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Ground-state and spectral properties of an asymmetric Hubbard ladder
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We investigate a ladder system with two inequivalent legs, namely, a Hubbard chain and a one-dimensional
electron gas. Analytical approximations, the density-matrix renormalization group method, and continuous-time
quantum Monte Carlo simulations are used to determine ground-state properties, gaps, and spectral functions
of this system at half-filling. Evidence for the existence of four different phases as a function of the Hubbard
interaction and the rung hopping is presented. First, a Luttinger liquid exists at very weak interchain hopping.
Second, a Kondo-Mott insulator with spin and charge gaps induced by an effective rung exchange coupling is
found at moderate interchain hopping or strong Hubbard interaction. Third, a spin-gapped paramagnetic Mott
insulator with incommensurate excitations and pairing of doped charges is observed at intermediate values of the
rung hopping and the interaction. Fourth, the usual correlated band insulator is recovered for large rung hopping.
We show that the wave numbers of the lowest single-particle excitations are different in each insulating phase.
In particular, the three gapped phases exhibit markedly different spectral functions. We discuss the relevance of
asymmetric two-leg ladder systems as models for atomic wires deposited on a substrate.
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I. INTRODUCTION

Correlated electrons on ladder lattices have been exten-
sively investigated in the last two decades [1–14], but relatively
little attention has been paid to asymmetric ladders with two in-
equivalent legs. The one-dimensional (1D) Kondo-Heisenberg
model is the most studied asymmetric ladder system. It was
used to investigate exotic superconducting correlations in
stripe-ordered high-temperature superconductors [15–18] as
well as quantum phase transitions in heavy-fermion materi-
als [19]. Additionally, a two-band Hubbard model on a ladder
lattice was the starting point of an investigation of pairing
mechanisms in strongly repulsive fermion systems [20].

In a different context, asymmetric ladder systems have been
proposed as models for linear atomic wires deposited on the
surface of a substrate [21,22]. In that case, one leg represents
the wire while the second leg mimics those degrees of freedom
of the substrate that couple to the wire. The study of such
models provides a first approximation for the influence of
the substrate on hallmarks of 1D physics such as the Peierls
instability [21] and the Luttinger liquid [22]. However, this
approach has not been pursued systematically until now.

1D electron systems have been studied extensively for more
than 60 years [23]. Well-established theories predict various
anomalous properties of strictly 1D electron systems such as
the Peierls instability [24,25], incommensurate charge- and
spin-density waves [25], the dynamical separation of spin and
charge excitations, and the Luttinger liquid behavior of 1D con-
ductors [1]. Experimentally, quasi-1D electron systems have
been realized in strongly anisotropic bulk materials such as
Bechgaard salts [26] and π -conjugated polymers [27]. Exper-
imental and theoretical investigations have both demonstrated
that even a weak coupling between 1D electron systems can
play an essential role for their physical properties [1,23,26].

More recently, quasi-1D electron systems have been
realized in atomic wires deposited on the surface of a
semiconducting substrate [21,28,29]. For instance, it has been

claimed that a Peierls metal-insulator transition occurs in
indium chains on a silicon substrate [29] and that Luttinger
liquid behavior is found in gold chains on a germanium
substrate [30]. However, these claims remain controversial. A
fundamental issue is that we have a poor theoretical knowledge
of the influence of the coupling between wire and substrate.
As investigations of interacting electrons on three-dimensional
lattices with complex geometries are extremely difficult,
the modeling of wire-substrate systems by much simpler
asymmetric ladders [21,22] appears very promising.

In this paper, we consider a two-leg ladder system made
of two inequivalent legs; one is an interacting electron system
described by the 1D Hubbard model with onsite interaction U

and hopping integral t‖, the other is a 1D electron gas (Fermi
gas) described by a tight-binding model with the same t‖. The
legs are coupled by an interchain (or rung) hopping t⊥. This
is the simplest model of a correlated atomic wire coupled to a
noninteracting substrate. It can also be seen as a special case
of the general two-band Hubbard model used to investigate
pairing mechanisms [20]. The model is further related to the
Kondo-Heisenberg model [15–19] because the Hubbard chain
at half-filling has the same low-energy spin excitations as a
Heisenberg chain. Thus, the asymmetric Hubbard ladder can
be seen as a generalization of the Kondo-Heisenberg model
(which corresponds to a Mott insulator with infinitely large
charge gap on the interacting leg) to the case of a Mott insulator
with a finite gap for charge excitations.

Here, we investigate the model properties for various values
of the interaction U and the rung hopping t⊥ in a half-filled
ladder, as well as at low doping away from half-filling. Ground-
state properties, excitation gaps, and spectral functions are de-
termined accurately using the density-matrix renormalization
group (DMRG) technique [31–33] and quantum Monte Carlo
(QMC) simulations [34]. Furthermore, approximate analytical
methods (perturbation theory and mean-field approximation)
are used to facilitate the interpretation of the numerical
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results. We find that the physics of the half-filled asymmetric
ladder is very rich, with similarities to the Kondo-Heisenberg
model [15–19] and the half-filled symmetric Hubbard lad-
der [1–5] (corresponding to a ladder with two identical legs)
in certain parameter regimes. Furthermore, our results confirm
that our model is a good starting point to investigate an atomic
wire deposited on a substrate, but also reveal the limitations of
representing the substrate by a single chain.

The paper is structured as follows: In Sec. II, we introduce
the model and discuss its properties in limiting cases. The
Hartree-Fock approximation for half-filling is presented in
Sec. III. In Sec. IV, we discuss our DMRG results for the
ground-state properties and excitation gaps, while the QMC
spectral functions are presented in Sec. V. Finally, Sec. VI
contains our conclusions.

II. MODEL

The Hamiltonian of the asymmetric ladder model takes the
form (see also Fig. 1)

H = −t‖
∑
x,y,σ

(c†x+1,y,σ cx,y,σ + c†x,y,σ cx+1,y,σ )

− t⊥
∑
x,σ

(c†x,F,σ cx,H,σ + c
†
x,H,σ cx,F,σ )

+U
∑

x

(
nx,H,↑ − 1

2

)(
nx,H,↓ − 1

2

)
. (1)

Here, cx,y,σ (c†x,y,σ ) is an annihilation (creation) operator
for an electron with spin σ on the site with coordinates
(x,y) where y = H (Hubbard leg) or y = F (Fermi leg)
and the rung index x runs from 1 to the ladder length L.
The corresponding electron number operators are denoted
as nx,y,σ = c

†
x,y,σ cx,y,σ . Half-filling corresponds to N = 2L

electrons on the ladder. The Hamiltonian is invariant under the
particle-hole transformation cx,y,σ → (−1)xc†x,y,σ . Therefore,
at half-filling its Fermi energy is always equal to 0 and
it is sufficient to consider electron fillings N � 2L. We
will investigate repulsive interactions (U � 0) only. As the
canonical gauge transformation cx,H,σ → −cx,H,σ , cx,F,σ →
cx,F,σ merely changes the sign of t⊥, and another canonical
gauge transformation cx,y,σ → (−1)xcx,y,σ simply changes
the sign of t‖, we only need to consider t‖ � 0 and t⊥ � 0.
For our numerical results and figures, we use the energy unit
t‖ = 1.

FIG. 1. (Color online) The asymmetric Hubbard ladder de-
scribed by Hamiltonian (1), with intrachain hopping t‖ and interchain
hopping t⊥. On the lower (Fermi, y = F) leg, electrons do not interact,
whereas on the upper (Hubbard, y = H) leg, they experience an onsite
repulsion U .

In general, the Hamiltonian (1) is not exactly solvable.
However, we can understand some of its properties by
considering limiting cases which are amenable to analytical
calculations or related to known models.

A. Weak interactions

In the noninteracting case (U = 0), we recover the well-
known tight-binding ladder [1]. The Hamiltonian can be
diagonalized using bonding and antibonding rung states. For
the single-particle eigenstates, we obtain a bonding band with
dispersion

Eb(k) = −t⊥ − 2t‖ cos(k) (2)

and an antibonding band with dispersion

Eab(k) = +t⊥ − 2t‖ cos(k). (3)

For periodic boundary conditions, the wave numbers k in the
first Brillouin zone [−π,π ] are given by k = 2π

L
z with an

integer z fulfilling −L
2 < z � L

2 .
For t⊥ > 2t‖, the ladder spectrum has an indirect gap

Eband = 2t⊥ − 4t‖ (4)

between the wave numbers kb = ±π in the bonding band and
kab = 0 in the antibonding band [see Fig. 2(a)]. Consequently,
the ladder system is a band insulator at half-filling while
it is metallic with two Fermi points at other band fillings.
Perturbation theory could be used for weak interactions U �
Egap, but this case is much easier to analyze in the dimer limit
(see Sec. II D).

