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Single- or double-electron emission within the Keldysh nonequilibrium Green’s function and
Feshbach projection operator techniques
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This work provides a unified theoretical treatment of the single- and correlated double-electron emission
from a general electronic system. Using Feshbach projection method, the states of interest are selected by the
projection operator; the Feshbach-Schur map determines the effective Hamiltonian and the optical potential
for the emitted electrons. On the other hand, the nonequilibrium Green’s functions method is demonstrated
to be a complementary approach, and an explicit correspondence between both methods is established. For a
self-contained exposition, some results on single-electron emission are rederived using both formalisms. New
insights and results are obtained for the correlated electron-pair emission: This includes the effective two-electron
Hamiltonian, the explicit form of the Feshbach self-energy in terms of the many-body self-energies, and the
diagrammatic expansion of the two-particle current. As an illustration of the diagrammatic technique, the process
of the two-particle emission assisted by the excitation of plasmons is explicitly worked out.
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I. INTRODUCTION

Scattering experiments deliver the most detailed informa-
tion on the structure of matter. For instance, the fully resolved
spectra of an electron emitted from an electronic system upon
photon or particle impact encode the spin and momentum-
resolved spectral properties of the sample [1–5]. For direct
information on the two-particle properties, the detection of
a correlated electron pair is necessary which is usually
performed in a one-photon double-electron emission [4] or in
a swift particle-impact double-electron emission experiment
[6]. Calculations of the electron emission spectra from atomic
and molecular systems [1,4,7–9] as well as from condensed
matter [1–3] are done routinely. The underlying theories and
techniques differ, however. The issue addressed here concerns
the formulation of a unified and numerically accessible
theoretical framework of single- and double-photoelectron
emission (SPE and DPE) from finite and extended elec-
tronic systems. A method of choice for this purpose is the
nonequilibrium Green’s functions (NEGF) approach [10–13].
In full generality, the response function describing electron
emission is more involved than the optical response which is
related to time-ordered particle-hole (p-h) Green’s function
(GF) for which well-established approximations exist. Even
for a single-electron emission the response function can only
be defined on the Keldysh contour and after performing the
calculations, the times are projected on the real observable
times. The second complication is that for a fixed energy and
momentum of the detected electron, the sample may be left in
an excited state. A typical example is the plasmon satellites
in core-level photoemission [14]. There, the target is left with
one excited plasmon [15]. The conservation of energy and
momentum allows us to focus on, e.g., the no-loss current. The
response function is then determined by the product of two ver-
tex functions and three single-particle Green’s functions [16].
If an approximation is made for one of the constituents, it has
to be taken over consistently to the others. The notion of a
conserving approximation is rooted in this requirement.
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First theories of electron emission were empirical, e.g.,
for surfaces, following Berglund and Spicer [17], the pho-
toemission is regarded as a three-stage process: excitation,
transport to the surface (during this stage the particle may lose
energy), and the transformation into a scattering (detector)
state. In 1970, Mahan wrote “we have not yet been able
to derive a simple, time-ordered, correlation function which
would serve as the starting point for a closed-loop type of
calculation. That is, we have not yet found a “Kubo formula for
photoemission” [18]. Shortly thereafter, Schaich and Ashcroft
[19] and Langreth [20] employed a time-ordered formalism
for the response function, and Caroli et al. [21] introduced
the nowadays standard NEGF formulation. The well-known
Fermi golden rule expression for the photocurrent

Jp = 2π

∫ μ

−∞
dε δ(εp − ε − ω)〈χ (−)

p |�̂Â(ε)�̂†|χ (−)
p 〉

derives rigorously from the response-function formalism. In
1985, Almbladh obtained the following modifications of the
no-loss current:

Jp = 2π

∫ μ

−∞
dε δ(εp − ε − ω)〈χ (−)

p |�̂(ε + ω,ε)Â(ε)

× �̂†(ε + ω,ε)|χ (−)
p 〉.

