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Scaling theory of the cuprate strange metals
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We show that the anomalous temperature scaling of five distinct transport quantities in the strange metal regime
of the cuprate superconductors can be reproduced with only two nontrivial critical exponents. The quantities are
(i) the electrical resistivity, (ii) the Hall angle, (iii) the Hall-Lorenz ratio, (iv) the magnetoresistance, and (v) the
thermopower. The exponents are the dynamical critical exponent z = 4/3 and an anomalous scaling dimension
� = −2/3 for the charge density operator.
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I. INTRODUCTION

The normal metallic state of optimally doped cuprate
superconductors is highly anomalous. Many of the anoma-
lous features—to be reviewed shortly—are common across
different cuprate compounds and take the form of simple
scaling laws. A traditional starting point for understanding
the universal “strange metal” cuprate regime is to allow the
electronic Green’s function to obtain a singular self-energy
through scattering off critical bosonic modes. A particularly
successful and influential instance of this approach is the
“marginal Fermi-liquid” phenomenology [1], in which a
logarithmic single-particle self-energy is obtained.

There is some evidence that the cuprate strange metal
phase is strongly interacting and not described by quasipar-
ticle physics. As the temperature is increased the electrical
resistivity crosses the Mott-Ioffe-Regal bound [2–4]. Further-
more, the low-frequency (Drude-like) peaks in the optical
conductivity in the strange metal phase have a width of
order the temperature; see for instance data for LSCO [3,5],
Bi-2212 [6,7] and YBCO [8]. Such broad peaks are not
consistent with the existence of long-lived quasiparticles,
which should have a lifetime that is longer than the in-
verse temperature time scale at which generic nonconserved
quantities decay [9]. The absence of quasiparticles will
be the starting point for our characterization of strange
metals.

It is a common sentiment that the “resistivity is the first
quantity to be measured and the last to be understood.”
This is correct insofar as the basic explanatory unit is the
single-particle Green’s function, from which the conductivity
is derived in a potentially complicated way. However, in
a strongly correlated quantum critical “soup,” the basic
explanatory units are operators and their scaling dimensions.
The current and charge operators remain well-defined in the
absence of quasiparticles, as their existence is due to Noether
symmetries, while the single-particle Green’s functions do
not. Therefore, in such circumstances, the data should be
organized in terms of the currents (and hence conductivities)
themselves, which will then become the first quantities to be
understood.

The basic assumption we will make is that the electrical
and heat current operators (and hence the associated dc
conductivities and thermodynamic susceptibilities) of the
cuprate strange metal phase transform covariantly under a
scaling of space and time. This is tantamount to saying that

the phase is quantum critical [10], although the criticality need
not necessarily originate from a quantum phase transition.
For instance, it might be an intrinsically high- rather than
low-temperature phenomenon. Putting aside for the moment
the possible microscopic origin of this quantum criticality, our
most important result is that nontrivial predictions can be made
and verified based solely on a sufficiently sophisticated scaling
analysis. In particular, we will express multiple observables in
terms of only three critical exponents that we will call {z,θ,�}.
These exponents are fixed by three of the cleanest scaling
laws of the strange metal: those observed in the electrical
resistivity [11–13], the Hall angle [14,15], and the Hall-Lorenz
ratio [16]. In fact, only two of these exponents (z and �) are
required to be nontrivial in order to match these data. We
then go on to show that these same exponents successfully
describe observed scaling in the magnetoresistance and the
thermopower in the strange metal regime. Our scaling hypoth-
esis leads to predictions for the temperature dependence of the
Nernst coefficient and electronic thermal conductivity that can
in principle be tested with improved data at higher (Nernst)
and intermediate low (thermal conductivity) temperatures. The
scaling exponents will also be shown to be consistent with the
observed critical scaling of the dynamical spin susceptibility.
However, because this scaling may have a different origin
compared to the other quantities we discuss and our ability to
reproduce it involves an additional assumption about spin, we
only present these results in the Appendix.