For t⊥ < 2t‖, the ladder spectrum is gapless and has four
perfectly nested Fermi points if the system is at or close to
half-filling [see Fig. 2(b)]. At half-filling, the Fermi points
±kb

(
π
2 < kb < π

)
and ±kab

(
0 < kab < π

2

)
are determined by

the equation

t⊥ = −2t‖ cos(kb) = 2t‖ cos(kab) (5)

with the nesting wave number π = kb + kab. The case of
weak interactions U � t⊥,t‖ could be investigated using
sophisticated field-theoretical approaches (bosonization and
the renormalization group), as done for symmetric ladders
[1,3,6–9]. However, for any finite U the model (1) is no
longer symmetric under reflection in the rung direction. The
lower symmetry makes field-theoretical calculations much
more difficult and, as far as we know, no such calculation
has been carried out successfully for asymmetric Hubbard
ladders yet. Based on the known results for symmetric
ladders [1–3,5–9], we expect that the excitation spectrum of
the half-filled asymmetric ladder becomes fully gapped as
soon as U > 0 because the perfect nesting of its Fermi points
(with nesting wave number π ) allows for umklapp scattering.
The system is then a spin-gapped paramagnetic Mott insulator
and its lowest single-particle excitations should occur at four
incommensurate wave numbers ±kg and ±k′

g with kg ≈ kb and
k′

g ≈ kab.

B. Strong interactions

For t⊥ = t‖ = 0, electrons are localized and the ground
state is highly degenerate. At or close to half-filling, there
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FIG. 2. (Color online) Single-particle dispersions [Eqs. (2) and (3)] of the noninteracting ladder for (a) t⊥ = 2.5t‖, (b) t⊥ = t‖; (b) also
shows the four Fermi points ±kab and ±kb defined by Eq. (5). (c) Single-particle dispersion of the tight-binding chain (solid blue line) and
single holon-spinon continuum (shaded area) of the half-filled Hubbard chain with U = 4t‖ from the Bethe ansatz solution. A horizontal dashed
line shows the Fermi energy at half-filling in all three figures.

is exactly one electron on each site of the Hubbard leg.
The other electrons are distributed arbitrarily on the Fermi
leg. Using perturbation theory for small but finite hopping
terms (t⊥,t‖ � U ) we find in first order that the intrachain
hopping term t‖ delocalizes the electrons on the Fermi leg
and thus restores a 1D electron gas with a unique ground
state. The ground state of the Hubbard leg remains unchanged
in first order but second-order corrections yield the usual
antiferromagnetic exchange coupling J‖ = 4t2

‖ /U between
electrons localized on nearest-neighbor sites (and thus an
effective 1D Heisenberg model). The interchain coupling term
t⊥ yields a constant energy contribution in second order and
thus the legs remain decoupled. Therefore, it seems that the
strong-interaction limit is a special case of weakly coupled
chains (see Sec. II C). However, second-order perturbation
results are misleading because divergent contributions appear
at higher orders in t⊥.

The problem at hand is very similar to the single-impurity
Anderson model. Therefore, we can derive an effective
Hamiltonian by using a Schrieffer-Wolff transformation [35].
Without a hopping term t‖ in the Hubbard leg, the asymmetric
ladder model (1) would be equivalent to a 1D periodic
Anderson model and the Schrieffer-Wolff transformation (up
to the second order) would lead to a Kondo lattice model [36]
with an antiferromagnetic exchange interaction J⊥ = 8t2

⊥/U .
With a hopping term t‖ 
= 0 in both legs, we obtain additional
second-order interaction terms: an antiferromagnetic exchange
coupling J‖ = 4t2

‖ /U between nearest-neighbor sites in the
Hubbard leg, and next-nearest-neighbor correlated hopping
terms between Fermi and Hubbard legs of order t‖t⊥/U .
Without these correlated hopping terms, the second-order
effective Hamiltonian would be the Kondo-Heisenberg model
[15–19,37]. Hence, the asymmetric ladder with strong Hub-
bard interaction can be seen as a generalization of the Kondo-
Heisenberg model to Mott insulators with finite charge gaps.
However, correlated hopping terms are known to be important
in the strong-coupling limit of Hubbard-type models [38],
in particular in two-leg ladders [5]. Therefore, contrary to
claims in the literature [17], the strong-interaction limit of
the asymmetric ladder (1) is not exactly equivalent to the
Kondo-Heisenberg model. However, the Kondo-Heisenberg
model could be realized in the strong-coupling limit of a simple
generalization of Hamiltonian (1), for instance by introducing
a different intrachain hopping t

y

‖ on each leg.

Nevertheless, for large U , we expect the half-filled asym-
metric Hubbard ladder to exhibit similar low-energy physics
as the half-filled Kondo-Heisenberg model with exchange
couplings J⊥,J‖ � t‖. In the latter model, the rung exchange
induces not only a gap for spin excitations, but also for
charge excitations in the Fermi leg [17] because of umklapp
scattering associated with perfect nesting of its Fermi points
kF = ±π

2 . Additionally, the interaction U is responsible for a
large Mott-Hubbard gap on the Hubbard leg of the asymmetric
Hubbard ladder model. We will call this state a Kondo-Mott
insulator.

C. Chain limit

For t⊥ = 0, the model (1) reduces to two independent
chains. The first leg corresponds to a 1D electron gas with a
nearest-neighbor tight-binding Hamiltonian that can be easily
diagonalized. The second leg is a Hubbard chain which is
exactly solvable by the Bethe ansatz [39]. If the ladder system
is at or close to half-filling, the Hubbard leg is exactly
half-filled because only electronic states of the Fermi leg are
close to the Fermi energy [see Fig. 2(c)]. Then, the Hubbard leg
is a Mott-Hubbard insulator with a charge gap EH but gapless
spin excitations. The velocity of spin excitations is smaller than
2t‖ and decreases with increasing U/t‖. The other electrons are
on the Fermi leg, which is close to being half-filled and has
two Fermi points kF ≈ ±π

2 with a Fermi velocity vF ≈ 2t‖.
Therefore, the asymmetric ladder system is metallic, with
independent low-energy charge and spin excitations. Charge
excitations are localized on the Fermi leg while spin excitations
have a lower velocity on the Hubbard leg than on the Fermi
leg.

The interchain hopping term t⊥ transfers electrons from one
chain to the other and hence creates excitations with energy
larger than EH/2. Consequently, for t⊥ � EH, a perturbative
treatment is possible but merely yields corrections to the
eigenenergies because the ground state is not degenerate.
However, we expect the interplay of the Hubbard interaction
and the interchain hopping to induce effective interactions
for the electrons in the Fermi leg, as observed for the
strong-interaction limit (see Sec. II B). The effects of these
effective interactions are not known a priori but, since a
Hubbard chain at half-filling has the same low-energy spin
correlations as a Heisenberg chain, we expect the low-energy
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physics of the weakly coupled chains to be similar to the
Kondo-Heisenberg model with an effective rung exchange
coupling J⊥ ∝ t2

⊥/EH � EH,t‖.
For weak to moderate interactions U � 4t‖, the charge

gap EH remains small and charge fluctuations between the
legs are not negligible. Thus, one cannot assume that the
Fermi leg is exactly half-filled. For the Kondo-Heisenberg
model away from half-filling, various ground states such as
Luttinger liquids (with gapless charge and spin excitations)
and spin-gapped phases with gapless charge excitations have
been found [15,17,19,37]. Nonetheless, we should recover an
effective model with a half-filled Fermi leg for sufficiently
large U , as discussed in Sec. II B. Therefore, various scenarios
are possible for the half-filled asymmetric Hubbard ladder
in the limit of weakly coupled chains. On the one hand,
we expect that the ladder system remains gapless and thus
becomes a Luttinger liquid for some range of the parameters
(U,t⊥). On the other hand, for large enough U , we should
recover a Kondo-Mott insulator with nonzero spin and charge
gaps. Other states are also possible, as suggested by the
studies of the Kondo-Heisenberg model away from half-
filling [15,17,19,37]. In all cases, the lowest single-particle
excitations should remain at the wave numbers given by the
Fermi points of the 1D electron gas, in particular, kg = ±π

2 for
any gapped phase. In principle, field theory [7,8,16,17] could
be used to investigate the effects of weak interchain coupling
more rigorously.

