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We study the generalized mutual information Ĩn of the ground state of different critical quantum chains. The
generalized mutual information definition that we use is based on the well established concept of the Rényi
divergence. We calculate this quantity numerically for several distinct quantum chains having either discrete
Z(Q) symmetries (Q-state Potts model with Q = 2,3,4 and Z(Q) parafermionic models with Q = 5,6,7,8 and
also Ashkin-Teller model with different anisotropies) or the U (1) continuous symmetries (Klein-Gordon field
theory, XXZ and spin-1 Fateev-Zamolodchikov quantum chains with different anisotropies). For the spin chains
these calculations were done by expressing the ground-state wave functions in two special bases. Our results
indicate some general behavior for particular ranges of values of the parameter n that defines Ĩn. For a system, with
total size L and subsystem sizes � and L − �, the Ĩn has a logarithmic leading behavior given by c̃n

4 log[ L

π
sin( π�

L
)]

where the coefficient c̃n is linearly dependent on the central charge c of the underlying conformal field theory
describing the system’s critical properties.
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I. INTRODUCTION

The entanglement entropy, as a tool to detect and classify
quantum phase transitions, has been playing an important role
in the last fifteen years (see Ref. [1] and references therein).
In one dimension, where most of the critical quantum chains
are conformal invariant, the entanglement entropy provides a
powerful tool to detect, as well to calculate, the central charge
c of the underlying conformal field theory (CFT). For example,
for quantum chains, the ground-state entanglement entropy of
a subsystem formed by contiguous � sites of an infinite system,
with respect to the complementary subsystem, has the leading
behavior S = c

3 ln � if the system is critical or S = c
3 log ξ ,

when the system is noncritical with correlation length ξ [2].
Although there are plenty of proposals to measure this quantity
in the laboratory [3–5] the actual experiments were out of
reach so far. Strictly speaking, the central charge of quantum
spin chains has never been measured experimentally. Recently
other quantities, which are also dependent of the central
charge, have been proposed [6,7]. Among these proposals
interesting measures that, from the numerical point of view,
are also efficient in detecting the phase transitions as well as
the universality class of critical behavior are the Shannon and
Rényi mutual informations [8–11] (see also the related works
[12–18]). The Rényi mutual information (the exact definition
will be given in the next section) has a parameter n that recovers
the Shannon mutual information at the value n = 1. The
results derived in Refs. [8–11] indicate that the Shannon and
Rényi mutual information of the ground state of quantum spin
chains, when expressed in some special local bases, similarly
as happens with the Shannon and Rényi entanglement entropy,
show a logarithmic behavior with the subsystem’s size whose
coefficient depends on the central charge.

Recently additional new results concerning the Shannon
and Rényi mutual information in quantum systems were
obtained, see Refs. [19–23]. There are also studies of the
mutual information in classical two-dimensional spin systems
[18,24–28]. It is worth mentioning that the Shannon and Rényi
mutual information studied in the above papers, as will be

defined in the next section, are basis-dependent quantities.
It is important to distinguish them from the more known
basis-independent quantity, namely, the von Neumann mutual
information. For recent developments on the calculation of the
von Neumann mutual information in thermal equilibrium and
nonequilibrium systems, see Refs. [29,30].

Most of the results regarding the Shannon and the Rényi
mutual information, except for the case of harmonic chains,
are based on numerical analysis, especially for systems with
central charge not equal to one. One of the main problems in
a possible analytical derivation comes from the presence of a
discontinuity at n = 1 of the Rényi mutual information. This
discontinuity prevents the use of the replica trick, which is
normally a necessary step for the analytical derivation of the
Shannon mutual information.

In this paper we will consider, for many different quantum
chains, another version of the mutual information, which
is also parametrized by a parameter n that reduces at n =
1 to the Shannon mutual information. The motivation for
our calculations is twofold. First, this definition is more
appropriate from the point of view of a measure of shared
information among parts of a system, since it has the expected
properties. This will be discussed in the Appendix.

Second, this quantity does not show any discontinuity at
n = 1, so it might be a good starting point for the analytical
calculation of the Shannon mutual information with some sort
of analytical continuation of the parameter n. From now on we
will call this new quantity generalized mutual information.

Having the above motivations in mind we first calculated
numerically (using exact diagonalization) the generalized
mutual information for several critical quantum spin chains.
We considered models with Z(Q) symmetries, such as the Q-
state Potts models for Q = 2,3 and 4, the Z(4) Ashkin-Teller
model and the Z(Q) parafermionic models with Q = 5–8.
We then calculated the generalized mutual information for
quantum critical harmonic chains (discrete version of Klein-
Gordon field theory) and also for quantum spin chains with
U (1) symmetry, such as the XXZ and the spin-1 Fateev-
Zamolodchikov quantum chains.
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The structure of the paper is as follows: in the next
section we will present the essential definitions of the Shannon
and Rényi mutual information as well as generalized mutual
information. In Sec. III we will present the numerical results of
the generalized mutual information for many different critical
quantum spin chains. Finally in the last section we present our
conclusions.

II. GENERALIZED MUTUAL INFORMATION:
DEFINITIONS

Consider the normalized ground-state eigenfunction of a
quantum spin chain Hamiltonian |ψG〉 = ∑

I aI |I 〉, expressed
in a particular local basis |I 〉 = |i1,i2, . . .〉, where i1,i2, . . . are
the eigenvalues of some local operators defined on the lattice
sites. The Rényi entropy is defined as

Shn(X ) = 1

1 − n
ln

∑
I

pn
I , (1)

where pI = |aI |2 is the probability of finding the system in the
particular configuration given by |I 〉. The limit n → 1 gives
us the Shannon entropy Sh = −∑

I pI ln pI . Since we are
considering only local bases it is always possible to decompose
the configurations as a combination of the configurations
inside and outside of the subregions as |I 〉 = |IAIĀ〉. One
can define the marginal probabilities as pIA

= ∑
IĀ

pIAIĀ
and

pIĀ
= ∑

IA
pIAIĀ

.
In a previous paper [11] we studied the naive definition of

the Rényi mutual information:

In(A,Ā) = Shn(A) + Shn(Ā) − Shn(A ∪ Ā). (2)