Our analysis is phenomenological in the sense that it is not
guided by any microscopic mechanism. Many scaling laws
are observed in the strange metal regime, and our objective is
to organize them in the most economical way possible. That
said, we are directly inspired by results from model systems
that are solvable using holographic duality [17]. There, large
families of quantum critical regimes without quasiparticles
are found to be characterized by the three exponents that we
introduce below [18–23]. There are several obstacles, however,
to our simple minded attempt to “minimally” organize the
data from the cuprates. First, as we discuss further below,
there are multiple possible origins for scaling behavior in the
cuprates. These include likely quantum critical points at both
underdoping and overdoping. It is quite possible that different
quantities in the same regime are controlled by different
physics. Second, in order to implement our scaling hypothesis,
we will be forced to make some kinematic assumptions
about the underlying physics (see assumptions (1)–(3) below)
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that may not be correct in the final analysis. Third, it is
possible that only a subset of the degrees of freedom in the
system are quantum critical, with the remainder described
more conventionally. For instance one might have in mind
hot and cold patches of a Fermi surface, or there might be
multiple conduction bands. In this case the scaling contribution
competes with a conventional “background” contribution and
may not be dominant in all quantities. Given these caveats,
we should not expect our zeroth-order scaling analysis to
capture every single quantity. We find it remarkable that,
nonetheless, a single scaling hypothesis successfully describes
the temperature dependence of many transport quantities.

II. CRITICAL EXPONENTS AND ASSUMPTIONS

The first exponent z is the dynamical critical exponent and
is the most familiar. This exponent parametrizes the relative
scaling of space and time. In particular, in the quantum critical
regime, the correlation length ξ ∼ T −1/z. We will assign units
so that

[k] = −[x] = 1, [ω] = −[t] = [T ] = z. (1)

For purposes of scaling and throughout our discussion, � =
kB = e = 1.

The remaining two exponents θ and � will characterize
the scaling dimensions of the entropy density s and the
charge density n, respectively. It is very important to allow
these quantities to admit an “anomalous” scaling dimension,
otherwise one will reach overly restrictive conclusions [24].
The exponent θ is the hyperscaling violation exponent. It
indicates the extent to which singular contributions to the
entropy density do not scale like the inverse correlation
volume ξ−d , but rather s ∼ ξ−d+θ . Here d is the number
of space dimensions. That is, the critical fluctuations behave
as though in d − θ effective spatial dimensions. Thus we
parametrize

[s] = d − θ. (2)

This phenomenon is most familiar from statistical physics
where it occurs in a theory above its upper critical dimension
dcrit. In that case d − θ = dcrit < d. Fermi surfaces provide a
quantum scenario with nonzero θ = d − 1, as the only disper-
sion is perpendicular to the Fermi surface [25]. Hyperscaling
violation is also ubiquitous in quantum critical phases arising
in holographic theories at finite charge density [17,25–28].
From (2) the free energy and energy densities acquire the
scalings [f ] = [ε] = z + d − θ . Thus we can think of quan-
tum critical hyperscaling violation as an anomalous dimension
for the energy density operator. The energy density operator
couples to the system through the volume element of a
background metric. This is why an anomalous dimension
for the energy density is equivalent to the critical modes
propagating in an anomalous number of dimensions (2). We
will in fact find below that θ = 0, so that hyperscaling is
obeyed in our scaling analysis.

The exponent � is an anomalous scaling dimension for
the charge density operator. It indicates that the density
of charged critical fluctuations is distinct from the density
of critical fluctuations contributing to the entropy. That is

n ∼ s ξ−� and hence we have

[n] = d − θ + �. (3)

For example, in a density-driven quantum phase transition,
so that ξ ∼ (μ − μ�)−ν , with μ the chemical potential, then
� will be related to the correlation length exponent by
ν = 1/(z − �) [29]. While � (and θ ) must vanish in a
relativistic CFT—this is because conserved currents saturate
unitarity bounds derived from the conformal algebra—it is
allowed in more general scaling theories.1 In particular, a
nonzero � has been found necessary to understand the scaling
properties of generic scaling regimes arising in compressible
holographic matter [18–21,23]. We will find that � is also
essential to capture the scalings observed in the cuprate strange
metal.

The dimensions of various other quantities now follow.
From the conservation laws ṅ + ∇ · j = 0 and ε̇ + ∇ · jQ =
0 we obtain the dimensions of the electrical and heat
current

[j ] = d − θ + � + z − 1, [jQ] = d − θ + 2z − 1. (4)

The heat generated by a current now implies that the electric
field has dimension

[E] = 1 + z − �, (5)

so that the chemical potential, vector potential, and magnetic
field obey

[μ] = z − �, [ �A ] = 1 − �, [B] = 2 − �. (6)

This scaling dimension of the magnetic field is that associated
to the vector potential �A that couples to the conserved current.
The magnetic field will also couple directly to spin, and this
coupling could in general have a different scaling dimension.
Partly for this reason we focus on thermoelectric transport
in the main text and only discuss spin susceptibilities in the
Appendix.