In these formulas, an interaction with an electromagnetic field
of the frequency ω is assumed. χ (−)

p denotes the final scattering
state with the momentum p and energy εp, and Â(ε) is the
spectral function. �̂(ε + ω,ε) is the so-called vertex function
which, for noninteracting systems, reduces to the operator
of the light-matter interaction �̂. In interacting systems, it
describes the screening of the optical field by the sample
electrons and the accompanying polarization effects [22].

The physics beyond no-loss has many facets. There are
two prominent examples: the plasmon satellites [15,23,24]
and the Auger effect [25–28]. In both cases, the system is
left in an excited state that relaxes subsequently either due
many-body effects or results in the emission of a secondary
electron. It should be noted, however, that the borderline in
such a classification is blurred: one can consider the Auger
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effect as a two-step process, in which the decay is treated
independently from the primary ionization or as the no-loss
double photoemission [29]. The former point of view yields
a description of the Auger effect in terms of an equilibrium
two-hole Green’s function [26,30,31].

The goal here is to generalize the nonequilibrium approach
to treat single- and double-electron emission. We will mostly
discuss processes related to the absorption of one photon.
Particle impact is discussed only in the optical limit as specified
in Appendix A. In particular, this work provides a detailed
discussion of DPE, a process that was experimentally realized
for various systems [4,32]. For a self-contained presenta-
tion, we start by defining observables and introducing basic
formulas solely based on the time-dependent perturbation
theory and the assumption of adiabatic switching of the light-
matter interaction (Sec. II A). Already on this level one can
reformulate these expressions in the Fermi golden rule form
and demonstrate how the sudden approximation can be used
to reduce the many-body to two-body description (Sec. II B).
Such reduction, however, neglects the energy loss of an emitted
electron on its way to detector. These extrinsic losses are
treated by means of the projection operator technique (Sec. III).
For single photoemission (SPE), this approach was established
in works of Almbladh [16], Bardyszewski and Hedin [33],
Fujikawa and Hedin [34], Hedin, Michiels, and Inglesfield
[35], and for DPE by Brand and Cederbaum [36]. The notion
of the optical potential is central to this approach. While
the case of elastic scattering was considered in a classical
work of Bell und Squires [37], the inelastic case, which is
especially relevant for photoemission, is more involved and
has a long history with a recent progress due to Cederbaum
[38,39]. In Sec. IV, we closely follow the derivation of
Almbladh and extend the theory to the two-electron case. There
are important differences as compared to the single-electron
emission. Under some assumptions, DPE is only possible
for interacting systems [40]. We corroborate our findings by
performing a diagrammatic expansion of the derived DPE
response function in terms of Green’s function on the Keldysh
contour (Sec. V). We consistently use atomic units.

II. TWO-ELECTRON CURRENT

For DPE from atomic and molecular systems [41,42] a
variety of very successful techniques, based on a full numerical
solution or using approximate correlated scattering states of the
few-body Schrödinger equation, were put forward. The wave-
function-based methods and, consecutively, the scattering
approach are less suitable for extended degenerate fermionic
systems. Such DPE experiments were first performed for
Cu(001) and Ni(001) crystals [32] and meanwhile for a variety
of other samples. Here comes the response formalism into
play: the expectation values of products of the creation and
annihilation operators are computed over the ground state
of a (many-body) system, and perturbative expansions are
evaluated with the help of Wick’s theorem. If the studied
process can be regarded as a multistep event, then the
rate equations are often a very efficient tool. They can be
derived either from the density matrix or from the NEGF
formalisms using some additional assumptions. For instance,
the generalized Kadanoff-Baym ansatz has been used to derive

the quantum master equations starting from NEGF approach
to describe the transport in molecular systems [43].

Here, we present a self-contained derivation of the two-
particle current starting from the time-dependent perturbation
theory. The resulting formula [Eq. (12)] is, however, less
useful for practical applications because it requires (generally
unknown) many-body states. One has either a choice to
completely neglect the target-ejected particles interaction
which still might be relevant for higher energies (Sec. II B)
or, as will be demonstrated in the next section (III), to properly
reduce the formulations as to work with effective residual
interactions (i.e., optical potentials).