From now on instead of using pIAIĀ
we will use just pI . The

known results of the Rényi mutual information of quantum
critical chains are obtained by using the definition (2). For
special bases, usually the ones where part of the Hamiltonian
is diagonal (see Ref. [11]), the definition (2) for the Rényi
mutual information gives us a logarithmic behavior with the
subsystem size, for arbitrary values of n. However, as observed
numerically for several quantum chains (see Refs. [10,11,13]),
it shows a discontinuity at n = 1, that forbids the use of large-n
analysis to obtain the most interesting case where n = 1,
namely the standard Shannon mutual information. Although
the definition (2) has its own uses it is not the one which
normally has been considered in information sciences. For
example In for n �= 1 is not necessarily a positive function, a
property that we naturally expect to be hold for the mutual
information. In this paper we consider a definition that is
common in information sciences [31]. The generalized mutual
information with the desired properties, as a measure of shared
information (see Appendix), is defined as [31]:

Ĩn(A,Ā) = 1

n − 1
ln

∑
I

pn
I

pn−1
IĀ

pn−1
IA

, (3)

where pIA
and pIĀ

, as before, are the probabilities that
the subsystems are independently in the configurations |IA〉
and |IĀ〉 that forms the configuration |I 〉 that occurs with
probability pI .

Hereafter L will represent the size of the whole system
and � and L − � the sizes of the subsystems. With this new

notation one can write Ĩn(A,Ā) as Ĩn(�,L − �). This definition
of the generalized mutual information comes from the natural
extension of the relative entropy to the Rényi case and
measures the distance of the full distribution from the product
of two independent distributions. In the limit n → 1 one
easily recovers the Shannon mutual information Ĩ1(l,L − �) =
Sh(�) + Sh(L − �) − Sh(L), where Sh = −∑

I pI ln pI is
the standard Shannon entropy. One of the important properties
of Ĩn, that is not shared by In, is its nondecreasing behavior as
a function of n (see Appendix). Our calculations for a set of
distinct quantum spin chains will be done numerically, since
up to our knowledge an analytical method to consider these
quantum chains is still missing.

III. GENERALIZED MUTUAL INFORMATION
IN QUANTUM CHAINS

In this section we will numerically calculate the ground-
state generalized mutual information of two series of critical
quantum spin chains with slightly different structure. In the
first part we will calculate the generalized mutual information
for systems with discrete symmetries such as the Q-state Potts
models with Q = 2,3, and 4, the Ashkin-Teller model and the
parafermionic Z(Q)-quantum spin chain [33] for the values
of Q = 5,6,7, and 8. In the second part we will calculate
the generalized mutual information for systems with U (1)
symmetry such as the Klein-Gordon field theory, the XXZ

model and the Fateev-Zamolodchikov model with different
values of their anisotropy parameters.

A. Generalized mutual information in quantum
chains with discrete symmetries

In this subsection we will study the generalized mutual
information of the ground state of different critical spin chains
with Z(Q) discrete symmetries. The results we present were
obtained by expressing the ground-state wave function in
two specific bases where the systems show some universal
properties.

1. Generalized mutual information of the quantum Q-state Potts
model and the quantum Ashkin-Teller model

Our results show that the Q-state Potts model and the
Ashkin-Teller model share a similar behavior. For this reason
we discuss them together. The critical Q-state Potts model in
a periodic lattice is defined by the Hamiltonian [32]

HQ = −
L∑

i=1

Q−1∑
k=1

(
Sk

i S
Q−k
i+1 + Rk

i

)
, (4)

where Si and Ri are Q × Q matrices satisfying the following
Z(Q) algebra: [Ri,Rj ] = [Si,Sj ] = [Si,Rj ] = 0 for i �= j

and SjRj = e
i 2π

Q RjSj and R
Q
i = S

Q
i = 1. The model has its

critical behavior governed by a CFT with central charge c =
1 − 6

m(m+1) where
√

Q = 2 cos( π
m+1 ). The Q = 2 Potts chain

is just the standard Ising quantum chain. The Ashkin-Teller
model has a Z(2) ⊗ Z(2) symmetry and a Hamiltonian given
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by:

H = −
L∑

i=1

(
SiS

3
i+1 + S3

i Si+1 + �S2
i S

2
i+1

+Ri + R3
i + �R2

i

)
, (5)

where Si and Ri are the same matrices introduced in the Q = 4
Potts model. The model is critical and conformal invariant
for −1 < � � 1 with the central charge c = 1. It is worth
mentioning that at � = 1 we recover the Q = 4 Potts model
and at � = 0 the model is equivalent to two decoupled Ising
models.

In a previous paper [11] we already showed that the
Shannon and Rényi mutual information, as defined in (2),
are basis dependent. In other words one can get quite
distinct different finite-size scaling behaviors by considering
a different basis. Surprisingly in some particular bases, which
we called conformal bases, the results show some universality.
For example, the results for the Q-state Potts model and for
the Ashkin-Teller model in the bases where the matrices Ri

or the matrices Si are diagonal are the same, and follow the
asymptotic behavior

In(�,L − �) = cn

4
ln

[
L

π
sin

(
π�

L

)]
+ · · · , (6)

with

cn = c

{
1, n = 1

n
n−1 , n > 1.5

. (7)

We should mention that in Ref. [10], based on numerical
results, it was claimed that for n = 1 the coefficient c1 might
not be exactly equal to the central charge. As it was discussed
in Refs. [10,11] it is quite likely that In is not a continuous
function around n = 1 and so any attempt to do the replica
trick using this definition of Rényi mutual information will
be useless. This makes the analytical calculation a challenge.
This is an additional reason to examine the behavior of Ĩn,
besides being the correct extension, from the point of view
of a measure of shared information. Having this in mind we
calculated the Ĩn for Q = 2,3, and Q = 4 Potts chains and for
the Ashkin-Teller model in the R and the S bases. We found
that in some regimes of variation of the parameter n one can
fit the data nicely to

Ĩn(�,L − �) = c̃n

4
log

[
L

π
sin

(
π�

L

)]
+ · · · , (8)

being c̃n a monotonically nondecreasing function of n, consis-
tent with what we expect for the mutual information, since it
is a good measure of shared information (see the Appendix).