From the above scaling dimensions, we can obtain the
scaling dimension of the thermoelectric conductivities σ,κ,α.
These are defined through the matrix(

j

jQ

)
=

(
σ T α

T α T κ

) (
E

−(∇T )/T

)
. (7)

1It has been argued that the density operator of a conserved charge
always has its canonical dimension in any scaling theory. These
arguments [30,31] correctly apply when the finite temperature scaling
arises from heating up a well-defined zero-temperature scale invariant
theory. If this assumption is relaxed, the arguments are evaded. Thus
in Ref. [30] the total critical charge at a fixed time can depend on
the correlation length. In Ref. [31], the charge of operators in the
critical theory can be allowed to depend on the correlation length. In
particular, with hyperscaling obeyed, a nonzero � is suggestive of
a temperature-dependent fraction of the bare electron going critical.
This can be consistent with charge conservation in an effective critical
theory. If, as will be our case, � < 0, then the charge created by an
operator grows (and diverges) as the temperature is lowered. This
likely indicates an instability of the critical phase at low temperatures.
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The usually measured open circuit thermal conductivity is
given by κ = κ − α2T/σ . In certain nonquasiparticle circum-
stances these two thermal conductivities can be dramatically
different [32]. We will exclude this possibility in our assump-
tion (3) below, and therefore κ and κ will have the same
temperature scaling.

We assume that the relevant physics occurs in d = 2
dimensional planes. Also, we will not consider the effects
of anisotropy within the planes. The matrix of thermoelec-
tric conductivities in (7) then contains six distinct in-plane
observables: {σxx,σxy,αxx,αxy,κxx,κxy}. Our first objective
is to express these quantities in terms of the three ex-
ponents {z,θ,�}. Certain kinematic assumptions about the
emergent low-energy quantum critical description of the
system are necessary before we can do this. We would
like to emphasize that any scaling analysis needs to take a
position regarding these assumptions before it can get off the
ground.

(1) The quantum critical description is assumed to be
time-reversal invariant. Thus the Hall conductivities must be
proportional to an applied magnetic field.

(2) The quantum critical theory is assumed not to be
particle-hole symmetric. This allows the Hall conductivities
divided by the magnetic field and also the thermopower to be
nonzero, and to scale with temperature in a way described by
the critical exponents.

(3) The electronic and heat currents in the quantum critical
theory are assumed not to overlap with any conserved or almost
conserved operators. This allows the conductivities to be finite
and furthermore not to be sensitive to irrelevant symmetry
breaking operators (that would violate the naı̈ve scaling; see,
e.g., [33–35]). That is, the conductivities are described by the
quantum critical scaling.

Assumption (1) is validated by data on the Hall conductivi-
ties, discussed below. Assumption (3) is supported by the fact
that the Drude-like peaks in the optical conductivity of strange
metal cuprates have widths of order kBT ; see, e.g., [3,5–8].
In contrast, if the electrical current overlapped with an almost
conserved operator, the width of the Drude peak would be
the inverse lifetime of the corresponding long-lived mode, and
would be narrower than kBT [9]. In particular, in the absence
of particle-hole symmetry [assumption (2)], both electronic
and heat currents will generically overlap with the momentum.
Therefore, momentum must be quickly degraded in the critical
theory. The system is incoherent, in the sense of [9].

Assumption (2) is made because it allows us to express
all quantities in terms of the three exponents {z,θ,�} with
no further input. If instead the quantum critical dynamics
is particle-hole symmetric, then quantities such as the Hall
conductivity and thermopower are not universal. Instead,
they are sensitive to irrelevant operators that break the
symmetry. Alternatively, one must deform slightly away from
the quantum critical point by a small charge density to
break the symmetry. This is the approach taken in, e.g., [36]
and [37]. An interesting idea to combine the observed linear
resistivity with the scaling of the Hall angle in a particle-hole
symmetric framework appeared recently [38]. Given that our
assumption (2) is primarily motivated by the simplicity of a
single universal scaling analysis, such alternative particle-hole
symmetric analyses are certainly worth pursuing. In fact,

the canonical models of quantum criticality in finite density
systems, such as the bose Hubbard model at integer filling [39],
achieve universal xx-component conductivities through an
emergent particle hole symmetry [40,41]. Other instances
of universal conduction via emergent particle-hole symmetry
occur at continuous Mott transitions in Fermi systems [42,43]
and in spin-density-wave quantum critical points [44,45].
In contrast, strongly interacting non-particle-hole symmet-
ric critical theories with momentum relaxation have been
described in holographic settings with lattices [46–48].
A recent dynamical mean-field theory (DMFT) study also
found scaling in the resistivity in a high-temperature in-
coherent regime at the vicinity of a metal-insulator transi-
tion [49].2 In any case, our present approach is to see how
far a one-parameter scaling hypothesis can take us, without
reference to any particular strongly interacting microscopic
model.