D. Dimer limit

For t‖ = 0, we can decompose the Hamiltonian (1) into a
sum of independent two-site Hamiltonians that act on one rung
each and can be easily diagonalized. If the ladder system is
half-filled, the ground state corresponds to each rung being
occupied by two electrons that form a spin singlet. The lowest
spin excitation with energy

Edimer
s = −U

4
+

√(
U

4

)2

+ 4t2
⊥ (6)

corresponds to the formation of a triplet on one rung. The
lowest charge excitation with energy

Edimer
c = −2

√(
U

4

)2

+ t2
⊥ + 2

√(
U

4

)2

+ 4t2
⊥ (7)

corresponds to moving an electron from one rung to the other.
We note that Edimer

s ≈ Edimer
c ≈ 2t⊥ for U � t⊥ in agreement

with the weak-interaction analysis for the band insulating case

(t⊥ > 2t‖) in Sec. II A, while Edimer
c ≈ 12t2

⊥
U

> Edimer
s ≈ 8t2

⊥
U

for U � t⊥ in agreement with the rung exchange coupling
deduced for strong interactions in Sec. II B. If we dope the
ladder system away from half-filling by adding electrons, some
of the rungs become occupied by three electrons in the ground
state and both spin and charge gaps drop immediately to zero.

For small but finite t‖ we can use perturbation theory as
long as t‖ � Edimer

s ,Edimer
c which corresponds to an energy

scale ∼t⊥ for weak interactions (U � t⊥) and to ∼t2
⊥/U for

strong interactions (U � t⊥). This gives an effective hopping
teff
‖ ∝ t‖ and an effective attractive interaction V eff

‖ ∝ t2
‖ /Edimer

c
between nearest-neighbor rungs. In summary, the half-filled

asymmetric ladder in the dimer limit is a correlated band
insulator for large enough t⊥/U . For large U/t⊥, it may be
regarded as a Kondo-Mott insulator with spin and charge gaps
induced by an effective rung exchange coupling, as discussed
in Secs. II B and II C.

III. HARTREE-FOCK APPROXIMATION

To gain a better (qualitative) understanding of the asymmet-
ric ladder model at half-filling, we apply the Hartree-Fock ap-
proach for Hubbard-type interactions [40] to Hamiltonian (1)
and obtain the spin-dependent single-particle Hamiltonians

Hσ = −t‖
∑
x,y

(c†x,y,σ cx+1,y,σ + c
†
x+1,y,σ cx,y,σ )

− t⊥
∑

x

(c†x,H,σ cx,F,σ + c
†
x,F,σ cx,H,σ )

+U
∑

x

nx,H,σ

(
〈nx,H,−σ 〉 − 1

2

)
, (8)

where the expectation value of the density on the Hubbard leg〈
nx,H,−σ

〉
must be calculated self-consistently for the ground

state of H−σ . The Hartree-Fock approximation is a method for
weak interactions U .

As discussed in Sec. II A, the Fermi points are perfectly
nested by an interband wave number k = π at half-filling and
for t⊥ < 2t‖. Therefore, the most probable symmetry breaking
is an antiferromagnetic spin-density wave

〈nx,H,σ 〉 = 1

2
+ σ (−1)x

mH

2
(9)

with the staggered magnetization (per site) of the Hubbard
leg, mH, as the order parameter. Consequently, the unit cell
of the effective Hamiltonian (8) is twice as large as that
of the original Hamiltonian (1) in the leg direction and
contains four sites. According to Bloch’s theorem, the single-
particle Hamiltonians (8) can be diagonalized by a canonical
transformation of the form

d
†
k,n,σ = 1√

L

∑
x

eikx{[uknσ + (−1)xvknσ ]c†x,H,σ

+ [sknσ + (−1)xtknσ ]c†x,F,σ } (10)

with the normalization condition

|uknσ |2 + |vknσ |2 + |sknσ |2 + |tknσ |2 = 1 (11)

and a wave number k in a reduced Brillouin zone [−π
2 , π

2 ],
i.e., k = 2π

L
z with −L

4 < z � L
4 . The index n = 1,2,3,4

numbers the four bands. The four components V knσ =
(uknσ ,vknσ ,sknσ ,tknσ ) are the solutions of the four-dimensional
eigenvalue problem

Hkσ V knσ = εnσ (k)V knσ (12)

with the Hamiltonian matrix Hkσ given by⎛
⎜⎜⎝

−2t‖ cos(k) − 1
2σUmH −t⊥ 0

− 1
2σUmH +2t‖ cos(k) 0 −t⊥
−t⊥ 0 −2t‖ cos(k) 0

0 −t⊥ 0 +2t‖ cos(k)

⎞
⎟⎟⎠
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and the single-particle (Hartree-Fock) eigenenergy εnσ (k). The
staggered magnetization is given by

mH = σ
4

L

2∑
n=1

∑
k

uknσ vknσ , (13)

where the first sum runs over the lowest two bands only.
Equations (12) and (13) constitute a self-consistency problem
which can be easily solved numerically.

As expected for a 1D system with a perfect nesting
of the Fermi points, we find a broken-symmetry solution
mH 
= 0 for any U > 0 if t⊥ < 2t‖. Furthermore, this staggered
magnetization seems to remain stable even for larger t⊥ (at least
up to 4t‖) although mH becomes quite small. However, the
long-range antiferromagnetic order is an artifact of the mean-
field approximation since the continuous SU(2) spin symmetry
can not be spontaneously broken in one dimension [1,40].
In Fig. 3, we show the self-consistent order parameter mH

obtained for U = 4t‖ as a function of the rung hopping
t⊥. (Qualitatively similar results are found for other values
of U .) As expected, mH approaches the value obtained for
the 1D Hubbard model [40] for t⊥ → 0 and its absolute value
decreases monotonically with increasing t⊥. Although there
is no direct electron-electron interaction on the Fermi leg, the
coupling to the Hubbard leg induces an antiferromagnetic spin-
density wave. The corresponding staggered magnetization

mF = (−1)x〈nx,F,↑ − nx,F,↓〉 (14)

is also shown in Fig. 3. We see that mF is not a monotonic
function of the interchain coupling t⊥. It vanishes for t⊥ = 0
because the Fermi leg is just an independent electron gas in
that case (see Sec. II C). The initial increase of |mF| with
t⊥ reflects the enhanced hybridization of electronic states on
the two legs, while the final decrease mirrors the diminution
of the antiferromagnetic correlations in the Hubbard leg.
Note that mH and mF have opposite signs because of the
antiferromagnetic correlations between electrons on the same
rung.

The dispersion of the Hartree-Fock eigenenergies can be
calculated analytically for a given mH. It has the form εnσ (k) =

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.5  1  1.5  2  2.5  3  3.5  4

m
H

, m
F

t⊥

mH
mF

FIG. 3. (Color online) Staggered magnetization of the Hubbard
leg (mH) and Fermi leg (mF) for U = 4t‖ in the Hartree-Fock
approximation as a function of the rung hopping t⊥.
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FIG. 4. (Color online) Hartree-Fock gap EHF for U/t‖ = 2, 4,
and 8 as a function of the rung hopping t⊥.

±
√

a(k) ± √
b(k) with

a(k) = 1

2

(
UmH

2

)2

+ [2t‖ cos(k)]2 + t2
⊥ ,

b(k) = 1

4

(
UmH

2

)4

+ 4t2
⊥[2t‖ cos(k)]2 +

(
UmH

2

)2

t2
⊥.

The four possible combinations of signs correspond to the four
bands εnσ (k), n = 1,2,3,4. (Note that the bands are identical
for σ = ±1.)

The Hartree-Fock gap EHF is defined as the lowest
excitation energy when the Hartree-Fock bands are half-filled,
i.e., as the energy difference between the lowest state in the
third-lowest band and the highest state in the second-lowest
band. As expected, this gap vanishes if U = 0 or t⊥ = 0. If both
couplings are finite, however, we find that the Hartree-Fock gap
is always larger than zero. The gap has a surprisingly complex
dependence on the interaction strength and the rung hopping,
as illustrated in Fig. 4. We observe three different regions as a
function of t⊥. First, the gap is small but increases rapidly
with t⊥, then it reaches a local maximum at intermediate
values of t⊥ and decreases slowly until it reaches a local
minimum at some value t⊥ > 2t‖. Finally, it increases linearly
with t⊥ at large values of t⊥. The behavior at large t⊥ is
easy to understand from the discussion of the noninteracting
(Sec. II A) and dimer limits (Sec. II D). Indeed, we see that for
large t⊥ the Hartree-Fock gap approaches the band gap given
by Eq. (4). In this region, the Hartree-Fock solution can be
regarded as a band insulator with a weak, incidental antifer-
romagnetic ordering. In the other two regions, however, the
antiferromagnetic ordering is responsible for the gap opening.
These Hartree-Fock solutions describe antiferromagnetic Mott
insulators [40]. For a weak rung hopping, the Hartree-Fock
gap increases systematically with U . This case is related to the
spin-density-wave insulator with modulation 2kF = π which
is found in the Hartree-Fock approximation for 1D half-filled
Hubbard-type models. Note that the extent of the interme-
diate region in terms of t⊥ decreases upon increasing the
interaction U .
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FIG. 5. (Color online) The four Hartree-Fock bands εnσ (k) for U = 5t‖ with (a) weak (t⊥ = 0.5t‖), (b) intermediate (t⊥ = 1.5t‖), and
(c) strong (t⊥ = 3t‖) rung hopping.

