic structure up to a
constant energy shift). As shown in the figure, the electronic
structure splits into two sets of bands: The upper (lower) set
of bands centered at ¢ >~ Jy (¢ ~ —Jy). Each set of bands
consists of two parts: One is similar to the kagome lattice
electronic structure with the Dirac node at ¢ >~ —r £ 10, and
the other is a nearly flat mode at ¢ >~ £10, as expected from
the above consideration in the limit of Jy — oo. Although the
form of each band is modified because of nonzero hopping
between up- and down-spin sites allowed for finite Jy, the
Dirac node with linear dispersion is preserved and the Fermi
level is just at the Dirac node, as shown in Fig. 2 [44].

The interesting point of the Dirac node is that the Dirac elec-
trons are almost perfectly spin polarized, e.g., over 99% of the
full moment at Jy = 10 (fully polarized in the limit of Jy —
o0). Namely, this KN state provides a half-semimetal with
Dirac electrons. The Dirac semimetal has been extensively
studied from the discovery of graphene, from the potential
for applications to electronic devices [45]. In addition, the
half-metallicity will also be beneficial for spintronics, as the
electronic state can be manipulated by an external magnetic
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field. In Sec. IIIE we will demonstrate such magnetic field
control. We note that a similar Dirac half-semimetal was
discussed for a three-sublattice ferrimagnetic state at 1/3
filling [40].

Now, let us discuss the stabilization mechanism of the KN
phase at 5/8 filling. The KN phase is a zero-gap semiconductor
with the Dirac node at 5/8 filling, as shown above. In many
cases, a magnetically ordered phase is stabilized by opening an
energy gap. Indeed, in the phase diagram in Fig. 1(a), the (4a)
scalar chiral phases at 1/4 and 3/4 filling appear with opening
an energy gap. The Dirac node is not a full gap, but it may
give rise to an energy gain for the KN phase. The difference
between the full-gap insulator and zero-gap semiconductor is
seen in the phase diagram; the gapped chiral phases are limited
just at 1/4 and 3/4 filling in the large Jy region, as shown in
Fig. 1(a) (see also Fig. 3 in Ref. [17]), whereas the zero-gap
semiconducting KN phase appears in a very narrow but a finite
range of the electron filling around n = 5/8 [see Fig. 1(a); see
also Fig. 6 in the Appendix]. The narrow but nonzero width in
n might be a footprint of the fact that the Dirac node formation
contributes to the stabilization of the KN phase.

C. Stability of the kagome network phase:
Simulated annealing results

Next we examine the stability of the KN phase at 5/8
filling within the parameter space where the phase emerges
in Fig. 1(b) by the simulated annealing for the enlarged 12-site
magnetic unit cell, as described in Sec. II C. We find that it is
difficult to obtain a converged result at 5/8 filling, suggesting
(quasi)degeneracy with other states or the possibility of a larger
sublattice order than the 12 sites [46]. In Sec. III A, however,
we found that the KN state is the lowest-energy state in the
Ising limit within the 12-site unit cell. We, therefore, performed
the simulated annealing by adding the spin anisotropy in the
model (1) as

H=Hw—DY (5 )

where the first term is the Hamiltonian in Eq. (1) and the second
term denotes the single-ion anisotropy (D > 0); S} is the z
component of S;. Note that the limit of D — oo corresponds
to the Ising limit. In the variational calculations, we confirmed
that D further stabilizes the KN state; see the Appendix for
details.

We find that, by introducing a small single-ion anisotropy
D, the simulated annealing gives a converged solution to the
KN state. As for the demonstration, in Fig. 3, we show the cool-
ing process in the simulated annealing at D = 0.044. The
calculation was done at Jy = 10, Jag = 0.12, and n = 5/8.
Figure 3 shows the energy per site () /N and the spin structure
factor S(q) at q = (0,0) as functions of the cooling step
(temperature) in the simulated annealing. The spin structure
factor is defined as S(q) = % Zi,j S; -S;exp(iq-r;;), where
r;; denotes the position vector from ith to jth site. The KN
state is signaled by peaks of S(q) at q = (0,0), £(0,27/+/3),
+(r, —71/\/5), and :I:(n,rr/\/g) with equal weights. As shown
in the figure, the energy and S(0,0) converge to the values
expected in the KN state (dashed lines) as 7 — 0. During the
cooling process, S(O,Zn/\/g), S(n,—rr/«/g), and S(n,n/\/g)
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FIG. 3. (Color online) Energy per site (left axis) and the spin
structure factor S(q) at q = (0,0) (right axis) as functions of the
cooling step in the simulated annealing for Jy = 10, Jar = 0.12,
and D = 0.044 at n = 5/8. The dashed lines indicate the values of
energy and S(0,0) in the limit of 7 = 0 in the KN state. See the text
for details. In the inset, the blue dashed hexagon on a triangular lattice
represents the 12-site unit cell on which we performed the simulated
annealing.