III. SCALING LAWS

Given the above assumptions and scaling dimensions we
can conclude that, at B = 0 and critical doping,

σxx ∼ T (d+2�−θ−2)/z,

αxx ∼ T (d−θ+�−2)/z, (8)

κxx ∼ T (d−θ+z−2)/z.

Turning on a nonzero magnetic field we will have (to first order
in the magnetic field)

σxy ∼ B T (d+3�−θ−4)/z,

αxy ∼ B T (d−θ+2�−4)/z, (9)

κxy ∼ B T (d−θ+z+�−4)/z.

There will also be magnetoresistance corrections to (8), scaling
like B2, that we will discuss below.

The critical exponents can now be determined from (8)
and (9) combined with the measurement of three quantities.
The effective theory of the in-plane transport has d =
2 spatial dimensions. The observed linear in temperature
resistivity [11–13]

ρxx ≡ 1

σxx

∼ T ⇒ 2� − θ = −z. (10)

The observed scaling of the Hall angle [14,15]

cot θH ≡ σxx

σxy

∼ T 2 ⇒ 2 − � = 2z. (11)

2This DMFT study of a density-driven quantum phase transition
finds zν ≈ 4/3, differing from a factor of 2 from the value zν = 2/3
that follows from our values of z and � applied to a density-driven
transition.
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Finally, the observed scaling3 of the Hall Lorenz ratio [16]

LH ≡ κxy

T σxy

∼ T ⇒ −2� = z. (12)

Taking the three previous equations together gives the expo-
nents

z = 4

3
, θ = 0, � = −2

3
. (13)

It is worth emphasizing that the behavior of the Hall Lorenz
ratio in (12) requires a nonzero anomalous charge density
exponent � within our one parameter scaling framework. The
Hall Lorenz ratio is a useful observable because, unlike the
usual Lorenz ratio, phonons do not contribute and so it directly
probes the electronic physics. We can also emphasize that
the scaling laws (10)–(12) have been observed in the same
temperature regime of the same material: optimally doped
YBCO at temperatures above the onset of superconductivity
(∼90 K) to a little above room temperature [11,14,16]. The
linear resistivity and quadratic in temperature Hall angle have
been observed in multiple cuprates.

With the exponents (13) at hand, we can now see whether
the remaining data on strange metals is correctly reproduced.
The exponents were determined from the conductivities
{σxx,σxy,κxy}. This leaves {αxx,αxy,κxx}. One can also con-
sider the effects of deformation away from criticality by a
small magnetic field B (magnetoresistance).

Start with the magnetoresistance. The prediction from our
scaling hypothesis is that

ρ

ρ
≡ ρxx(B) − ρxx(0)

ρxx(0)
∼ B2T (2�−4)/z ∼ B2

T 4
. (14)

The first relation follows from the fact that the leading-
order magnetoresistance is expected to go like B2 due to
time-reversal invariance, that ρ/ρ is dimensionless, and the
scaling of the magnetic field in (6). The second relation uses the
exponents (13) that we found above. Remarkably, the predicted
scaling (14) on both temperature and magnetic field is exactly
what is observed for the magnetoresistance in optimally doped
YBCO, LSCO [52], and at high enough temperatures in
overdoped Tl2201 [53]! The magnetoresistance is in general

3Any nontrivial scaling of the Hall-Lorenz ratio requires nonvanish-
ing �. Thus, the experimental data of [16] is the strongest evidence
for the need of a nonvanishing � for the phenomenology of the
cuprates. If one were to ignore this piece of data, more conventional
scaling properties can be inferred. In fact, after a preprint of our
paper appeared, [50] showed that if one gave up on matching the
Hall-Lorenz ratio, then the other transport quantities as well as the
thermodynamics could be well described by the marginal Fermi-
liquid-like exponents z = 1, θ = d − 1, and � = 0. This reference
also pointed out a different experiment on this subject [51]. This more
recent work still finds a linear scaling of the Hall-Lorenz ratio with
temperature, but the data are more noisy and could also be consistent
with a temperature-independent constant and, in any case, is hard
to reconcile with the measurements of [16]. The crucial importance
of this quantity in any scaling argument clearly highlights the need
for additional careful measurements of the Hall-Lorenz ratio, ideally
over a larger temperature range.

an independent quantity from those we used to determine the
exponents (13).4 The scaling (14) follows nontrivially from
our scaling hypothesis and in particular the presence and value
of the anomalous scaling exponent �.