Here we summarize the results for the Q-state Potts and
Ashkin-Teller quantum chains:

(i) The results in general depend on the basis we choose to
express the ground-state wave function.

(ii) The generalized mutual information follows (8) in the
S and R bases but with different coefficients for different bases.
To illustrate the logarithmic behavior we show in Fig. 1 and
Fig. 2 the mutual information Ĩn for the Ising model (Q = 2)
with L = 28 sites and ground-state eigenfunctions in the S

and R basis, respectively. We see, from these figures, that for

0.3 0.4 0.5 0.6 0.7 0.8
ln(Lsin(πl/L))/4

0.2

0.4

0.6

0.8

1

1.2

1.4

In

n=0.5
n=1
n=4
n=6
n=8

~

FIG. 1. (Color online) The generalized mutual information
Ĩn(�,L − �) of the L = 28 sites periodic Ising quantum chain, as
a function of ln[L sin( π�

L
)]/4. The ground-state wave function is in

the basis where the matrices Si are diagonal (S bases).

subsystem sizes � � 3 we have the logarithmic behavior given
by (8) up to n ≈ 8 in the S basis and n ≈ 4 in the R basis. As
we can see our results does not exclude the existence of some
relevant �-dependent terms in (8) for large values of n.

(iii) The coefficient of the logarithm c̃n in (8) is a
continuous monotonically non-decreasing function of n and

0.3 0.4 0.5 0.6 0.7 0.8
ln(Lsin(πl/L))/4

0.5

1

1.5

2

2.5

In

n=0.5
n=1
n=4
n=6
n=8

~

FIG. 2. (Color online) The generalized mutual information
Ĩn(�,L − �) of the L = 28 sites periodic Ising quantum chain, as
a function of ln[L sin( π�

L
)]/4. The ground-state wave function is in

the basis where the matrices Ri are diagonal (R bases).
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 Q=3 L=19
 Q=4 L=15
 A-T Δ=0.5 L=14
 A-T Δ=0 L=14
 A-T Δ=0.5 L=13
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Q=4 L=14
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A-T Δ=0.5

A-T Δ=1 
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FIG. 3. (Color online) The ratio c̃n/c of the coefficient of the
logarithm in Eq. (8) and the central charge c for the Q-state Potts
model with Q = 2,3, and 4, and for the Ashkin-Teller model (A-
T) with different anisotropies �. The Ashkin-Teller model at the
isotropic point (� = 1) is equivalent to the four-state Potts model. The
ground-state wave functions are in the bases where the Si matrices are
diagonal. The lattice sizes of the models are shown and the coefficients
c̃n were estimated by using the subsystem sizes � = 3,5, . . . ,Int[L/2].

it follows the following formula in the S basis:

c̃n = cf (n), with f (1) = 1, (9)

where c is the central charge and f (n) seems to be a continuous
universal function independent of the model, as we can see
in Fig. 3. In the case of the Ashkin-Teller model the results
start to deviate around n = 6 from the ones obtained for the
Potts models. As we can see in Fig. 3, the deviation point is
dependent on the anisotropy parameter � of the model.

(iv) In the case of the R basis, as one can see in Fig. 4,
Eq. (9) is still valid for values of n up to ∼4. However the
function f (n) is distinct from the one obtained in the S basis.
As shown in Fig. 4, up to n = 2 the form of the function f (n)
seems to be also independent of the model. This figure also
shows that the Ashkin-Teller model has stronger deviations in
this basis, as compared with the results obtained in the S basis.
In order to better see the difference of the coefficients c̃n in the
S and R basis, we present in Fig. 5 the data of Figs. 3 and 4
for the Q = 2,3 and four-state Potts models.

(v) The coefficient of the logarithm in the S basis always
goes to zero as n → 0, differently from the R basis where
it approaches to a nontrivial number. This simply means that
probably in the continuum limit all the probabilities in the S

basis are positive but in the R basis some of them are zero. For
the definition of the n = 0 case see the Appendix.
Our numerical results indicate that c̃n is a continuous function
of n around n = 1. This means that Ĩn should be a continuous
function with respect to n and so it is a better candidate to be
used in techniques exploring the analytical continuation of the

1 2 3 4
n

1

2

3

4

5

c n
/c

Q=2 L=30 l=3,...,15
Q=3 L=19 l=3,...,9
Q=4 L=15 l=4,...,7
 A-T Δ=0.5 L=15 l=3,...,7
 A-T Δ=0    L=15 l=3,...,7

~
FIG. 4. (Color online) Same as Fig. 3, but with the ground-state

wave functions of the quantum spin Hamiltonians expressed in the
bases where the matrices Ri are diagonal. The lattice sizes of the
models are shown in the figure, as well as the subsystems sizes � used
to estimate c̃n.

value n, as happens, for example, in the replica trick. However,
the appropriate technique that may be used is still unclear to
us.

It is important to mention that the results obtained for
the ratio c̃n/c in this section (Fig. 3) and in the subsequent
ones (Figs. 8, 9, 11, and 13) are based on the linear fit with

1 2 3 4
n

1

2

3

4

5

c n
/c

Q=2 L=30  R-basis
Q=3 L=19 R-basis
Q=4 L=15 R-basis
Q=2 L=28 S-basis
Q=3 L=19 S-basis
Q=4 L=15 S-basis

~

FIG. 5. (Color online) The values of the ratios c̃n/c of Figs. 3
and 4 for the Q = 2,3 and four-state Potts model are shown in the
same figure, for comparison.
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~

FIG. 6. (Color online) The values of c̃n/c obtained from the data
of Figs. 1 and 2 for the Ising quantum chain with L = 28 sites and
eigenfunction expressed in S and R basis.

the ln[L sin(�π/L)] dependence. These fittings were done by
choosing a set of subsystem sizes. In all the presented figures
we only depict results where a small variation of the number
of subsystem sizes gives us estimated values of c̃n that differs
a few percent. As an example we consider the fittings obtained
from the data of Figs. 1 and 2 for the Ising model with L = 28
sites and ground-state eigenfunction in the S and R basis,
respectively. This is shown in Fig. 6. As we can see, while for
the S basis the fitting is reasonable up to n = 8 in the R basis
we do not have reliable results for n > 4.