have the same values as S(0,0) within the error bars. We
performed similar runs for a total of 10 different parameter
sets and always found the same behavior as in Fig. 3. The
results clearly indicate that the KN state found at 5/8 filling in
the variational calculation remains stable within the 12-site
unit cell, at least, in the presence of a small Ising-type
anisotropy.

D. Effect of off-site Coulomb repulsion

As discussed in Sec. III B, in the KN phase at 5/8 filling
in the large Jy region, the lower four bands are fully occupied
and the upper bands are occupied up to the Dirac node. This
electronic state is approximately regarded as the 1/3-filling
state in the spinless fermion model on a kagome lattice: The
doped electrons in the upper bands are almost confined in the
KN with aligning their spins antiparallel to the localized up-
spins because of the large Jy, and the band filling corresponds
to 1/3 in the bands originating from the KN. The mapping
becomes exact in the limit of Jy — o0. In the spinless fermion
model at 1/3 filling, it was pointed out that a fractional charge
excitation (+e/2; e is the elementary charge) emerges when
the system has a strong Coulomb repulsion between nearest-
neighbor sites [47].

Bearing such a possibility in mind, we investigate the effect
of anearest-neighbor Coulomb repulsion on the KN formation.
The Hamiltonian is given by

H="Hw+ VY nminj, 3)
(i.j)
where V is the Coulomb repulsion between nearest-neighbor

sites, and n; = ) _, cf’ac,-,a is a number operator for itinerant
electrons on site i. Here we study the effect of the V term by

PHYSICAL REVIEW B 91, 155132 (2015)

means of the mean-field approximation. Namely, we decouple
the interaction term by using the standard Hartree-Fock
approximation as

nin; ~nin;)+ (njhn; — (n;){n;)

— Z(Cjacj‘ﬂ <C;ﬁcia> + (C;raCjﬂ>C;ﬁCia
af

— (elyeip)iclgeia))- “)

In the mean-field analysis we assumed that configurations of
the classical localized spins are (1a), (2a), (3a), (3d), and (4e)
in Fig. 1(c), as these orderings appear in Fig. 1(b). In the
calculation we take 200 x 200 grid points in the folded first
Brillouin zone.

Figure 4 shows the ground-state phase diagram at 5/8 filling
obtained by the mean-field approximation. At V = 0 there are
three phases, (la), (4e), and (3d), while changing Jap. The
(4e) and (3d) states exhibit a charge disproportionation even
at V = 0, because of the translational symmetry breaking by
magnetic ordering; the local charge density at up-spin sites
are higher than that at down-spin sites. While increasing
V, however, an additional translational symmetry breaking
appears in each region by charge ordering, i.e., a superstructure
of charge density distinct from the magnetic one. From the
arguments in the last part in Sec. III A, we regard that, at least,
the (4e-CO) and (1a-CO) phases are trustworthy as they evolve
from the reliable (4e) and (1a) states at V = 0, respectively.

Among various charge ordered phases, we are interested in
the (4e-CO) phase, which emerges from the (4e) KN phase
through a second-order phase transition while increasing V.
The (4e-CO) phase is the KN state accompanied by charge
ordering with the wave number q = (27/3,27/ ﬁ), that is
the so-called /3 x /3 type. The charge ordering pattern is
the same as that discussed for the spinless fermion model on
a kagome lattice at 1/3 filling [48]. The charge-ordered state
in the spinless fermion system can exhibit fractional charge
excitations when an electron (a hole) is added to the 1/3-filling
state [47]. Therefore, it is expected that our mean-field state
(4e-CO) is connected to the phase with fractional charge
excitations. In fact, a “defect” by electron (hole) doping in the
(4e-CO) state can propagate without energy loss, at least for
V > t (see also Fig. 4 in Ref. [47]). Although it is necessary
to go beyond the mean-field approximation to clarify whether
the KN state accommodates fractional charge excitations,
this is an interesting issue since fractional charge excitations
usually emerge in the systems whose lattice structures consist
of corner-sharing units. The possibility in the current sys-
tem on the edge-sharing triangular lattice is left for future
study.