Beyond the small magnetic field limit of formulas such
as (14), all quantities discussed in this paper are predicted to
be scaling functions of the form T αf (B/T 2). This will have
measurable consequences at larger magnetic fields (remaining
always at sufficiently high temperatures to be in the strange
metal regime). From a microscopic perspective such scaling
requires a velocity v to construct the dimensionless quantity
(Be)/h × [(vh)/(kBT )]2. The natural microscopic velocity
scale in the problem is the Fermi velocity, and indeed v ≈ vF

seems to be consistent with the data mentioned above.5 Despite
the presence of a velocity scale, because z = 4/3 the emergent
quantum criticality is not characterized by linearly dispersing
modes.

We now consider the thermoelectric conductivity. The
critical contribution to this quantity would vanish if the critical
theory were particle-hole symmetric. This conductivity is
usually measured via the thermopower or Seebeck coefficient,
for which our scaling predicts

S ≡ αxx

σxx

∼ −T −�/z ∼ −T 1/2. (15)

We have included the minus sign for agreement with the
data; the sign is not fixed by the scaling hypothesis. There
is a wealth of data on thermopower in the cuprates. Often
the high-temperature behavior close to optimal doping is
described as S ∼ −b T + a, with a,b constants (sometimes,
with logarithmic corrections). However, the data considered
in such fits is over a relatively restricted temperature range,
below room temperature. Data over a larger temperature
range in YBCO and LSCO clearly show a positive, upwards
curvature to the temperature dependence of S at large tem-
peratures [54,55]. In fact, the most recent data in [55], at
a little above optimal doping (where the scaling is seen to
cover the widest temperature range) seems to be rather well fit
by S ∼ −b T 1/2 + a over the temperature range 250–700 K,
consistent with our predicted scaling (15)! We have allowed
a “background” contribution described by the constant a. We
show this fit in Fig. 1 below.

In the older data, the scaling is less dramatically visible, and
the exponent of the temperature dependence is consequently
less robust, although still consistent with T 1/2. It would be of

4Consider the case of a particle-hole symmetric quantum critical
theory. Place the theory at a small charge density, at a scale much
lower than the temperature. Then σxx is still density independent,
but the Hall conductivity has to be linear in density by particle-hole
symmetry. In this case one can reproduce the observed scaling of
resistivity, Hall angle, and Lorenz ratio by the assignment θ = 0, z =
2, and � = −1. These scaling exponents predict a magnetoresistance
that goes as B2/T 3 instead of the observed B2/T 4, and therefore do
not describe the cuprates. We see that the magnetoresistance scaling
does not follow automatically from any of the other scalings, such as
the Hall angle. A particle-hole symmetric theory deformed by a small
charge density may be a contender to describe other strange metals.

5We thank T. Senthil for this observation.
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FIG. 1. (Color online) Thermopower versus temperature for
LSCO at doping x = 0.25, over temperatures 250–700 K. Dots
are taken from the data curve in [55]. The blue line is a fit to
S ∼ −b T 1/2 + a, and goes right through the data points. In contrast,
fits to S ∼ −b T + a (orange line) and S ∼ b T −1/2 + a (green line)
do not fit the data well. Leaving the exponent m in −b T m + a as
a free parameter in the fit one finds that the optimal fit values are
a = 32.1, b = 1.23, and m = 0.49.

interest to identify a thermoelectric quantity that would show a
cleaner scaling T dependence over this range of temperatures,
analogously to how the Hall angle cleanly reveals the scaling
property of the Hall conductivity. There is also a need for high
quality data over wide temperature ranges in order to sensibly
discuss scaling exponents.