2. Generalized mutual information in the parafermionic
Z( Q)-quantum spin chains

In this subsection we consider the generalized mutual
information for some critical spin chains with discrete Z(Q)
symmetry and central charge bigger than one. The quantum
chains we consider are the parafermionic Z(Q)-quantum spin
chains [33] with Hamiltonian given by [34,35]

H = −
L∑

i=1

Q−1∑
k=1

(
Sk

i S
Q−k
i+1 + Rk

i

)
/ sin(πk/Q), (10)

where again Si and Ri are the Q × Q matrices that appeared
in (4). This model is critical and conformal invariant with
a central charge c = 2(Q − 1)/(Q + 2). For the case where
Q = 2 and Q = 3 we recover the Ising and three-state
Potts model, and for the case where Q = 4 we obtain the
Ashkin-Teller model with the anisotropy value � =

√
2

2 . We
have considered the models with Q = 5,6,7, and 8 and the
ground-state wave functions expressed in the S or R basis.
The results for the several values of Q are shown in Figs. 7,
8, and 9. To illustrate the logarithmic dependence with the
subsystem size � we show in Fig. 7 Ĩn(�,L − �), as a function
of ln[L sin(π�/L)]/4 for the Z(7) parafermionic quantum

0.3 0.35 0.4 0.45 0.5 0.55
ln(Lsin(πl/L))/4

0.5

1

1.5

2

2.5

In

 n= 0.5
 n=1
 n=2
 n=4
 n=6

~

FIG. 7. (Color online) The generalized mutual information
Ĩn(�,L − �) of the L = 10 sites periodic Z(7)-parafermionic quantum
chain, as a function of ln[L sin( π�

L
)]/4. The ground-state wave

function is in the basis where the Si matrices are diagonal (S bases).

chain with L = 10 sites, with the ground-state wave function
expressed in the S basis. In Figs. 8 and 9 we show the ratio c̃n/c

of the logarithmic coefficient of (8) with the central charge c

for the Z(Q)-parafermionic models with ground-state wave

0 2 4 6 8 10
n

0

1

2

3

4

c n
/c

 Q=5 L=12
 Q=6 L=11
 Q=7 L=10
 Q=8 L=9

~

FIG. 8. (Color online) The ratio c̃n/c of the coefficient of the
logarithm in Eq. (8) and the central charge c for the Z(Q)-
parafermionic models with Q = 5,6,7, and 8. The ground states are
in the bases where the Si matrices are diagonal. The lattice sizes of the
models are shown in the figure and the coefficients c̃n were estimated
by using the subsystem sizes � = 3,5, . . . ,Int[L/2].
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~

FIG. 9. (Color online) Same as Fig. 8, but with the ground-state
wave function of the quantum spin Hamiltonians expressed in the
bases where the matrices Ri are diagonal. The lattice sizes of
the models, as well as the subsystems sizes � used to estimate c̃n

are shown.

function in the S and R basis, respectively. The maximum
lattice sizes we used for the Z(Q)-parafermionic models are
L = 12,11,10, and 9 for Q = 5,6,7, and 8, respectively. The
results we obtained are very similar to the ones we already
discussed in the previous case of the Q-state Potts models.
All the five properties that we discussed in that subsection
are equally valid also for the Z(Q)-parafermionic models. By
comparing the results of Figs. 8 and 9 with Figs. 3 and 4 we
observe that the function f (n) in (9) are quite similar for the
two set of models, at least for values of n up to ∼6. Probably
the matching of these curves is not perfect due to the small
system sizes we consider, specially for Q > 4.

B. Generalized mutual information of quantum
chains with continuous symmetries

In this section we consider the generalized mutual infor-
mation of critical chains having a continuous U (1) symmetry.
We studied a set of coupled harmonic oscillators which gives
a discrete version of Klein-Gordon field theory as well as
the spin-1/2 XXZ and the spin-1 Fateev-Zamolodchikov
quantum chains. The last two models are interesting since, like
the Ashkin-Teller model, they have an anisotropy that gives us
a critical line of continuously varying critical exponents but
with a fixed central charge.

1. Generalized mutual information in quantum harmonic chains

In this subsection we will first consider the generalized
mutual information of the ground state of a system of generic
coupled harmonic oscillators. Then at the very end we will
confine ourselves to the simple case where we have only

the nonzero couplings at the next-nearest sites, that in the
continuum limit gives us the Klein-Gordon field theory.

Consider the Hamiltonian of L-coupled harmonic oscil-
lators, with coordinates φ1, . . . ,φL and conjugated momenta
π1, . . . ,πL:

H = 1

2

L∑
n=1

π2
n + 1

2

L∑
n,n′=1

φnKnn′φn′ . (11)

The ground state of the above Hamiltonian has the following
form

�0 =
(

det K1/2

πL

) 1
4

e− 1
2 <φ|K1/2|φ>. (12)

For the general Hamiltonian (11), one can calculate the two
point correlators XA = tr(ρAφiφj ) and PA = tr(ρAπiπj ) using
the K matrix defined in (11). The squared root of this matrix,
as well as its inverse, can be split up up into coordinates of the
subsystems A (size �) and Ā (size L − �), i.e.,

K−1/2 =
(

XA XAĀ

XT
AĀ

XĀ

)
, K1/2 =

(
PA PAĀ

P T
AĀ

PĀ

)
.

Here we chose the couplings so that we always keep the
equalities P T

AĀ
= PAĀ and XT

AĀ
= XAĀ. The spectra of the

matrix 2C = √
XAPA, can be used to calculate the Rényi

entanglement entropy (see Ref. [37] and references therein)
as

Sn(�,L − �) = 1

n − 1
tr

{
ln

[(
C + 1

2

)n

−
(

C − 1

2

)n]}
.