E. Effect of external magnetic field

Finally, we discuss the effect of an external magnetic field
on the KN state. We consider the Zeeman coupling to a
magnetic field applied in the z direction,

Hy=—h")_S;, 5)
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FIG. 4. (Color online) (a) Ground-state phase diagram obtained
by the mean-field approximation as a function of V and Jsr. The
calculation was done for Jy = 20 at n = 5/8. The notations such
as (la) and (3d) are common to those in Fig. 1, which label the
magnetic ordering patterns. (3d) ordered region of the phase diagram
is a collinear order with & =  except at V = 0. The vertical dashed
lines indicate the second-order transition. (b) Schematic pictures
of the order patterns of the phases in (a): (1a-CO) four-sublattice
FM q = 0 charge order (CO), (3a-CO1) 12-sublattice 120°-AFM
q =0 CO, (3a-CO2) 12-sublattice 120°-AFM CO with a nonzero
net moment, (3d-CO1) and (3d-CO2) 12-sublattice ferrimagnetic
collinear CO with nonzero net moments, and (4e-CO) 12-sublattice
KN q = (277/3,27/+/3) CO with a nonzero net moment. The size of
circles (Iength and direction of arrows) denotes the charge density (the
length and direction of spins) of itinerant electrons. The blue dashed
rhombuses represent the unit cells. The red lines are the up-spin
networks. All the directions of localized spins are parallel to those of
itinerant electrons spins. All the charge ordered phases are insulating.

as an additional term to Eq. (1). For simplicity we neglect the
coupling of orbital motion of itinerant electrons to the magnetic
field as well as the Zeeman coupling to itinerant electrons.
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04T e (4) Thz 3d) (1a)

FIG. 5. (Color online) Magnetization per site as a function of
an external magnetic field 4* in the z direction obtained by the
simulated annealing supplemented by variational calculations. The
data are calculated for Jy = 10 and Jag = 0.12 at n = 5/8. The (4e),
(4g), (3d), and (1a) phases appear for 0.04 < h* < 0.16,0.16 < h* S
0.38, 0.38 < h* < 0.58, and 0.58 < A, respectively. The first-order
transition occurs near h* ~ (0.38. Others are continuous transition.
In the shaded area for 0 < A* < 0.04, it is hard to obtain good
convergence; we plot the magnetization for the 12 sublattice chiral
order [46] appearing as the solution in the simulated annealing.

We investigate the effect of the Zeeman term in Eq. (5) on
the model in Eq. (1) by using the simulated annealing. We find
that the external magnetic field stabilizes the KN phase as in
the case of the single-ion anisotropy D discussed in Sec. III C.
Figure 5 shows the magnetization curve calculated by combin-
ing the simulated annealing and variational calculations [49].
Here the magnetization is defined by M =), Sf/N. As
shown in the figure, the KN phase appears for 0.04 < h* <
0.16, with exhibiting magnetization plateau at M = 1/2. Fur-
ther increasing h*, the KN phase changes into the (4g) phase
which is a canted version of the KN state for 0.16 < h* < 0.38,
(3d) phase for 0.38 < h* < 0.58 [50], and finally turns into the
FM phase for h* 2 0.58 (~5Jp). The transitions at A* ~ 0.16
and 0.58 are both continuous, whereas that at A* ~ 0.38 is of
first order. We note that both the (4g) 3:1 and (3d) 2:1 canted
phases are magnetic counterparts of a supersolid [51,52].

The result suggests an interesting controllability of the
Dirac electronic state, i.e., one can destroy and create the Dirac
electrons by sweeping the magnetic field. While increasing
the magnetic field, it shows a transition to a magnetic
supersolid phase, in which exotic behavior is expected as well.
Furthermore, once the KN phase exhibits fractional charge
excitations in the presence of V (see Sec. III D), there is the
possibility of controlling the appearance of fractional charge
excitations by magnetic field.