A. Basic definitions

1. Hamiltonian

A system of interacting fermions is considered that has the
Hamiltonian

Ĥ =
∫

dx ψ̂†(x)h(x)ψ̂(x)

+ 1

2

∫
dx dx ′ψ̂†(x)ψ̂†(x ′)v(x,x ′)ψ̂(x ′)ψ̂(x), (1)

where the field operator ψ̂ (ψ̂†) with argument x ≡ (r,σ )
annihilates (creates) a fermion in position r with spin σ .
Needed below is the antisymmetrized interaction

V (x1,x2,x3,x4) = v(r1,r2)[δ(x2 − x3)δ(x1 − x4)

− δ(x1 − x3)δ(x2 − x4)]. (2)

One may wish also to change the basis for the representation
of creation and annihilation operators via

ψ̂(x) =
∑

i

〈x|i〉ci, (3)

where the sum runs over a complete set of one-particle
states and we consistently skip ˆ. . . on ci and c

†
i . To study

photoemission, we need to further classify the states according
to their geometric character. A state will be called bound (φi ∈
B) if for any ε > 0 there is a compact set B ⊂ R3 such that
for all times t the state remains in B: ‖χBceitĤ φi‖ < ε, where
Bc is the complement of B, χBc denotes the corresponding
characteristic function. Analogically for the scattering states
(φk ∈ C) we adopt the following definition: they are the vectors
for which limT →∞ 1

2T

∫ T

−T
‖χBeitĤ φk‖dt = 0 for all compact

sets B ⊂ R3, i.e., they leave any bounded region. It is clear
that B ⊥ C and according to the RAGE theorem [44] all the
states from the discrete (point) spectrum are bound, whereas
the continuum states (absolutely continuous and singularly
continuous) are the scattering states. Thus, parallels between
the geometric and the spectral classification allows us to
use continuum and scattering, and point and bound terms
interchangeably, although for the purpose of this work the
geometric classification is preferred. Finally, we note that if our
theory is to be applied to solids, the use of localized Wannier
functions [45] is preferred, at least for systems where their
existence can be proved [46].

We will use the letters (abcd) for general orbitals, (ijnm)
for bound orbitals, and boldface letters for continuum states.

155116-2



SINGLE- OR DOUBLE-ELECTRON EMISSION WITHIN . . . PHYSICAL REVIEW B 91, 155116 (2015)

In these notations

Ĥ =
∑
ab

tabc
†
acb + 1

2

∑
abcd

vabcdc
†
ac

†
bcdcc (4)

=
∑
ab

tabc
†
acb + 1

4

∑
abcd

Vabcdc
†
ac

†
bcdcc . (5)

2. Initial-state preparation

The above Hamiltonian determines the quantum state of the
target (wave function |0〉 with corresponding energy E0) in
the remote past (t = −∞). When the system is perturbed by
the interaction with external fields, it evolves to a new state.
As a typical mechanism we consider here the light-matter
interaction

V̂ (t) = (�̂e−iωt + �̂†eiωt )eηt , �̂ =
∑
ab

�abc
†
acb. (6)

In this expression, V̂ (t) is adiabatically turned on allowing
us to introduce a typical interaction time ∼(2η)−1. The form
(6) permits generalizations: In Appendix A, we consider the
process of impact ionization caused by a charged projectile
particle (e.g., an electron) impinging on the target system. At
high energy, the projectile can be regarded as distinguishable
from electrons of the system. This allows us to average the
projectile-target interaction over the projectile’s states and
write the perturbation in essentially the same form as in Eq. (6),
i.e., as a single-particle operator.