The qualitative difference between the first two regions
(weak to moderate rung hopping) is revealed by studying
the features of the Hartree-Fock dispersions εnσ (k). They are
shown in Fig. 5 for a self-consistent staggered magnetization
mH at U = 5t‖. For a weak rung hopping [see Fig. 5(a)],
the lowest single-particle excitations are located at the edge
of the reduced Brillouin zone (kHF = ±π

2 ), in agreement
with the analysis of weakly coupled chains in Sec. II C.
Figure 5(b) shows that the lowest excitations correspond to
single-particle states with incommensurate wave numbers kHF

in the intermediate regime in agreement with the analysis of
the case t⊥ < 2t‖ and weak interaction U in Sec. II A. The
wave number kHF determined from the Hartree-Fock solution
shifts progressively from the edges of the reduced Brillouin
zone (kHF = ±π

2 ) to its center (kHF = 0) with increasing t⊥, in
qualitative agreement with the incommensurate wave number
given by Eq. (5). Finally, for a strong rung hopping t⊥ [see
Fig. 5(c)], the lowest excitations are localized in the center
of the reduced Brillouin zone. This result also agrees with
the analysis of the case t⊥ > 2t‖ and weak interaction U in
Sec. II A. The indirect gap between kg = ±π and k′

g = 0
found there [see Fig. 2(a)] becomes a direct gap at kHF = 0
in the Hartree-Fock approximation because of the folding of
the Brillouin zone. Finally, the HF “phase diagram” in Fig. 6

shows that all three cases are found over a finite range of the
parameters (U,t⊥).
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FIG. 6. (Color online) Hartree-Fock “phase diagram” in the
(U,t⊥) plane with three different regions. The lowest single-particle
excitations have wave numbers kHF at the edges of the reduced
Brillouin zone (kHF = ± π

2 ), at its center (kHF = 0), and at incom-
mensurate values 0 < |kHF| < π

2 , respectively.

155119-6



GROUND-STATE AND SPECTRAL PROPERTIES OF AN . . . PHYSICAL REVIEW B 91, 155119 (2015)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2  2.5  3

E c

t⊥

(a)U=5
U=8

U=20

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.5  1  1.5  2

E s

t⊥

(b)U=5
U=8

U=20

 0
 0.2
 0.4
 0.6
 0.8

 1

 1.6  1.8  2  2.2  2.4
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asymmetric two-leg Hubbard ladder with L = 128 rungs. Finite-size corrections are of the order of the symbol size in (a) and of the order of
0.01t‖ in (b). Error bars indicate DMRG truncation errors larger than the symbol size.

IV. GROUND-STATE PROPERTIES AND EXCITATION
GAPS

A. DMRG method

To obtain reliable results for the asymmetric ladder
Hamiltonian (1) at finite U and t⊥, we use the DMRG method
[31–33], which has previously been applied to symmet-
ric [2,5,10,32] and asymmetric two-leg ladders [15,17,19,20].
Here, the ground-state properties of Hamiltonian (1) are
calculated using the finite-system DMRG algorithm on lattices
with up to L = 200 rungs (400 sites) and open boundary
conditions. Up to m = 3072 density-matrix eigenstates were
kept, yielding discarded weights smaller than 10−6. Truncation
errors were investigated systematically by keeping variable
numbers of density-matrix eigenstates and ground-state
energies were extrapolated to the limit of vanishing discarded
weights. The resulting error estimates for gaps are shown in
the figures when they are larger than the symbol sizes. We were
able to reach a sufficient accuracy for the lowest eigenenergies
for all parameters but for weakly interacting, weakly coupled
chains with U � 4t‖ and t⊥ < 2t‖. As usual with variational
approaches, the accuracy is lower for other observables (den-
sity profiles, correlation functions). In some cases, irregular
density profiles and correlation functions demonstrate that
the DMRG calculation has not fully converged because of
(quasi-)degenerate low-lying eigenstates. The relevant cases
are discussed in the following together with our results.

B. Excitation energies

In this section, we discuss the excitation gaps calculated for
a half-filled asymmetric ladder. The gap for charge excitations
in a ladder with N = 2M electrons is

Ec = 1
2 [E0(M + 1,M + 1) + E0(M − 1,M − 1)

− 2E0(M,M)], (15)

where E0(M↑,M↓) denotes the ground-state energy of Hamil-
tonian (1) with Mσ electrons of spin σ . It is the gap seen in
the dynamical charge structure factor, which can be probed by
electron-energy-loss spectroscopy.

Figure 7(a) shows the behavior of the charge gap as a
function of the interaction U and the rung hopping t⊥, which is
qualitatively similar to the Hartree-Fock gap EHF in Fig. 4. A
closer investigation reveals four distinct regions: region (I) for
very small t⊥, where the gap stays at a finite value because of
finite-size effects, region (II) where Ec increases quadratically
with t⊥, region (III) at intermediate t⊥ where the gap saturates
(or even decreases), and region (IV) where Eg increases rapidly
with t⊥ and eventually approaches the value of the band gap (4)
as expected (see Secs. II A and II D). Region (II) extends to
larger values of t⊥ for a stronger interaction U , while the
onset of region (IV) shifts from t⊥ = 2t‖ to larger values as U

increases.
The gap in region (II) can be well fitted to a function

f (t⊥) = a + b
4t2

⊥
U

, yielding a slope b that increases from
b ≈ 1.1 for U = 5t‖ to b ≈ 1.5 for U = 20t‖. The scaling
of the charge gap with t2

⊥ shows that the gap opening is
related to the effective rung exchange coupling J⊥ discussed
in Secs. II B and II C. The intercept a is negative, suggesting
that the charge gap could close at a small but finite t⊥.
The condition f (tc

⊥) = 0 yields the critical coupling tc
⊥(U )

below which the charge gap seems to disappear. For instance,
we get tc

⊥(U = 20t‖) ≈ 0.85t‖, tc
⊥(U = 8t‖) ≈ 0.35t‖, and

tc
⊥(U = 5t‖) ≈ 0.1t‖. Region (I) corresponds roughly to the

domain t⊥ < tc
⊥(U ).

To check the finite-size effects we have performed calcula-
tions for ladder lengths from L = 20 to 200 and extrapolated
the charge gap to L → ∞ using a quadratic fit in 1/L. Ec

remains finite in the thermodynamic limit for all parameters
U,t⊥ > 0, except for region (I), where the charge gap vanishes
as Ec ≈ 6t‖/L. For comparison, the exact scaling for a
half-filled tight-binding chain is Ec = 2πt‖/L. The scaling
confirms that added charges (electrons or holes) go primarily
on the Fermi leg and that the interchain hopping t⊥ barely
affects low-energy charge excitations in the limit of weak t⊥
(see Sec. II C).

The spin gap of a ladder with N = 2M electrons is

Es = E0(M + 1,M − 1) − E0(M,M), (16)
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FIG. 8. (Color online) Pair binding energy Epb calculated with DMRG in an asymmetric two-leg Hubbard ladder with L = 128 rungs
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and corresponds to the excitation gap in the dynamical spin
structure factor. It can be measured using inelastic neutron
scattering. Its behavior as a function of U and t⊥ is shown
in Fig. 7(b). We see that it is qualitatively similar to that of
the charge gap, although the difference between regions (II)
and (III) is less clear. In addition, for large enough t⊥, both
gaps approach the value of the band gap (4), as expected. For
smaller t⊥, the spin gap is generally (much) smaller than the
charge gap.