In this formulation we only need the correlators inside the
region A. Note that the above quantity is basis independent
and is considered as an usual measure of the quantum
entanglement. Here we need to introduce this quantity just
for later use. To calculate the generalized mutual information
for a system of coupled harmonic oscillators one first needs to
fix the basis. Here we work in the position coordinate basis,
however all the results are valid also in the momentum basis.
One should notice that the same is not true if one works in a
generic basis obtained through canonical transformations from
the position or momentum basis. In order to calculate Ĩn first
we find p(
A) and p(
Ā) as

p(
A) =
√

det P̃A

π�
e−
AP̃A
A, (13)

p(
Ā) =
√

det P̃Ā

πL−�
e−
ĀP̃Ā
Ā , (14)

where P̃A = PA − PAĀ(PĀ)−1P T
AĀ

and P̃Ā = PĀ −
P T

AĀ
(PA)−1PĀA. Since φ takes continuum values one

needs to consider the integral version of Eq. (3) as follows:

Ĩn = 1

n − 1
ln

∫
D


pn(
)

pn−1(
A)pn−1(
Ā)
, (15)

where p(
) = |�0|2. Plugging Eqs. (12), (13), (14) into
Eq. (15) and performing the Gaussian integral one can derive

155122-6



GENERALIZED MUTUAL INFORMATION OF QUANTUM . . . PHYSICAL REVIEW B 91, 155122 (2015)

the generalized mutual information

Ĩn = 1

2
ln

(
det K

1
2

det P̃A det P̃Ā

)
− 1

2(n − 1)

× ln

⎛
⎜⎜⎝

det
[
nK1/2 − (n − 1)

(
P̃A 0
0 P̃Ā

)]
det K1/2

⎞
⎟⎟⎠ .

The following determinant formulas

det(P̃A) det PĀ = det K1/2, (16)

det(P̃Ā) det PA = det K1/2, (17)

det PĀ det K−1/2 = det XA, (18)

det PA det K−1/2 = det XĀ, (19)

allow us to write

Ĩn(�,L − �) = S2(�,L − �)

− 1

2(n − 1)
ln det[n + (1 − n)T ], (20)

where

T =
(

XAP̃A XAĀP̃Ā

XT
AĀ

P̃A XĀP̃Ā

)
=

(
1 XAĀP̃Ā

XT
AĀ

P̃A 1

)
. (21)

There is an important remark that we should mention: in
principle Eq. (20) makes sense only if n + (1 − n)T is a
symmetric positive definite matrix. If we start with a symmetric
positive definite matrix K1/2 this is already warranted for
0 < n < 1 but for n > 1 one needs to check its validity. This
will be an important point when we study the short-range
coupled harmonic oscillators. Finally one can write

Ĩn(�,L − �) = S2(�,L − �) + M̃n(�,L − �)

= S2(�,L − �) − 1

2(n − 1)

× ln det
[
1 − (1 − n)2XT

AĀ
P̃AXAĀP̃Ā

]
,

where M̃n(�,L − �) is the only n-dependent part. We notice
here that by changing n to 2 − n we just change the sign of the
second term, i.e., M̃2−n(�,L − �) = −M̃n(�,L − �).

When n → 1 the second term vanishes and we recover the
result of [8]

Ĩ1(�,L − �) = S2(�,L − �). (22)

For massless Klein-Gordon theory the above result in one
dimension gives, as a consequence the well known result for
the Rényi entanglement entropy [36,37],

Ĩ1(�,L − �) = 1

4
ln

[
L

π
sin

(
π�

L

)]
+ · · · , (23)

where the dots are the subleading terms. Our numerical analy-
ses indicate that for short-range quantum harmonic oscillators
the matrix n + (1 − n)T is symmetric positive definite up to

-2.5 -2 -1.5 -1 -0.5 0
ln(sin(πl/L))

0

0.05

0.1

0.15

Mn

 n=1.50; L=120
 n=1.25; L=120
 n=1.01; L=120

~

FIG. 10. (Color online) The second term in Eq. (22), M̃n(�,L −
�), as a function of ln[L sin( π�

L
)] for periodic quantum harmonic chain

with L = 120 sites.

just n = nc = 2.1 The numerical results show that for the
values 0 < n < 2 Eq. (8) is a very good approximation, as
we can see for example in Fig. 10. The coefficient c̃n of the
logarithmic term in (8) is obtained from the fitting of the
model with L = 120 sites is shown in Fig. 11 and in the range
0.4 < n < 1.6 surprisingly it follows the simple formula:

c̃n = f (n) = 1 + 4
n − 1

10
, 0.4 < n < 1.6. (24)

This is the red line in Fig. 11. At n = 0 we expect zero
mutual information for our system, this means that based on
the symmetry n → 2 − n the coefficient for n = 2 should be
c̃2 = 2. Finally one can conclude that for integer values of
n = 0,1,2 the coefficient of the logarithm is

c̃n = f (n) = n, n = 0,1,2. (25)

2. Generalized mutual information of quantum
spin chains with continuous symmetries

The Hamiltonian of the XXZ chain is defined as

HXXZ = −
L∑

i=1

(
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + �σz
j σ z

j+1

)
, (26)

where σx , σy and σ z are spin- 1
2 Pauli matrices and � is an

anisotropy. The model is critical and conformal invariant for
−1 � � < 1 with a constant central charge c = 1, giving us
a good example to test the universality of our results with
respect to the change of the anisotropy. The long-distance

1For a finite-size system nc is not exactly equal to 2, however, by
increasing the lattice size it approaches the value 2. We conjecture
that nc = 2 is exact in the thermodynamic limit.
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0 0.5 1 1.5
n

0.4

0.6

0.8

1

1.2

1.4

1.6

cn
~

FIG. 11. (Color online) The coefficient of the logarithm c̃n in
Eq. (8). The lattice size L = 120 and the coefficients c̃n were
estimated by using the subsystem sizes � = 3,5, . . . Int[L/2]. The
red line is given by Eq. (24).

critical fluctuations are ruled by a CFT with central charge
c = 1 described by a compactified boson whose action is given
by

S = 1

8π

∫
d2x(�φ)2, φ ≡ φ + 2πR, (27)

where the compactification radius depends upon the values of
�, namely:

R =
√

2

π
arccos �. (28)

As it is shown in Fig. 12, in the σ z basis, the generalized mutual
information Ĩn(�,L − �) shows the logarithmic behavior given
in (8) only for n < 2. This can be simply understood based on
what we observed for the chain of harmonic oscillators. One
can look to the Klein-Gordon field theory as a noncompactified
version of the action (27). Since we showed that in that case the
generalized mutual information is not defined beyond n = 2
we expect the same behavior also in the compactified version.
Note that in our numerical calculations one can actually derive
spurious big numbers for the generalized mutual information
even for n > 2, but we expect all of them go to infinity in the
thermodynamic limit. This behavior seems to be independent
of the anisotropy parameter �.