From the first-order time-dependent perturbation theory
we obtain the approximate eigenstate |̃(+)〉 of the full
Hamiltonian Ĥ + V̂ (t) at time t = 0:

|̃(+)〉 = |0〉 + lim
η→0

1

E0 + ω − Ĥ + iη
�̂|0〉. (7)

Readers will immediately notice parallels of Eq. (7) with the
scattering theory where the Møller operators �̂(±) convert an
eigenstate of Ĥ (the Hamiltonian of the target system) at t =
∓∞, into an eigenstate of Ĥ + V̂ (0) (the full Hamiltonian)
|(±)

α 〉 = �̂(±)|α〉 at time t = 0 [cf. Eqs. (14.66) of Joachain
[47]]. The scattering theory is required when electromagnetic
fields are quantized. For classical fields, Eq. (7) follows from
the first-order expansion (in �̂) of the Møller operator �̂(+). To
emphasize the similarity, we denote the state given by Eq. (7)
as the scattering state. In what follows, we omit the tilde which
we used to denote its approximate character.

3. Observables

Assuming we know the quantum state of the target at t = 0,
some observables can be computed. Since we are interested
in the electron emission these are the expectation values of
current operators. The safe way to introduce them is to use the
continuity equation which is gauge invariant. The one-electron
current Jk is defined as the number of electrons Nk with a
given momentum k outside the target divided by the effective
interaction time (2η)−1. There is a detailed discussion [16] on
why electrons in the sample give a negligible contribution to
the current. The same arguments are valid for the two-electron
case. Thus, we analogically define the two-electron current as

Jk1,k2 = lim
η→0

2η
〈
N̂k1N̂k2 − δk1,k2N̂k1

〉
. (8)

In the expression above (and all subsequent derivations), we
do not explicitly spell out the spin quantum numbers. The
dependence on the spin can be recovered by substituting the
continuum quantum numbers like k by kσ (likewise for bound
indices). The second term excludes the one-electron current
in the case when two momenta are equal. Equation (8) gives
access to the differential cross section through the following
relation:

d2σ

dk1dk2
= ω

I
Jk1,k2 , (9)

where I/ω is the photon flux density [48]. For the velocity

gauge �̂ = 1
c
A0 · p̂, I = ω2A2

0
2πc

, where A0 is the amplitude of
the vector potential and p̂ is the momentum operator. Similar
expressions can be given for the length gauge.

The average in Eq. (8) is performed over the perturbed state
(7):

Jk1,k2 = lim
η→0

2η〈0|�̂† 1

E0 + ω − Ĥ − iη
c
†
k1

c
†
k2

ck2ck1

× 1

E0 + ω − Ĥ + iη
�̂|0〉, (10)

where we used the usual anticommutation relations for the
fermionic operators. The current is quadratic in �̂ or linear in
the number of absorbed photons. The first order in �̂ gives the
linear conductivity current and is of no interest here [21].

To derive the Fermi golden rule for DPE we insert
a complete set of the (N − 2)-particle states and use the
scattering theory to evaluate matrix elements of the type:

M∗
k1,k2,β

= 〈0|�̂† 1

E0 + ω − Ĥ − iη
c
†
k1

c
†
k2

∣∣2+
β

〉
.

We will generally use lower indices to distinguish quantum
states and upper indices to indicate the charge of the system
or the nature of the state (±), i.e., incoming or outgoing wave.
For a scattering process with the following energy balance

Ei = E0 + ω → Ef = εk1 + εk2 + E2+
β ,

the Møller operator �̂(−) translates a wave function in the
remote future into an incoming [they are sometimes called
inverted low-energy electron diffraction (LEED) states [35]]
scattering state at t = 0:

|(−)
β 〉 = �̂(−)c

†
k1

c
†
k2

∣∣2+
β

〉 = lim
η→0

−iη

Ef − Ĥ − iη
c
†
k1

c
†
k2

∣∣2+
β

〉
.