IV. SUMMARY

We have investigated the Kondo lattice model on a
triangular lattice by using the variational calculation and
the simulated annealing method. We found that the system
exhibits the kagome network state at a special fillingn = 5/8
for the large Hund’s-rule coupling. In the kagome network
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state, the system is spontaneously divided into two parts by
the four-sublattice collinear ferrimagnetic order: One is the
kagome lattice composed of up-spin sites, and the other is
isolated down-spin sites in the hexagons of the kagome lattice.
This peculiar magnetism gives rise to an unusual electronic
state: A Dirac half-semimetallic state. The semimetallic dip
of the density of states due to the Dirac node formation
contributes to the stabilization of the kagome network phase.
We have also found that a /3 x +/3-type charge order occurs
in the kagome network state as the mean-field solution when
we include the Coulomb repulsion between nearest-neighbor
sites. This charge ordering pattern is the same as that for the
spinless fermion model on a kagome lattice at 1/3 filling
discussed from the interest of fractional charge excitations.
Moreover, we have found that the emergence of the kagome
network Dirac half-semimetal can be controlled by an external
magnetic field. Considering real materials, the parameters used
in the present calculations are reasonable to some extent: The
Hund’s-rule coupling Jy is dozens of times larger than the
transfer integral, and it is one or two orders of magnitude
larger than the antiferromagnetic superexchange interaction
Jar and the single-ion anisotropy D. These energy scales are
seen in some real materials, such as manganese oxides. It is
desired to explore the kagome network phase discussed in the
paper in real systems as a candidate for the peculiar Dirac
half-semimetal and possible fractional charge excitations.
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APPENDIX: VARIATIONAL PHASE DIAGRAM IN THE
PRESENCE OF THE SINGLE-ION ANISOTROPY

In this Appendix, to clarify the effect of the single-ion
anisotropy, we study the ground-state phase diagram for the
model in Eq. (2) by the variational calculations. Using the
method in Sec. IIB, we performed the calculations around
n = 5/8, as we are interested in the stability of the KN phase
at 5/8 filling.

Figure 6(a) shows the result of the ground-state phase
diagram as a function of the electron filling n and the single-ion
anisotropy D at Jy = 10 and Jar = 0.12. We find that the (4e)
KN phase remains stable around n = 5/8 in the presence of
D [53]. Indeed, it is further stabilized by increasing D: The

PHYSICAL REVIEW B 91, 155132 (2015)

(@ 012 R — :
5 (2a)
0.09 b @e)_ |
N
(30) :
A 0.06 | | 69
|
| (@)
! TS
0.03 | i
: (4a)
(a) : \ (3a)
000 1 1 n 1 1 1 1 1
0.45 0.55 0.65 0.75 0.85 0.95 1.00
n

(b) 0.12 ; — :

0.09 5 1
| (4e)

a 06k | 1
0.03 F ! .
000 1 1 1 1 1

0.60 0.61 0.62 0.63 0.64 0.65
n

FIG. 6. (Color online) Ground-state phase diagrams for the
model (2) as functions of n and D at Jy = 10and Jyr = 0.12 obtained
by the variational calculation. (b) The enlarged view of (a) near
n = 5/8. The vertical thick (thin) dashed lines at n = 1/2 and 3/4
(n = 5/8)1in (a) indicate gapful insulating (zero-gap semiconducting)
regions. PS stands for the phase-separated region.

width of the KN phase in n becomes wider for larger D, as
clearly shown in the enlarged figure in Fig. 6(b). Although
it is reasonable that the single-ion anisotropy stabilizes the
collinear magnetic order, the result is not trivial because the
width is determined by the grand potential for the competing
phases on the other sides of the PS regions. In the present case,
the competing phases are the (3a) phase atn = 1/2 and the (4a)
phase at n = 3/4 in the small D region. Increasing D, the (3a)
and (4a) phases change into their spin canting versions, namely
(3c) and (4d), respectively, as shown in Fig. 6(a). With further
increasing D, the (4d) phase is eventually taken over by the
metallic (2a) phase with a two-sublattice collinear order. Our
results indicate that the region of the (4e) KN phase is extended
as D increases despite the competition to these phases.
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