The coefficient of the logarithm in (8) for n < 2 is again
given by (9), as we can see in Fig. 13, with a function f (n),
which fits to the results of the harmonic chain perfectly. We
also considered the results in the case where the ground-state
wave function is expressed in the σx basis and, except
around n = 1, Eq. (8) is not a good approximation. The
second U (1)-symmetric model we considered is the spin-1
Fateev-Zamolodchikov quantum chain whose Hamiltonian is

0.3 0.4 0.5 0.6 0.7 0.8
ln(Lsin(πl/L))/4

1

1.5

2

2.5

3

In

 n=0.5 L=28
 n-0.5 L=30
 n=1 L=28
 n=1 L=30
 n=1.5 L=28
 n=1.5 L=30
 n=2 L=28
 n=2 L=30

σz, Sz  basis
~

FIG. 12. (Color online) The generalized mutual information
Ĩn(�,L − �) of the periodic XXZ quantum chain with anisotropy
� = −1/2, as a function of ln[sin( π�

L
)]/4. The ground-state wave

function is in the basis where the σ z
i matrices are diagonal (σ z basis).

The results are for lattice sizes L = 28 and L = 30 and give an idea
of the finite-size corrections.

0 0.5 1 1.5 2
n

0.5

1

1.5

2

2.5

3

3.5

c n
/c

 xxz (c=1) Δ=0 L=30
 xxz (c=1) Δ=-1/2 L=30
 F-Z (c=1) γ=π/3 L=20
 F-Z (c=1) γ=π/4 L=20
 F-Z (c=3/2) γ=π/3 L=18
 F-Z (c=3/2) γ=π/4 L=18
 H-O L=120

σz, Sz  basis

~

FIG. 13. (Color online) The ratio c̃n/c of the coefficient of the
logarithm in Eq. (8) with the central charge c for the XXZ and
for the spin-1 Fateev-Zamolodchikov quantum chains (F-Z). The
XXZ (Fateev-Zamolodchikov) ground-state wave function are in
the σ z (Sz) basis. The results for the XXZ are for the anisotropies
� = 0, − 1/2 and in the case of the Fateev-Zamolodchikov model
their are for the couplings γ = π/3,π/4. The lattice sizes of the
models are shown and the coefficients c̃n were estimated by using the
subsystem sizes � = 4,5, . . . ,L/2.
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given by [38]

HFZ = ε

L∑
i=1

[
σi − (

σ z
i

)2 − 2(cos γ − 1)
(
σ⊥

i σ z
i + σ z

i σ⊥
i

)

− 2 sin2 γ
(
σ z

i − (
σ z

i

)2 + 2
(
S2

i

)2)]
, (29)

where �S = (Sx,Sy,Sz) are spin-1 SU (2) matrices, σ z
i =

Sz
i S

z
i+1 and �Si

�Si+1 = σ⊥
i + σ z

i . The model is antiferromagnetic
for ε = +1 and ferromagnetic for ε = −1. It has a line of
critical points (0 � γ � π

2 ) with a quite distinct behavior
in the antiferromagnetic (ε = +1) and ferromagnetic (ε =
−1) cases. The antiferromagnetic version of the model is
governed by a CFT with central charge c = 3

2 [39] while
the ferromagnetic one is ruled by a c = 1 CFT [40]. We
calculated Ĩn(�,L − �) in both critical regimes where c = 1
and c = 3

2 , and for different values of the anisotropy. We found
a very similar pattern as that of the XXZ quantum chain, as
can be seen in Fig. 13. Equation (8) is valid for values of
n < 2 and the coefficient of the logarithm follows (9) with a
function f (n), which is quite similar to the one we found for
the quantum harmonic oscillators and the XXZ chain. This
shows an interesting universal pattern for critical chains with
continuous U (1) symmetry.

IV. CONCLUSIONS

In this paper we calculated the generalized mutual infor-
mation Ĩn(�,L − �), as defined in (3), for quantum chains
describing the dynamics of quantum systems with contin-
uous or discrete degrees of freedom. Most of our analysis
was purely numerical due to the absence, at the moment,
of suitable analytical methods to treat this problem. We
considered several integrable quantum spin chains. These
quantum chains either have a Z(Q) symmetry [such as the
Q-state Potts model with Q = 2,3, and 4, the Ashkin-Teller
model, and the Z(Q)-parafermionic model with Q = 5,6,7,
and 8] or a U (1) symmetry (XXZ quantum chain and the
spin-1 Fateev-Zamolodchikov model). We also considered the
discrete version of the Klein-Gordon field theory given by
a set of coupled harmonic oscillators. In this case we have
a continuum Hilbert space. We observed that by expressing
the ground-state wave functions in general basis the obtained
results are distinct. However, similarly as happens for the
quantity In given in (2) (see Ref. [11]), our results on
some special bases reveal some general features. These bases
are the ones where the S or R operators are diagonal, for
the models with Z(Q) symmetry or the ones where σ z or Sz are
diagonal for the models with U (1) symmetry. In a continuum
field theory description of these quantum chains these bases are
expected to be associated to the boundaries that do not destroy
the conformal invariance of the bulk underlying Euclidean
conformal field theory, and for this reason we call them
conformal bases [11]. Our results indicate that in these special
bases the mutual information Ĩn has the same kind of leading
behavior with the subsystem size � as we have in the Rényi
entanglement entropy, namely Ĩn(�,L − �) ∼ c̃n

4 ln[ L
π

sin( π�
L

)],
with a function c̃n = cf (n), with f (1) = 1. Differently from
the Rényi entanglement entropy where the equivalent function
f (n) is universal (for any model and any basis) in the case of

Ĩn our results indicate that the function f (n) depends on the
special basis chosen to express the ground-state eigenfunction
of the particular model. For the set of Z(Q)-symmetric models
we considered the function f (n), for n < 4, although different
for the S and R bases, are similar to the ones of the Q-state
Potts chain (Q = 2,3,4) and the parafermionic Z(Q) quantum
chains (Q = 5,6,7,8). In the case of the Ashkin-Teller model
our results indicate that f (n), for n > 2, also depends on the
anisotropy � of the model. On the other hand the models
with continuum symmetry showed a similar behavior only for
n < 2. For n > 2 we have strong evidence that most probably
the generalized mutual information is not defined. It is quite
interesting that in these cases one can understand most of the
results by just studying simple short-range coupled harmonic
oscillators.