Following Almbladh [16], we obtain

M∗
k1,k2,β

= 1

Ei − Ef − iη
〈0|�̂†|(−)

β 〉, (11)

resulting in the Fermi golden rule for DPE for an adiabatic
switching of V̂ (t):

Jk1,k2 = lim
η→0

2η
∑

β

∣∣Mk1,k2,β

∣∣2

= 2π
∑

β

δ(Ei − Ef )|〈(−)
β |�̂|0〉|2. (12)

This is essentially an exact equation if strong field effects
are neglected, i.e., if the first-order perturbation theory in

155116-3



Y. PAVLYUKH, M. SCHÜLER, AND J. BERAKDAR PHYSICAL REVIEW B 91, 155116 (2015)

field strength is adequate. Now, we discuss some common
approximations. In the sudden approximation, the Møller
operator is set to be the identity operator and it follows
|(−)

β 〉 ≈ c
†
k1

c
†
k2

|2+
β 〉 leading, e.g., to Eq. (1) of Napitu and

Berakdar [49]. The sudden approximation is broadly used
to interpret the single photoemission. However, it is easy
to construct an example when it completely fails: consider
photoemission from a system surrounded by a impenetrable
potential barrier. Irrespective of the photon energy there will
be zero current in the detector. Thus, it is extrinsic losses [35]
that are missing in the sudden approximation.

B. Sudden approximation

In the sudden approximation for SPE it is possible to reduce
the many-body description to a single-particle picture which
also allows us to approximately treat the Møller operator and
accommodate extrinsic losses. The central objects in such an
approach are the Dyson orbitals [50]. The hole Dyson orbital
is defined as an overlap of (N − 1) many-particle states with
the N -particle initial state:

φα(x1) =
√

N

∫
d(x2 . . . xN )

[
+

α (x2, . . . ,xN )
]∗

×0(x1, . . . ,xN )

= 〈+
α |ψ̂(x1)|0〉. (13)

A rather extensive review of such overlap operators as well
as the proof on the last “dressed in the fancy outfit of
the occupation number formalism” identity can be found
in Ref. [51]. Practical approaches for their computation are
overviewed in Refs. [52,53]. By introducing a similar two-hole
Dyson orbital

φ
(2)
β (x1,x2) =

√
N (N − 1)

2!

∫
d(x3 . . . xN )

[
2+

β (x3, . . . ,xN )
]∗

×0(x1, . . . ,xN )

= 1√
2

〈
2+

β

∣∣ψ̂(x1)ψ̂(x2)|0〉, (14)

and neglecting the Møller operator, we obtain for the two-
particle current (12)

Jk1,k2 = 2π
∑

β

δ(Ei − Ef )
∣∣〈k1k2|�̂

∣∣φ(2)
β

〉∣∣2
, (15)

where |k1k2〉 is asymptotic two-particle state, i.e., antisym-
metrized product of two plane waves. The two-hole orbital
is antisymmetric with respect to the interchange of particle
coordinates and in general has a norm �1. To derive (15)
it is instructive to consider at first the corresponding matrix
element for SPE:

Mk,α ≈ 1

Ei − Ef + iη

∑
ab

�ab〈+
α |ckc

†
acb|0〉.

Now, we have ckc
†
acb|0〉 = δk,acb|0〉 + c

†
acbck|0〉 and it is

time to make another very important assumption:

ck|0〉 ≈ 0. (16)

It is not valid in general, however, one can use the same
arguments as Almbladh [see discussion around his Eq. (11)] to

demonstrate that it gives a vanishing contribution. For homo-
geneous electron gas, this is even a generally valid statement.
Aside from allowing us to compute the matrix elements, the
assumption (16) also justifies why terms resulting from the
second-order perturbation theory give vanishing contributions
to the current.

In this way (see Appendix D), Mk,α = 1
Ei−Ef +iη

〈k|�̂|φα〉
and

Jk = 2π
∑

α

δ(Ei − Ef )|〈k|�̂|φα〉|2.