Consider next the Hall thermoelectric conductivity. This
quantity is typically measured via the Nernst coefficient

ν ≡ 1

B

[
αxy

σxx

− S tan θH

]
∼ T −2/z ∼ T −3/2. (16)

We assume here that the two terms do not cancel, in which
case ν would go to zero at a faster rate at large temperatures.
Existing data on cuprates in the strange metal regime do indeed
appear to show the Nernst coefficient going to zero at large
temperatures [56,57], in qualitative agreement with (16). Note
again that our scaling arguments say nothing about the sign of
the coefficient. However, the data are not over a sufficiently
large temperature regime, or of sufficiently quality, to robustly
extract an exponent from the high-temperature dependence.
We are not aware of Nernst data over a comparable temperature
range to the thermopower data we discussed in the previous
paragraph. It would clearly be desirable, for our purposes,
to have such data. Meanwhile, the scaling prediction (16)
seems qualitatively reasonable, but is quantitatively neither
confirmed nor excluded.

Several of the quantities we have just discussed also show
interesting scaling collapse as a function of a doping as well
as temperature [58–62]. This certainly strengthens the case
for the existence of a quantum critical description of strange
metal transport. However, understanding deformations away
from the critical regime due to doping is an additional layer of
subtlety that we will not attempt here. Our exponents {z,θ,�}
control the temperature dependence of the quantum critical
physics itself, not deformations thereof.

The remaining transport quantity is the thermal conductiv-
ity κxx . Because phonons contribute to thermal transport, it is
likely not possible to extract the electronic contribution with
sufficient accuracy at the relatively high temperatures we have
been focused on. If it were possible to extract the electronic
contribution, the scaling prediction is that

κxx ∼ T (z−θ)/z ∼ T . (17)

If the scaling region we are studying persists down to low
temperature—which would be plausible if it is indeed due to
a zero-temperature quantum critical point or phase—then by
suppressing superconductivity with a large magnetic field one
could hope to observe (17) at low temperatures. However, the
observation should be made in a regime where the electrical
resistivity is dominated by the linear in temperature term, not
by the residual resistivity. This fact sharply distinguishes (17)
from the standard linear in temperature thermal conductivity in
low-temperature regimes dominated by the residual resistivity.
Existing measurements are in this residual resistivity (or
indeed weak localization) regime [63–65]. A closely related
interesting observable to look at would be thermal magne-
toresistance in the strange metal normal state. This should be
sensitive to purely electronic physics. The predicted scaling
(at small magnetic fields) is

κ

κ
≡ κxx(B) − κxx(0)

κxx(0)
∼ B2T (2�−4)/z ∼ B2

T 4
. (18)

To our knowledge, measurements of this quantity do not exist
in the strange metal regime.

In addition to thermoelectric transport, the spin dynamics
as measured by NMR or inelastic neutron scattering is an
important probe of cuprate systems. We are able to reproduce
observed scaling in these quantities. However, because (i) we
need to assume that the scaling dimension of the magnetic
field coupling to the spin is the same as that coupling to the
conserved electric current and (ii) the most dramatic scaling is
observed only in underdoped LSCO and may therefore have
a different origin to the scaling discussed so far, we have left
this discussion to the Appendix.

We now turn to thermodynamic quantities. From scaling
we obtain the specific heat and magnetic susceptiblity

c ≡ −T
∂2f

∂T 2
∼ T (d−θ)/z ∼ T 3/2, (19)

χ ≡ − ∂2f

∂B2
∼ T (z−θ+2�−2)/z ∼ T −3/2. (20)

To extract the electronic specific heat experimentally, one must
subtract the phonon contribution. Within a certain subtraction
scheme, experiment on optimally doped YBCO gives c ∼ T

from Tc to room temperature [66]. This is of course the
usual Fermi-liquid scaling. Furthermore, the measurement
finds that c/(χT ) is given by the free electron Wilson ratio
over this temperature range [66]. The thermodynamic quan-
tities therefore appear to be rather conventional and not
governed by the same quantum critical dynamics as the
transport quantities we considered above. This suggests the
existence of degrees of freedom that contribute to and dominate
thermodynamics but not transport. For instance, such degrees
of freedom might be localized. We discuss various possibilities
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below. An important aspect of the difference between transport
and thermodynamics is that we have found that transport is
characterized by hyperscaling physics (i.e., θ = 0), whereas
Fermi-surface thermodynamics requires θ = d − 1 [25]. It
may be possible to identify a scaling contribution on top of the
dominant conventional background. A fit to c/T ∼ a − bT 3/2

correctly captures the slight decrease of c/T with temperature,
but the power is not strongly constrained. The magnetic sus-
ceptibility has been more thoroughly characterized. To cleanly
identify a temperature scaling, following our experience above,
we expect to need slightly overdoped samples with data
points extending to high temperatures. Data in this regime,
such as [67–69], do show the susceptibility decaying at large
temperatures with a positive curvature. While some of the
data are not incompatible with the form χ ∼ a + bT −3/2 at
large temperatures, the fit is not compelling. If the scaling
contribution is there at all it must be strongly subleading
compared to a more conventional contribution.