Finite-size scaling reveals that the spin gap is finite in the
thermodynamic limit for all parameters U,t⊥ > 0, except for
region (I), where Es vanishes as Es ≈ c t‖/L. The values of
the prefactor c = cDMRG as deduced from our DMRG data
agree well with the exact values c = cBA obtained from the
Bethe ansatz (BA) solution for the 1D Hubbard model on
an open chain [39]. For instance, for moderate interactions(
U = 5t‖, t⊥ = 0.1t‖

)
we get cDMRG ≈ cBA ≈ 2.23, while for(

U = 8t‖, t⊥ = 0.3t‖
)

we obtain cDMRG ≈ 1.49 versus cBA ≈
1.51, and for strong interactions

(
U = 20t‖, t⊥ = 0.5t‖

)
we

find cDMRG ≈ 0.681 versus cBA ≈ 0.637. This scaling con-
firms that the lowest triplet excitation is essentially a spin
excitation of the Hubbard leg and that the interchain hopping
t⊥ barely affects it in the limit of weak t⊥ (see Sec. II C).
Moreover, the different prefactors for the finite-size charge and
spin gaps are a signature of the dynamical separation of charge
and spin excitations (i.e., different charge and spin velocities)
in the infinite ladder system.

The single-particle gap for a ladder with N = 2M electrons
is defined as

Ep = E0(M + 1,M) + E0(M − 1,M) − 2E0(M,M). (17)

This is the gap for the excitations seen in the single-particle
spectral function discussed in Sec. V and experimentally
accessible by angle-resolved photoemission spectroscopy. We
find that Ep equals the charge gap for weak and strong rung
hopping but differs significantly from it in the intermediate
regime. The difference

Epb = 2(Ep − Ec) (18)

is called the pair binding energy and is shown in Fig. 8(a). A
significant binding energy only exists for moderate interactions
5t‖ � U � 8t‖ and intermediate rung hoppings 0.5t‖ � t⊥ �
2.0t‖. This corresponds roughly to region (III) where both
charge and spin gaps saturate or decrease with increasing t⊥.
The study of finite-size effects confirms that Epb remains finite
in the limit of infinite ladder length. In the other three regions,
the pair binding energy is very small or negative and vanishes
in the thermodynamic limit.

It is interesting to study the effect of charges added to the
half-filled system. Upon doping, the charge and spin gaps close
within the accuracy of our calculations (limited by finite-size
effects and truncation errors). However, the single-particle gap
seems to remain finite at low doping in region (III) as shown
in Fig. 8(b) for t⊥ = t‖. In the other regions, the pair binding
energy is negligible or even negative, as illustrated in the same
figure for the case t⊥ = 3t‖ that corresponds to region (IV).
Pairing of added charges also occurs in half-filled symmetric
Hubbard ladders, but with a finite spin gap [2,5].

Our results for the excitation energies, together with the
analysis of limiting cases in Sec. II, seem to suggest the
existence of (at least) four distinct phases in the parameter
space (U > 0, t⊥ > 0) of the half-filled asymmetric Hubbard
ladder. In region (I), i.e., for very small rung hopping t⊥, we
find gapless charge and spin excitations. This corresponds to
the Luttinger liquid phase which is expected in the limit of
weakly coupled chains (see Sec. II C). In region (II), i.e., for
moderate t⊥ or strong repulsion U , the charge gap increases
quadratically with t⊥ or, equivalently, linearly with an effective
rung exchange coupling J⊥. The spin gap also increases with
t⊥ but its scaling with J⊥ is less clear and it is smaller than
the charge gap. We identify this phase with the Kondo-Mott
insulator defined in Secs. II B and II C. In region (III), i.e., for
intermediate values of t⊥ and U , both charge and spin gaps are
finite but exhibit nonmonotonic behavior with increasing rung
hopping. This phase is characterized by a charge gap much
larger than the spin gap, and by a pair binding energy of the
same order of magnitude as the spin gap. This is consistent with
a spin-gapped paramagnetic Mott insulator (similar to the state
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found in half-filled symmetric Hubbard two-leg ladders [1–5])
which is expected to exist in the weak-interaction limit of the
asymmetric ladder (see Sec. II A). Finally, in region (IV), i.e.,
for large t⊥, both charge and spin gaps increase monotonically
with the rung hopping and approach the band gap (4) for
large enough t⊥. Region (IV) corresponds to a correlated band
insulator. Indeed, the onset of this phase is at t⊥ = 2t‖ in the
weak-interaction limit (as seen in Sec. II A) and increases
to larger rung hoppings t⊥ for stronger interactions U , as
observed in the discussion of the dimer limit in Sec. II D.

Strictly speaking, our DMRG results for the excitation gaps
only demonstrate the existence of two phases (a gapless one
and a gapped one) in the half-filled asymmetric Hubbard
ladder. The distinction between three different insulating
phases has been motivated mainly by the analysis of limiting
cases in Sec. II and the similarity with the results of the
Hartree-Fock approximation in Sec. III. In addition, it should
be kept in mind that we have not obtained reliable DMRG
data when both the interaction and the rung hopping are small,
i.e., U � 4t‖ and t⊥ < 2t‖. Hence, the distinction between
the three insulating phases remains rather tentative so far. We
now turn to the density profiles of excitations, and later to the
single-particle spectral functions, to demonstrate that the phase
diagram indeed includes three qualitatively different gapped
phases.

C. Density profiles

At half-filling, the asymmetric ladder exhibits uniform
charge and spin densities. Other ground-state expectation
values such as bond correlations also show some structure
as a result of the open boundary conditions used, but we
have not found any significant pattern while varying the
model parameters t⊥ and U . However, we have obtained
much information from the charge- and spin-density variations
associated with the excitations discussed in the previous
sections (added electrons/holes and triplet spin excitations).
First of all, the density variations confirm that added charges
go primarily on the Fermi leg, while a triplet spin excitation
is mostly localized on the Hubbard leg. This bias becomes
larger with stronger interaction U but decreases when the rung
hopping increases, which is consistent with our analysis of the
various limiting cases in Sec. II.

The variations of the charge density along the legs also
provide us with useful information about the different phases.
For instance, Fig. 9 shows the ground-state charge density on
the Fermi leg,

N (x,F ) = 〈ψ |nx,F |ψ〉, (19)

where nx,y = nx,y,↑ + nx,y,↓ and |ψ〉 denotes the ground state,
when two electrons are added to a half-filled ladder with U =
8t‖. We clearly see three qualitatively different density profiles.
In the Kondo-Mott insulator phase

(
t⊥ = 0.5t‖

)
, the density

distribution of the added charges oscillates strongly from one
site to the next. (Similar patterns exist in the Luttinger liquid
phase but the results are less clear cut because of larger DMRG
errors.)

In the spin-gapped Mott insulator phase
(
t⊥ = t‖

)
, both

added charges are concentrated in a single wave packet on
one side of the system as if they were bound together. This
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FIG. 9. (Color online) Ground-state charge density distribution
on the Fermi leg for two electrons added to a half-filled ladder with
U = 8t‖ and three values of t⊥.

confirms the tendency to binding added charges revealed by
the pair binding energy in the previous section. This charge
distribution breaks the reflection symmetry around the center
of the Fermi leg, which indicates that odd and even excitations
are degenerate, at least within the accuracy of our DMRG
calculation. We also observe spin and charge densities that
break the reflection symmetry if a single electron is added
to the half-filled ladder. In that case, the symmetry breaking
is readily explained by the degeneracy of the lowest single-
particle excitations with wave numbers kg and k′

g (see Sec. V).
In an open chain with an even number of sites, the condition
kg + k′

g = π (see Sec. II A) implies that one of this state is even
while the other one is odd with respect to a reflection. Thus,
the DMRG algorithm may return any (symmetry-breaking)
linear combination of these two states for the ground state. We
think that a similar (quasi-)degeneracy occurs for two-particle
excitations. (We have also investigated the ground state with
up to 32 electrons added to a half-filled 2 × 128 ladder and
found no sign of phase separation.)

In the correlated band insulator phase
(
t⊥ = 2t‖

)
, the added

charges appear to be independent. Actually, their density
distribution corresponds to two free particles in a tight-binding
box. In conclusion, the distinct density profiles for added
charges confirm the existence of three different gapped phases
and the tendency for pair binding in the spin-gapped Mott
insulating phase.