For DPE, we analogically analyze the matrix element entering
Eq. (11) and neglect terms with two holes at momenta k1 and
k2 (i.e., ck2ck1 |0〉 ≈ 0) as compared to the terms with only
one hole (Appendix D). Notice that for SPE we neglected one
hole term as compared to zero hole contribution [cf. Eq. (16)].

It is obvious that the sudden approximation is only valid for
large momenta k1,2 and it is indifferent to the state in which
the system is left in (the final double-ionized state can be
an excited state). Thus, it is desirable to generate improved
approximations to Eq. (12) by rewriting it in the two-particle
form, but with an improved final state [such as Eq. (4) of
Fominykh et al. [54] or Eq. (2) of Fominykh et al. [55]].

III. EXTRINSIC EFFECTS

A many-body target interacts with light such that a certain
number of electrons are emitted. Here, the fundamental
question is whether it is legitimate to describe the process
in such a way that only quantum numbers of ejected particles
are considered and remaining degrees of freedom are traced
out, i.e., put into some effective interactions. The projection
operator formalism is a general method to treat this kind of
problem. In this section, we introduce the basic concepts of this
theory and demonstrate to the reader that a deep connection
with the nonequilibrium Green’s function formalism exist. We
conclude this rather mathematical section by considering two
examples. Based on these examples, the Fermi golden rule is
derived in the subsequent section.

A. Nonequilibrium Green’s functions

In the Keldysh formalism [13], the field operators evolve
on the time-loop contour C shown in Fig. 1. Operators on the
minus branch are ordered chronologically while operators on
the plus branch are ordered antichronologically. Letting z1 and
z2 be two contour times, the Green’s function G(x1z1,x2z2) can
be divided into different components Gαβ (x1t1,x2t2) depend-
ing on the branch α,β = +/− to which z1 and z2 belong. As
before, xi denote a composite coordinate comprising space
and spin variables. For α = β = −, we have the time-ordered

FIG. 1. The Keldysh time-loop contour C. The forward branch is
denoted with a “−” label while the backward branch is denoted by a
“+” label.
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Green’s function

G−−(x1t1,x2t2) = −i〈T [ψ̂H (x1t1)ψ̂†
H (x2t2)]〉. (17)

In this expression, the average 〈. . .〉 is taken over a given
density matrix ρ̂ and T is the time-ordering operator. The
subscript “H” attached to a general operator Ô signifies that
the operator is in the Heisenberg picture

ÔH (t) = Û(t0,t)Ô Û(t,t0), (18)

where Û(t1,t2) is the time-evolution operator and t0 is an
arbitrary initial time. Reversing the time arrow the G−− is
converted into the anti-time-ordered Green’s function

G++(x1t1,x2t2) = −i〈T̄ [ψ̂H (x1t1)ψ̂†
H (x2t2)]〉, (19)

where T̄ orders the operators antichronologically. Finally,
choosing z1 and z2 on different branches we have

G−+(x1t1,x2t2) = i〈ψ̂†
H (x2t2)ψ̂H (x1t1)〉, (20a)

G+−(x1t1,x2t2) = −i〈ψ̂H (x1t1)ψ̂†
H (x2t2)〉. (20b)

The last two components are equivalently written as G−+ =
G< (lesser Green’s function) and G+− = G> (greater Green’s
function), and describe the propagation of an added hole (G<)
or particle (G>) in the medium.

It is often convenient in addition to time-ordered and anti-
time-ordered functions to introduce the retarded and advanced
components

GR(x1,x2; t) = θ (t)[G>(x1,x2; t) − G<(x1,x2; t)], (21a)

GA(x1,x2; t) = θ (−t)[G<(x1,x2; t) − G>(x1,x2; t)]. (21b)

In order to find their representation in frequency space, we
multiply the retarded GF by e−ηt with η → 0+ in order to
enforce the convergence and compute the Fourier integral

GR(x1,x2; ω) =
〈
ψ̂(x1)

1

ω + E0 − Ĥ + iη
ψ̂†(x2)

〉

+
〈
ψ̂†(x2)