To summarize the above: We have shown that simple
kinematical assumptions plus two nontrivial critical exponents
(z and �) can capture many of the observed scaling relations
in the strange metal regime of the cuprates. Specifically we
successfully described scalings in (i) the electrical resistivity,
(ii) the Hall angle, (iii) the Hall-Lorenz ratio, (iv) the mag-
netoresistance, and (v) the thermopower. In the Appendix we
also, possibly coincidentally, reproduce (vi) the dynamical spin
susceptibility. These facts do not tell us what the underlying
mechanism causing the scaling is, but will surely constrain it.
It would be wonderful to find a compelling microscopic theory
predicting the values of the exponents in (13).

IV. DISCUSSION

Quantum critical points are one possible origin of scaling
laws. A key signature of a quantum critical point is a divergence
in the effective quasiparticle mass as detected via quantum
oscillations in large magnetic fields. Such divergences are
observed in underdoped cuprates at p ≈ 0.08 [70], as well as
in overdoped cuprates at p ≈ 0.18 [71]. These values of carrier
density are precisely those where the largest magnetic field is
required to suppress superconductivity [71,72]. The nature of
the critical points is likely quite different. The underdoped
critical point appears to be associated with the onset of
magnetic order and of Mott insulation. The overdoped critical
point (or points) appears to be associated to the closure of the
pseudogap and Fermi-surface reconstruction. It is unclear a
priori which critical points control which parts of the phase
diagram, an issue that is further complicated by the fact that
the location of the critical points may move due to the large
magnetic fields and/or the superconducting condensate [73].
Most of the observables we have discussed—the exception is
the dynamical spin susceptibility discussed in the Appendix—
have been measured in optimally or slightly overdoped
materials. The linear in temperature resistivity regime, for
instance, is centered around slightly overdoped samples [13].
Thus one possibility is that the critical exponents we have
found are associated with a quantum critical point describing
the closing pseudogap and/or Fermi-surface reconstruction.
The scaling in the spin susceptibility would then either be due
to a different critical point at lower doping, or could be induced

by coupling to the critical modes at the higher doping critical
point.

The conventional behavior of the thermodynamic quantities
χ and c above is in tension with the anomalous transport
and needs to be explained. Three simple scenarios are
the following: (a) localized degrees of freedom dominate
thermodynamics but do not contribute directly to transport,
(b) neutral degrees of freedom such as a spinon Fermi surface
dominate thermodynamics but do not contribute to charge
transport, (c) the critical physics is localized in momentum
space, involving, e.g., charge or spin density waves excitations,
whereas thermodynamics is dominated by the “cold” remain-
der of the Fermi surface. A weakly interacting picture has long
suggested that transport in such scenarios will be dominated
by the conventional cold quasiparticles that short-circuit the
critical modes [74]. However, it has recently been argued
that strong coupling between different patches of the Fermi
surface can invert this logic, so that the critical “hot spots” can
dominate transport [35].

Another possibility, not necessarily in contradiction with
the quantum critical scenario, is that the scalings are a conse-
quence of a high temperature, incoherent phase characterized
by the absence of any long-lived excitations [9]. Most of the
data we have incorporated within our scaling framework are
indeed at temperatures ranging from above the optimal Tc to
well above room temperature. Some scaling properties in this
regime may well be distinct from any scaling emerging at very
low temperatures; cf. [75].

To end with, we comment on several measurements of
temperature and frequency scaling in the cuprates that we
have not yet discussed. Also, we will make some remarks
on the implications of our results for the understanding of
high-temperature superconductivity.

A well-known measurement in Bi-2212 found the optical
conductivity to scale as σ (ω) ∼ ω−2/3 over an intermediate-
frequency regime [6]. This observation does not fit into our
current scaling analysis. However, the frequencies at which this
scaling is observed correspond to temperature scales greater
than about 1500 K. This is a different (higher) temperature
range than the rest of the observables we have fit in this paper. It
seems plausible, then, that this scaling has a different origin. At
lower frequencies, we have already mentioned the fact that the
optical conductivities of cuprates have a low-frequency peak
with width of order � ∼ T ; see, e.g., [3,5–8]. This latter fact
is compatible with our single-parameter scaling hypothesis.