In order to conclude we should mention that an analytical
approach for the Shannon entropy or the Shannon mutual
information [I1 or Ĩ1 in (2) and (3)] is a theoretical challenge.
The analytical methods to treat this kind of problem normally
use some sort of analytical continuation, in the parameter n,
like the usual replica trick. The results we present showing the
continuity of Ĩn around n = 1, differently from what happens
with In, indicate that Ĩn is probably more appropriate for an
analytical treatment.

ACKNOWLEDGMENTS

This work was supported in part by FAPESP and CNPq
(Brazilian agencies). We thank J. A. Hoyos, R. Pereira, and
V. Pasquier for useful discussions.

APPENDIX: RELATIVE ENTROPY
AND RÉNYI DIVERGENCE

In this Appendix we review the definitions of the relative
entropy and its generalization: the Rényi divergence. The
relative entropy is defined as the expectation of the difference
between the logarithm of the two distribution of probabilities
p and q, from the point of view of the distribution p, i.e.,

D(p ‖ q) =
∑

i

pi ln
pi

qi

. (A1)

It can be considered as a measure of the difference between
the two distributions p and q. Although it is not a symmetric
quantity it helps us to define the mutual information of the
subsets X and Y of the system as follows:

I (X,Y ) = D[p(X,Y ) ‖ p(X)p(Y )]. (A2)

That is, the mutual information between two parts of a system
is just the relative entropy between the distribution probability
for the whole system and the product of the probability
distributions of the different parts. It tells how much the
different parts are correlated. The natural generalization of
the relative entropy is the Rényi divergence and can be defined
(see Ref. [31] for example), as

Dn(p ‖ q) = 1

n − 1
ln

∑
i

pn
i q

1−n
i . (A3)

It has the following properties: for n > 0 we have Dn(p ‖ q) �=
0 and if p = q then we have Dn(p ‖ q) = 0. The especial case
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n → 1 gives the usual relative entropy. We also define the
n = 0 case by:

D0(p ‖ q) = − ln q(i|pi > 0). (A4)

It is worth mentioning that using the above definition D0(p ‖
q) is not zero except when for all i’s for which qi > 0 also
pi > 0 holds.

Another important property is the following (see Ref. [41]
and references therein):

Theorem. The Rényi divergence is a continuous and
nondecreasing function of the parameter n.

Comparing (A3) with (A2) and (A1) the natural definition
of the generalized mutual information is

Ĩn(X,Y ) = Dn[p(X,Y ) ‖ p(X)p(Y )]. (A5)

The above definition is different from In(�,L), as given by (2),
and has been frequently used in different areas of information
science.
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International Symposium on Information Theory (ISIT) (IEEE,
2010), pp. 1335–1339.