A more quantitative study can be made using the Fourier
transform of these density distributions. For instance, Fig. 10
shows the Fourier transform of the charge density on the Fermi
leg

Ñ (k,F ) = 1√
L

∣∣∣∣∣
L∑

x=1

N (x,F ) exp(−ikx)

∣∣∣∣∣ (20)

for k = 2πz/L with integers |z| < L/2, when two electrons
are added to a half-filled ladder with U = 5t‖. The strong
peak around k = 0 is mostly due to the uniform density of
the half-filled system. If the lowest elementary single-charge
excitations have wave numbers ±kg, then Ñ (k,F ) should
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FIG. 10. (Color online) Fourier transform of the ground-state
charge density on the Fermi leg with two electrons added to a
half-filled ladder with U = 5t‖ and four values of t⊥.

exhibit peaks at k = ±2kg mod 2π . We see in Fig. 10 that
the residual spectral weight is concentrated close to k = π

for the Kondo-Mott insulator (t⊥ = 0.5t‖). This implies that
the lowest excitations have a wave number kg = π/2 in this
phase. In the spin-gapped Mott insulator (cf. data for t⊥ = t‖
and 1.5t‖ in Fig. 10) the spectral weight exhibits peaks at
wave numbers 0 < |q| < π . This suggests that the low-energy
excitations have incommensurate wave numbers kg = |q|/2
and k′

g = π − |q|/2 in that phase. Finally, in the correlated
band insulator phase (t⊥ = 2t‖ in Fig. 10), we observe no other
structure than the k = 0 peak. This corresponds to low-energy
excitations with wave numbers kg = 0 or π .

Similarly, we have studied the spin distribution of the lowest
triplet eigenstate as well as the charge and spin distributions
for one added electron. All results are compatible with the
above analysis: low-energy single-particle excitations have
wave numbers ±π/2 in the Luttinger liquid and Kondo-Mott
insulator, incommensurate wave numbers in the spin-gapped
Mott insulator, and wave numbers 0 or π in the correlated band
insulator. These results also agree perfectly with the analysis
of the limiting cases in Sec. II.

Somewhat surprisingly, the presence of three gapped phases
with distinct low-energy excitations is correctly predicted
by the Hartree-Fock approximation (see Sec. III). However,
the latter is otherwise quite inaccurate as it predicts an
antiferromagnetic Mott insulator or a band insulator with
antiferromagnetic long-range order for all parameters U,t⊥ >

0, while the (almost exact) DMRG results confirm the absence
of any antiferromagnetic long-range order (and also reveal the
existence of an additional, gapless phase).

D. Correlation functions

The DMRG method has been used to compute static corre-
lation functions of ladder systems [2,8,32,33]. Unfortunately,
their interpretation can be rather difficult because of the open
boundary conditions. In the asymmetric Hubbard ladder (1), it
is further complicated by the different behavior of the two legs.
Nevertheless, we calculated, e.g., charge-charge and spin-spin

correlations as well as various singlet and triplet pairing
correlations. Typically, we can obtain accurate results for small
system lengths L, or for short distances x, but long-distance
correlations are quite inaccurate because of an insufficient
DMRG convergence. Thus, we have not succeeded in gaining
much useful information for the asymptotic behavior of
correlation functions.

In the Luttinger liquid phase, we find dominant antiferro-
magnetic spin correlations with a power-law decay xα and
exponents α close to −1, as in a half-filled Hubbard chain. In
the correlated band insulator phase, with its large charge and
spin gaps, we observe that all correlations decay exponentially.
In the two other phases (Kondo-Mott and spin-gapped Mott
insulators), however, we find a rapid (faster than x−2) but
apparently nonexponential decay of correlation functions.
Clearly, in those cases, the correlation lengths are larger than
our system sizes (up to L = 128 rungs) and we do not see the
asymptotic behavior.

We also investigated correlation functions of the asym-
metric Hubbard ladder away from half-filling to understand
the nature of the charge pairing observed when electrons or
holes are added to a half-filled ladder in the spin-gapped Mott
insulating phase. Unfortunately, we do not find any enhanced
pairing correlations and hence do not understand the structure
of these pairs. Among all the pairing correlation functions
that we examined, pair-density-wave (PDW) correlations [17]
decrease most slowly. PDW correlations in two-leg ladder
systems have attracted much interest recently [8,17,18,41,42]
because they resemble correlations in the PDW state which
was proposed to describe the phenomenology of stripe-ordered
high-temperature superconductors. Interestingly, dominant
quasi-long-range PDW correlations have been found in a
spin-gapped phase of the Kondo-Heisenberg model away
from half-filling [17]. In the asymmetric Hubbard ladder
close to half-filling, however, we find that PDW correlation
functions decay as x−2 or faster with distance x. The dominant
correlations seem to be power-law charge and spin correlations
with exponents α between −1 and −2. For comparison, in the
symmetric Hubbard ladder close to half-filling, the dominant
pairing correlations are of the d-wave type but they are not
enhanced, i.e., they decay as x−2 like for a noninteracting
ladder (U = 0) [2,5].

V. SPECTRAL FUNCTIONS

Our analysis of excitation density profiles in Sec. IV C
and the Hartree-Fock approximation in Sec. III suggests
that the lowest elementary excitations have different wave
numbers kg in the three gapped phases that exist at half-filling.
To confirm this hypothesis, we consider the momentum-
and energy-resolved single-particle spectral function, which
can be probed experimentally using angle-resolved photoe-
mission spectroscopy. The sharp maxima at the spectrum
onset in correlated electron systems [7,43,44] allow us to
determine kg.

Although the single-particle spectral function can in prin-
ciple be calculated with the DMRG method [43,44], such
calculations come at a high computational cost and the
interpretation of the results is complicated by the use of
pseudo-wave numbers for open boundary conditions. (For
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instance, we can see in Fig. 10 that peaks of a Fourier
spectrum are still considerably smeared by boundary effects
even for large ladders with 128 rungs.) Instead, we calculate the
spectral function using the CT-INT continuous-time quantum
Monte Carlo method [34], which is based on a weak-coupling
expansion in the interaction U , and gives exact results for
finite systems and finite temperatures. A detailed review of the
method has been given in Ref. [45]. We used single-vertex
updates and Ising spin flips, and simulated ladders with
periodic boundary conditions along the legs.

With the help of the stochastic maximum entropy
method [46], we can perform the necessary analytic continua-
tion of the QMC results for the single-particle Green’s function
G(k,y,τ ) = 〈c†k,y,σ (τ )ck,y,σ (0)〉 to obtain the single-particle
spectral function

A(k,y,ω) = 1

Z

∑
ij

|〈i|ck,y,σ |j 〉|2(e−βEi + e−βEj )

× δ(�ji − ω). (21)

Here, ck,y,σ is the Fourier transform of cx,y,σ in the leg
direction, Z is the grand-canonical partition function, |i〉 is
an eigenstate with energy Ei , and �ji = Ej − Ei . We carried
out simulations for closed-shell configurations (L = 30) and
open-shell configurations (L = 32) at inverse temperatures
βt‖ = 30 and 32, respectively. We did not observe any
significant finite-size effect for the wave number of the
lowest excitations. The analytical continuation introduces
some quantitative uncertainties, but the overall features of the
spectral functions are robust and fully agree with the results
obtained above. Because closed-shell results are usually more
reliable and more representative of the thermodynamic limit,
we only report the latter below.

QMC methods were used to study spectral functions of
symmetric ladders in Refs. [4,11,12]. Because symmetric
ladders conserve the parity under reflection in the rung
direction, the spectral function was investigated separately
for the bonding and antibonding orbitals. For the asymmetric
ladder studied here, it is more convenient to consider the
spectral function for the Hubbard and Fermi legs separately,
as indicated by y in Eq. (21). As a result of the particle-hole
symmetry of Hamiltonian (1) at half-filling, A(k,y,ω) has
the symmetry property A(k,y,−ω) = A(k + π,y,ω). Conse-
quently, the single-particle gap is symmetric around ω = 0. In
addition, the system is symmetric under a reflection in the leg
direction and thus A(−k,y,ω) = A(k,y,ω).

The spectral functions for the Hubbard and Fermi legs
in the four different phases of the model (1) are shown in
Fig. 11. The interaction is fixed to U = 5t‖, while the hopping
t⊥ increases from top to bottom, leading to a progression from
weakly coupled chains to a true ladder system with strong rung
hopping.

In the Luttinger liquid phase, Figs. 11(a) and 11(b), the
spectrum on the Hubbard leg looks clearly different from
the free-particle-like spectrum on the Fermi leg. There is
substantial weight at ω = 0 for the Fermi wave number
kF = π/2, indicating metallic behavior. Away from ω = 0 the
main spectral features still reflect the dispersion of elementary
excitations in independent chains [compare with Fig. 2(c)].
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FIG. 11. Spectral functions A(k,y,ω) on the Hubbard leg (left
column) and the Fermi leg (right column) calculated using the
CT-INT method with βt‖ = 30 on a periodic ladder with L = 30
rungs and U = 5t⊥. (a), (b) Luttinger liquid phase (t⊥ = 0.1t‖),
(c), (d) Kondo-Mott insulator (t⊥ = 0.3t‖), (e), (f) incommensurate
spin-gapped Mott insulator (t⊥ = t‖), (g), (h) correlated band insulator
(t⊥ = 3t‖).