An energy width (quasiparticle lifetime) of order � ∼ T

is also observed around optimal doping in ARPES measure-
ments, together with ω/T scaling [76]. While microscopic
single-particle lifetimes are not natural observables from our
nonquasiparticle perspective, the absence of a new scale in
these lifetimes is again compatible with our single-parameter
scaling hypothesis.

An important motivation to understand the strange metal
regime of the cuprates is of course the hope that it will help to
explain the emergence of high-temperature superconductivity
from this regime. Once the quantum critical nature of the
strange metal is established, the onset of superconductivity
must also be understood with this framework. In particular,
as with the current operators we have considered here, the
essential feature of the “Cooper pair operator” O that
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condenses will be its scaling dimension O. This
quantity can in principle be measured through the pair
susceptibility [77–79]. The dimension of the Cooper
pair operator appears as a natural organizing principle
in holographic studies of superconductivity [17,80],
following [81–83]. It would be interesting if, in analogy to our
study here, the exponent O could be shown to tie together
various different experimental observables.

We have restricted attention to the cuprates in this study.
It would be natural to adapt our analysis to other well-
characterized strongly interacting materials that exhibit scaling
in the temperature dependence of observables [84]. New
experiments will likely be required. The exponents need
not be the same as for the cuprates, of course. Natural
candidates include heavy fermions, pnictide superconductors,
and ruthenates.
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APPENDIX: SCALING OF THE SPIN SUSCEPTIBILITY

Spin susceptibilities are measured via the coupling of spin
to a magnetic field. However, in a nonrelativistic theory
the scaling dimension of this coupling need not be the
same as the dimension of the magnetic coupling to the
electric current. Therefore, to describe the potential scaling
of spin susceptibilities, we have the freedom to choose a new
exponent. In this Appendix we show that certain measurements
of quantum critical scaling in cuprate spin susceptibilities can
be reproduced if we assign the magnetic field coupling to spin
the same dimension (6) as that coupling to the electric current.

Quantum critical scaling has been reported in the
momentum-dependent dynamical spin susceptibility
of La1.86Sr0.14CuO4 as measured by inelastic neutron

scattering [85]:

lim
ω→0

χ ′′(ω,q�,T )

ω
∼ 1

[q(T )]3±0.3
. (A1)

Here q� is the location in momentum space of the peak in the
susceptibility and q is the temperature-dependent width of
the peak. The prediction from our scaling is

lim
ω→0

χ ′′(ω,q�,T )

ω
∼ [q(T )]−θ+2�−2 ∼ 1

[q(T )]10/3
. (A2)

The exponent is seen to be within the error bars of the
experimental measurement (A1)! The compound used for this
measurement is slightly underdoped, while our emphasis in
the main text was on slightly overdoped samples. It is not
clear, therefore, whether it is correct to include this quantity in
our analysis, as the scaling may have a different origin, as we
mentioned in the discussion section. Furthermore, the scaling
is not seen in YBCO, and so may be less universal than the
transport results discussed above. In any case, the observed
scaling in LSCO is reproduced by our exponents. The data
in [85] were also used to argue for a z = 1 dynamical critical
exponent. However, those data do not seem to be clean enough
(in particular, there is a non-negligible constant offset to the
scaling of q with T ) to exclude our preferred z = 4/3, which
is not such a different value.

The same inelastic neutron-scattering data [85] have
furthermore been used to extract the momentum-integrated
susceptibility. The result is that [86]

τeff ≡ T

∫
d2q lim

ω→0

χ ′′(ω,q,T )

ω
∼ const, (A3)

in the quantum critical regime. Our scaling predicts

τeff ∼ T (−θ+2�+z)/z ∼ const, (A4)

again in agreement with the data! For both (A2) and (A4) to
work, the value z = 4/3 was crucial.

The same quantity τeff in (A3) can be expected to determine
the NMR relaxation rate 1/T1 of nuclear spins coupled to,
e.g., an antiferromagnetic order parameter. Indeed, 1/T1 at the
63Cu sites in LSCO is also measured to be constant in the
high-temperature quantum critical regime [87]. This is again
in agreement with our scaling according to (A4).
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