155122-10

http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1103/PhysRevLett.106.150404
http://dx.doi.org/10.1103/PhysRevLett.106.150404
http://dx.doi.org/10.1103/PhysRevLett.106.150404
http://dx.doi.org/10.1103/PhysRevLett.106.150404
http://dx.doi.org/10.1103/PhysRevLett.109.020504
http://dx.doi.org/10.1103/PhysRevLett.109.020504
http://dx.doi.org/10.1103/PhysRevLett.109.020504
http://dx.doi.org/10.1103/PhysRevLett.109.020504
http://dx.doi.org/10.1103/PhysRevLett.109.020505
http://dx.doi.org/10.1103/PhysRevLett.109.020505
http://dx.doi.org/10.1103/PhysRevLett.109.020505
http://dx.doi.org/10.1103/PhysRevLett.109.020505
http://dx.doi.org/10.1088/1742-5468/2011/03/L03002
http://dx.doi.org/10.1088/1742-5468/2011/03/L03002
http://dx.doi.org/10.1088/1742-5468/2011/03/L03002
http://dx.doi.org/10.1088/1742-5468/2014/10/P10011
http://dx.doi.org/10.1088/1742-5468/2014/10/P10011
http://dx.doi.org/10.1088/1742-5468/2014/10/P10011
http://dx.doi.org/10.1103/PhysRevLett.111.017201
http://dx.doi.org/10.1103/PhysRevLett.111.017201
http://dx.doi.org/10.1103/PhysRevLett.111.017201
http://dx.doi.org/10.1103/PhysRevLett.111.017201
http://dx.doi.org/10.1088/1742-5468/2014/05/P05010
http://dx.doi.org/10.1088/1742-5468/2014/05/P05010
http://dx.doi.org/10.1088/1742-5468/2014/05/P05010
http://dx.doi.org/10.1103/PhysRevB.90.045424
http://dx.doi.org/10.1103/PhysRevB.90.045424
http://dx.doi.org/10.1103/PhysRevB.90.045424
http://dx.doi.org/10.1103/PhysRevB.90.045424
http://dx.doi.org/10.1103/PhysRevB.90.075132
http://dx.doi.org/10.1103/PhysRevB.90.075132
http://dx.doi.org/10.1103/PhysRevB.90.075132
http://dx.doi.org/10.1103/PhysRevB.90.075132
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevB.80.184421
http://dx.doi.org/10.1103/PhysRevB.80.184421
http://dx.doi.org/10.1103/PhysRevB.80.184421
http://dx.doi.org/10.1103/PhysRevB.80.184421
http://dx.doi.org/10.1103/PhysRevB.82.125455
http://dx.doi.org/10.1103/PhysRevB.82.125455
http://dx.doi.org/10.1103/PhysRevB.82.125455
http://dx.doi.org/10.1103/PhysRevB.82.125455
http://arxiv.org/abs/arXiv:1007.3739
http://dx.doi.org/10.1103/PhysRevB.84.195128
http://dx.doi.org/10.1103/PhysRevB.84.195128
http://dx.doi.org/10.1103/PhysRevB.84.195128
http://dx.doi.org/10.1103/PhysRevB.84.195128
http://dx.doi.org/10.1088/1742-5468/2012/10/P10026
http://dx.doi.org/10.1088/1742-5468/2012/10/P10026
http://dx.doi.org/10.1088/1742-5468/2012/10/P10026
http://dx.doi.org/10.1103/PhysRevE.87.022128
http://dx.doi.org/10.1103/PhysRevE.87.022128
http://dx.doi.org/10.1103/PhysRevE.87.022128
http://dx.doi.org/10.1103/PhysRevE.87.022128
http://dx.doi.org/10.1103/PhysRevB.88.045426
http://dx.doi.org/10.1103/PhysRevB.88.045426
http://dx.doi.org/10.1103/PhysRevB.88.045426
http://dx.doi.org/10.1103/PhysRevB.88.045426
http://dx.doi.org/10.1103/PhysRevLett.112.057203
http://dx.doi.org/10.1103/PhysRevLett.112.057203
http://dx.doi.org/10.1103/PhysRevLett.112.057203
http://dx.doi.org/10.1103/PhysRevLett.112.057203
http://dx.doi.org/10.1103/PhysRevB.89.165106
http://dx.doi.org/10.1103/PhysRevB.89.165106
http://dx.doi.org/10.1103/PhysRevB.89.165106
http://dx.doi.org/10.1103/PhysRevB.89.165106
http://dx.doi.org/10.1088/1742-5468/2014/08/P08007
http://dx.doi.org/10.1088/1742-5468/2014/08/P08007
http://dx.doi.org/10.1088/1742-5468/2014/08/P08007
http://dx.doi.org/10.1103/PhysRevB.90.125105
http://dx.doi.org/10.1103/PhysRevB.90.125105
http://dx.doi.org/10.1103/PhysRevB.90.125105
http://dx.doi.org/10.1103/PhysRevB.90.125105
http://dx.doi.org/10.1088/1742-5468/2011/10/P10011
http://dx.doi.org/10.1088/1742-5468/2011/10/P10011
http://dx.doi.org/10.1088/1742-5468/2011/10/P10011
http://dx.doi.org/10.1088/1742-5468/2012/01/P01023
http://dx.doi.org/10.1088/1742-5468/2012/01/P01023
http://dx.doi.org/10.1088/1742-5468/2012/01/P01023
http://dx.doi.org/10.1103/PhysRevB.87.195134
http://dx.doi.org/10.1103/PhysRevB.87.195134
http://dx.doi.org/10.1103/PhysRevB.87.195134
http://dx.doi.org/10.1103/PhysRevB.87.195134
http://dx.doi.org/10.1103/PhysRevLett.112.127204
http://dx.doi.org/10.1103/PhysRevLett.112.127204
http://dx.doi.org/10.1103/PhysRevLett.112.127204
http://dx.doi.org/10.1103/PhysRevLett.112.127204
http://dx.doi.org/10.1103/PhysRevB.88.054426
http://dx.doi.org/10.1103/PhysRevB.88.054426
http://dx.doi.org/10.1103/PhysRevB.88.054426
http://dx.doi.org/10.1103/PhysRevB.88.054426
http://dx.doi.org/10.1088/1751-8113/48/5/055002
http://dx.doi.org/10.1088/1751-8113/48/5/055002
http://dx.doi.org/10.1088/1751-8113/48/5/055002
http://dx.doi.org/10.1088/1751-8113/48/5/055002
http://dx.doi.org/10.1088/1742-5468/2015/02/P02008
http://dx.doi.org/10.1088/1742-5468/2015/02/P02008
http://dx.doi.org/10.1088/1742-5468/2015/02/P02008
http://dx.doi.org/10.1103/PhysRevA.89.032321
http://dx.doi.org/10.1103/PhysRevA.89.032321
http://dx.doi.org/10.1103/PhysRevA.89.032321
http://dx.doi.org/10.1103/PhysRevA.89.032321
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1016/0375-9601(82)90736-8
http://dx.doi.org/10.1016/0375-9601(82)90736-8
http://dx.doi.org/10.1016/0375-9601(82)90736-8
http://dx.doi.org/10.1016/0375-9601(82)90736-8
http://dx.doi.org/10.1016/0550-3213(86)90608-5
http://dx.doi.org/10.1016/0550-3213(86)90608-5
http://dx.doi.org/10.1016/0550-3213(86)90608-5
http://dx.doi.org/10.1016/0550-3213(86)90608-5
http://dx.doi.org/10.1088/0305-4470/20/9/035
http://dx.doi.org/10.1088/0305-4470/20/9/035
http://dx.doi.org/10.1088/0305-4470/20/9/035
http://dx.doi.org/10.1088/0305-4470/20/9/035
http://dx.doi.org/10.1103/PhysRevA.73.012309
http://dx.doi.org/10.1103/PhysRevA.73.012309
http://dx.doi.org/10.1103/PhysRevA.73.012309
http://dx.doi.org/10.1103/PhysRevA.73.012309
http://dx.doi.org/10.1088/1751-8113/42/50/504007
http://dx.doi.org/10.1088/1751-8113/42/50/504007
http://dx.doi.org/10.1088/1751-8113/42/50/504007
http://dx.doi.org/10.1088/1751-8113/42/50/504007
http://dx.doi.org/10.1103/PhysRevLett.61.1529
http://dx.doi.org/10.1103/PhysRevLett.61.1529
http://dx.doi.org/10.1103/PhysRevLett.61.1529
http://dx.doi.org/10.1103/PhysRevLett.61.1529
http://dx.doi.org/10.1016/0550-3213(88)90605-0
http://dx.doi.org/10.1016/0550-3213(88)90605-0
http://dx.doi.org/10.1016/0550-3213(88)90605-0
http://dx.doi.org/10.1016/0550-3213(88)90605-0
http://dx.doi.org/10.1103/PhysRevLett.63.708
http://dx.doi.org/10.1103/PhysRevLett.63.708
http://dx.doi.org/10.1103/PhysRevLett.63.708
http://dx.doi.org/10.1103/PhysRevLett.63.708