For the Kondo-Mott insulator phase [see Figs. 11(c)
and 11(d)], the lowest excitations are clearly located at
kg = π/2. The gap is not visible because the true gap expected
from the DMRG calculations is only a pseudogap as a result
of the finite temperature used in the CT-INT simulations.
Nevertheless, all results in Fig. 11 are compatible with our
findings for the DMRG single-particle gap (17). The spectral
function of the Hubbard leg in Fig. 11(c) resembles that of a
Hubbard chain [43,44] while the spectral function of the Fermi
leg [Fig. 11(d)] looks quite similar to Fig. 11(b) but with signs
of the pseudogap at ω = 0, k = π/2.

For the spin-gapped Mott phase, we see in Figs. 11(e)
and 11(f) that the lowest excitations are at wave numbers kg

and k′
g, which are quite symmetrically located around π/2,

so that kg + k′
g ≈ π . Thus, in this intermediate regime of t⊥,

the lowest single-particle excitations have incommensurate
wave numbers. Incommensurability in the excitation spectrum
has also been found in the half-filled symmetric Hubbard
ladder with moderate rung hopping [2], in a frustrated

155119-11



ABDELWAHAB, JECKELMANN, AND HOHENADLER PHYSICAL REVIEW B 91, 155119 (2015)

Kondo-Heisenberg model [19], and in various correlated 1D
systems such as the bilinear biquadratic spin-1 chain [47]
and a two-leg spin ladder with nearest and next-nearest
coupling [13,14]. In contrast to the DMRG, the CT-INT
method also yields accurate results for weak onsite repulsion
U , and shows that an incommensurate excitation spectrum
exists down to at least U = 3t‖ for t⊥ = t‖. We suspect that
this phase remains as U → 0 and could be investigated with
field-theoretical approaches starting from a noninteracting
asymmetric ladder, as discussed in Sec. II A.

Finally, in the correlated band insulator regime shown in
Figs. 11(g) and 11(h), the lowest excitations have wave number
kg = π for particle removal and kg = 0 for particle addition,
respectively. The spectra are almost identical on the two legs.
This agrees with the analysis of the weak-interaction limit
in Sec. II A [compare with Fig. 2(a)] and the dimer limit
in Sec. II D. Indeed, when t⊥ is large enough, elementary
excitations become almost (anti)symmetric with respect to a
reflection in the rung direction. Obviously, this case is very
similar to a half-filled symmetric Hubbard ladder with a strong
rung hopping.

The markedly distinct spectral functions in Fig. 11 confirm
the existence of one metallic and three different gapped phases
in the asymmetric Hubbard ladder at half-filling. The phases
can be characterized by the wave numbers of the low-energy
excitations, in agreement with the analysis of limiting cases,
the Hartree-Fock approximation, and the DMRG density
profiles.

VI. CONCLUSIONS

In this work, we studied the rich physics of the half-filled
asymmetric ladder model (1). In particular, we found three
gapped phases that differ in the shape of their single-particle
excitation spectra, in addition to a Luttinger liquid phase. For
strong Hubbard interaction U or weak interchain hopping t⊥,
our model is related to the Kondo-Heisenberg model, whereas
for weak Hubbard repulsion U or strong rung hopping t⊥, it
is similar to that of a half-filled symmetric Hubbard ladder.
Although we do not have enough data to draw a quantitative
phase diagram, we show in Fig. 12 a schematic and tentative
phase diagram that summarizes our findings. Surprisingly,
the overall structure is similar to the Hartree-Fock “phase
diagram” in Fig. 6 including, in particular, the wave numbers
of the lowest single-particle excitations. The main differences
are the presence of a Luttinger liquid phase at small interchain
hopping and the absence of long-range antiferromagnetic
order.

The three gapped phases are not differentiated by a
symmetry breaking or a gap closing but only by a change of the
wave number of the low-energy excitations. Similar transitions
between phases with commensurate and incommensurate low-
energy excitations were found previously in other models, such
as the bilinear-biquadratic spin-1 chain [47]. It is difficult to
determine phase boundaries numerically for phase transitions
that do not involve any symmetry breaking or gap closing.
In recent years, various measures of entanglement have been
proposed as useful tools for the study of quantum phase
transitions [48–52]. We examined one of them, the block
entropy in the middle of the lattice, using the DMRG method.
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FIG. 12. (Color online) Schematic phase diagram of the half-
filled asymmetric Hubbard ladder.

Although we observed a different scaling of this entropy
with block size in the gapless phase compared to the gapped
ones, we did not find any feature which could help locate the
boundaries between the three gapped phases. Nevertheless, it is
likely that DMRG calculations combined with one of the more
sophisticated entanglement-based methods could provide a
more precise phase diagram.

The existence of a Luttinger liquid phase has been demon-
strated within the accuracy of our numerical methods. It should
be kept in mind, however, that exponentially small energy
scales usually associated with Kondo physics are not acces-
sible with these methods. Therefore, we cannot rigorously
exclude the existence of other phases with exponentially small
gaps in the limit of very small interchain hopping. We think
that the best approach to solve this issue, and more generally to
improve our understanding of the asymmetric Hubbard ladder,
is a more systematic investigation of the limiting cases in
Sec. II. On the one hand, effective models for the low-energy
physics can be derived in the strong-interaction (U � t‖) and
dimer (t⊥ � t‖) limits. They should be more amenable to our
numerical methods and simple analytical approximations and
could thus provide us with a better understanding of the upper
and right-hand-side parts of the phase diagram in Fig. 12. On
the other hand, it is likely that field-theoretical methods for
weakly coupled chains (see Sec. II C) and weakly interacting
ladders (Sec. II A) could be used to investigate the left-hand
and lower parts of the phase diagram.

This study was motivated by the problem of correlated
quantum wires deposited on a substrate. In this context, our
results confirm that 1D correlated systems are extremely sen-
sitive to their environment. Their properties can be drastically
modified by varying the strength of the hybridization (the
hopping t⊥) between the interacting wire (the Hubbard leg) and
the noninteracting substrate (the Fermi leg). In that perspective,
the study of asymmetric ladder models constitutes a useful
approach for exploring the basic physics of a quantum wire
deposited on a substrate.
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Yet, we also face some problems with this approach.
Clearly, it is not enough to represent the substrate by a
single chain because the wire interaction can then dominate
the full system as our results show. Instead, the substrate
should include many more explicit degrees of freedom than
the wire. This could be realized using wider ladders with
several legs representing the substrate. Indeed, it is possible to
map the Hamiltonian of some wire-substrate systems exactly
onto ladder models with an infinite number of inequivalent
legs. (A similar idea has been recently used to map multiple
multiorbital impurities on a honeycomb lattice onto effective
multileg ladder systems [53].) An effective ladder model with
n + 1 legs can then be seen as the “nth-order” approximation
of the substrate degrees of freedom. We think that this approach
could enable a more systematic study of wire-substrate systems
in the future.

In addition, in most experiments, the substrate is a band
insulator. This condition can be easily realized using two
or more orbitals per site but this will double the number
of model parameters (at least). This reveals the most seri-
ous practical difficulty: we do not know which parameter
regime is appropriate for real systems such as atomic wires
deposited on substrates. Therefore, ladder models cannot

currently be used to study specific materials but can only
provide generic information about the physics of quasi-1D
electron systems. However, we think that systematic studies
of effective n-leg ladder models could enable the determi-
nation of appropriate model parameters by comparison with
experiments and first-principles simulations for wire-substrate
systems.

ACKNOWLEDGMENTS

We thank R. M. Noack and A. Rosch for helpful dis-
cussions. This work has been done as part of the Research
Units Metallic nanowires on the atomic scale: Electronic and
vibrational coupling in real world systems (FOR1700) and
Advanced Computational Methods for Strongly Correlated
Quantum Systems (FOR1807) of the German Research Foun-
dation (DFG) and was supported by Grants No. JE 261/1-1 and
No. Ho 4489/2-1. The DMRG calculations were carried out on
the cluster system at the Leibniz University of Hannover and
at the Sudan Center for HPC and Grid Computing. The QMC
simulations were performed at the Jülich Supercomputing
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[32] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[33] E. Jeckelmann, in Computational Many Particle Physics, Lec-

ture Notes in Physics 739, edited by H. Fehske, R. Schneider,
and A. Weiße (Springer, Berlin, 2008), p. 597.

[34] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev.
B 72, 035122 (2005).

[35] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
[36] C. Lacroix and M. Cyrot, Phys. Rev. B 20, 1969 (1979).
[37] O. Zachar, Phys. Rev. B 63, 205104 (2001).

155119-13

http://dx.doi.org/10.1103/PhysRevLett.73.882
http://dx.doi.org/10.1103/PhysRevLett.73.882
http://dx.doi.org/10.1103/PhysRevLett.73.882
http://dx.doi.org/10.1103/PhysRevLett.73.882
http://dx.doi.org/10.1103/PhysRevB.53.12133
http://dx.doi.org/10.1103/PhysRevB.53.12133
http://dx.doi.org/10.1103/PhysRevB.53.12133
http://dx.doi.org/10.1103/PhysRevB.53.12133
http://dx.doi.org/10.1016/S0921-4534(97)00249-9
http://dx.doi.org/10.1016/S0921-4534(97)00249-9
http://dx.doi.org/10.1016/S0921-4534(97)00249-9
http://dx.doi.org/10.1016/S0921-4534(97)00249-9
http://dx.doi.org/10.1103/PhysRevB.58.9492
http://dx.doi.org/10.1103/PhysRevB.58.9492
http://dx.doi.org/10.1103/PhysRevB.58.9492
http://dx.doi.org/10.1103/PhysRevB.58.9492
http://dx.doi.org/10.1103/PhysRevB.72.035110
http://dx.doi.org/10.1103/PhysRevB.72.035110
http://dx.doi.org/10.1103/PhysRevB.72.035110
http://dx.doi.org/10.1103/PhysRevB.72.035110
http://dx.doi.org/10.1103/PhysRevB.83.104405
http://dx.doi.org/10.1103/PhysRevB.83.104405
http://dx.doi.org/10.1103/PhysRevB.83.104405
http://dx.doi.org/10.1103/PhysRevB.83.104405
http://dx.doi.org/10.1103/PhysRevB.85.195103
http://dx.doi.org/10.1103/PhysRevB.85.195103
http://dx.doi.org/10.1103/PhysRevB.85.195103
http://dx.doi.org/10.1103/PhysRevB.85.195103
http://dx.doi.org/10.1016/j.aop.2013.08.007
http://dx.doi.org/10.1016/j.aop.2013.08.007
http://dx.doi.org/10.1016/j.aop.2013.08.007
http://dx.doi.org/10.1016/j.aop.2013.08.007
http://dx.doi.org/10.1103/PhysRevLett.73.886
http://dx.doi.org/10.1103/PhysRevLett.73.886
http://dx.doi.org/10.1103/PhysRevLett.73.886
http://dx.doi.org/10.1103/PhysRevLett.73.886
http://dx.doi.org/10.1016/S0921-4534(97)01490-1
http://dx.doi.org/10.1016/S0921-4534(97)01490-1
http://dx.doi.org/10.1016/S0921-4534(97)01490-1
http://dx.doi.org/10.1016/S0921-4534(97)01490-1
http://dx.doi.org/10.1016/S0921-4526(02)00780-9
http://dx.doi.org/10.1016/S0921-4526(02)00780-9
http://dx.doi.org/10.1016/S0921-4526(02)00780-9
http://dx.doi.org/10.1016/S0921-4526(02)00780-9
http://dx.doi.org/10.1103/PhysRevB.84.144407
http://dx.doi.org/10.1103/PhysRevB.84.144407
http://dx.doi.org/10.1103/PhysRevB.84.144407
http://dx.doi.org/10.1103/PhysRevB.84.144407
http://dx.doi.org/10.1103/PhysRevB.88.014403
http://dx.doi.org/10.1103/PhysRevB.88.014403
http://dx.doi.org/10.1103/PhysRevB.88.014403
http://dx.doi.org/10.1103/PhysRevB.88.014403
http://dx.doi.org/10.1103/PhysRevLett.79.929
http://dx.doi.org/10.1103/PhysRevLett.79.929
http://dx.doi.org/10.1103/PhysRevLett.79.929
http://dx.doi.org/10.1103/PhysRevLett.79.929
http://dx.doi.org/10.1103/PhysRevB.64.033103
http://dx.doi.org/10.1103/PhysRevB.64.033103
http://dx.doi.org/10.1103/PhysRevB.64.033103
http://dx.doi.org/10.1103/PhysRevB.64.033103
http://dx.doi.org/10.1103/PhysRevLett.105.146403
http://dx.doi.org/10.1103/PhysRevLett.105.146403
http://dx.doi.org/10.1103/PhysRevLett.105.146403
http://dx.doi.org/10.1103/PhysRevLett.105.146403
http://dx.doi.org/10.1103/PhysRevB.87.245102
http://dx.doi.org/10.1103/PhysRevB.87.245102
http://dx.doi.org/10.1103/PhysRevB.87.245102
http://dx.doi.org/10.1103/PhysRevB.87.245102
http://dx.doi.org/10.1103/PhysRevB.84.014413
http://dx.doi.org/10.1103/PhysRevB.84.014413
http://dx.doi.org/10.1103/PhysRevB.84.014413
http://dx.doi.org/10.1103/PhysRevB.84.014413
http://dx.doi.org/10.1103/PhysRevB.80.115116
http://dx.doi.org/10.1103/PhysRevB.80.115116
http://dx.doi.org/10.1103/PhysRevB.80.115116
http://dx.doi.org/10.1103/PhysRevB.80.115116
http://dx.doi.org/10.1088/0953-8984/13/22/301
http://dx.doi.org/10.1088/0953-8984/13/22/301
http://dx.doi.org/10.1088/0953-8984/13/22/301
http://dx.doi.org/10.1088/0953-8984/13/22/301
http://dx.doi.org/10.5402/2012/732973
http://dx.doi.org/10.5402/2012/732973
http://dx.doi.org/10.5402/2012/732973
http://dx.doi.org/10.5402/2012/732973
http://dx.doi.org/10.1088/0953-8984/20/39/393001
http://dx.doi.org/10.1088/0953-8984/20/39/393001
http://dx.doi.org/10.1088/0953-8984/20/39/393001
http://dx.doi.org/10.1088/0953-8984/20/39/393001
http://dx.doi.org/10.1103/RevModPhys.82.307
http://dx.doi.org/10.1103/RevModPhys.82.307
http://dx.doi.org/10.1103/RevModPhys.82.307
http://dx.doi.org/10.1103/RevModPhys.82.307
http://dx.doi.org/10.1038/nphys2051
http://dx.doi.org/10.1038/nphys2051
http://dx.doi.org/10.1038/nphys2051
http://dx.doi.org/10.1038/nphys2051
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRevB.20.1969
http://dx.doi.org/10.1103/PhysRevB.20.1969
http://dx.doi.org/10.1103/PhysRevB.20.1969
http://dx.doi.org/10.1103/PhysRevB.20.1969
http://dx.doi.org/10.1103/PhysRevB.63.205104
http://dx.doi.org/10.1103/PhysRevB.63.205104
http://dx.doi.org/10.1103/PhysRevB.63.205104
http://dx.doi.org/10.1103/PhysRevB.63.205104


ABDELWAHAB, JECKELMANN, AND HOHENADLER PHYSICAL REVIEW B 91, 155119 (2015)
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Korepin, The One-Dimensional Hubbard Model (Cambridge
University Press, Cambridge, 2005).

[40] F. Gebhard, The Mott Metal-Insulator Transition (Springer,
Berlin, 1997).

[41] J. Almeida, G. Roux, and D. Poilblanc, Phys. Rev. B 82, 041102
(2010).

[42] A. Jaefari and E. Fradkin, Phys. Rev. B 85, 035104
(2012).

[43] H. Benthien, F. Gebhard, and E. Jeckelmann, Phys. Rev. Lett.
92, 256401 (2004).

[44] E. Jeckelmann, Prog. Theor. Phys. Suppl. 176, 143
(2008).

[45] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov,
M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

[46] K. S. D. Beach, arXiv:cond-mat/0403055.
[47] O. Golinelli, Th. Jolicœur, and E. S. Sørensen, Eur. Phys. J. B

11, 199 (1999).
[48] A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature (London)

416, 608 (2002).
[49] L.-A. Wu, M. S. Sarandy, and D. A. Lidar, Phys. Rev. Lett. 93,

250404 (2004).
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