1

E0 − ω − Ĥ − iη
ψ̂(x1)

〉
. (22)

Let us further introduce (for general z ∈ C) the particle-type
and hole-type GF by

G(p)(x1,x2; z) =
〈
ψ̂(x1)

1

z − Ĥ
ψ̂†(x2)

〉
, (23a)

G(h)(x1,x2; z) =
〈
ψ̂†(x2)

1

z − Ĥ
ψ̂(x1)

〉
. (23b)

From Eqs. (23) follows

GR/A(x1,x2; ω) = G(p)(x1,x2; E0 + ω ± iη)

−G(h)(x1,x2; E0 − ω ∓ iη).

Finally, let us present the equation of motion (EOM) for the
retarded GF in the form

(ω + iη)GR(x1,x2; ω)

= δ(x1 − x2) +
〈
[ψ̂(x1),Ĥ ]

1

E0 + ω − Ĥ + iη
ψ̂†(x2)

〉

−
〈
ψ̂†(x2)

1

E0 + ω − Ĥ + iη
[ψ̂(x2),Ĥ ]

〉
. (24)

The two-particle Green’s functions are much more diverse.
However, we will only need those containing creation op-
erators with the same time argument and the same holds
for annihilation operators. To specify the relative order of
creation (or annihilation) operators infinitesimally small times
are added. Because such Green’s functions depend on two
times only, the same nomenclature as in the single-particle
case can be used. Thus, we define

G(pp)(x1,x2; x̄1,x̄2; z) =
〈
ψ̂(x1)ψ̂(x2)

1

z − Ĥ
ψ̂†(x̄2)ψ̂†(x̄1)

〉
,

G(hh)(x1,x2; x̄1,x̄2; z) =
〈
ψ̂†(x̄2)ψ̂†(x̄1)

1

z − Ĥ
ψ̂(x1)ψ̂(x2)

〉
.

They are the constituents of the retarded and advanced two-
particle Green’s functions

iGR/A(x1,x2; x̄1,x̄2; ω) = G(pp)(x1,x2; x̄1,x̄2; E0 + ω ± iη)

−G(hh)(x1,x2; x̄1,x̄2; E0 − ω ∓ iη).

For the retarded function, the following equation of motion
can be derived:

(ω + iη)GR(x1,x2; x̄1,x̄2; ω)

= δ(x1 − x̄1)G<(x2,x̄2,0) − δ(x1 − x̄2)G>(x2,x̄1,0)

+ δ(x2 − x̄2)G>(x1,x̄1,0) − δ(x2 − x̄1)G<(x1,x̄2,0)

− i

〈
[ψ̂(x1)ψ̂(x2),Ĥ ]

1

E0 + ω − Ĥ + iη
ψ̂†(x̄2)ψ̂†(x̄1)

〉

− i

〈
ψ̂†(x̄2)ψ̂†(x̄1)

1

E0 − ω − Ĥ − iη
[ψ̂(x1)ψ̂(x2),Ĥ ]

〉
.

(25)

B. Two projection operators

In the previous section, we have seen that relevant types
of Green’s functions can be written in the form of a resolvent
〈(z − Ĥ )−1〉, z ∈ C. To be more specific about the state over
which the averaging is performed, we select from all possible
states of the target and emitted particles the relevant ones for
the effect of interest by employing projection operators. In
the following, we consistently skip ˆ. . . when writing these
operators and use 1 to denote the identity operator. Hence,
P + Q = 1 are two complementary projection operators with
the idempotence (P 2 = P , Q2 = Q) as their defining property
and the basis formula for computing resolvents

P
1

z − Ĥ
= P

z − ĤP − �̂P (z)

×
[

1 + PHQ
1

z − ĤQ

]
, (26)
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where ĤP = PĤP , ĤQ = QĤQ, and the self-energy opera-
tor is defined as

�̂P (E) = PĤQ
1

E − ĤQ

QĤP. (27)

The map Fp : Ĥ → Ĥp + �̂P (E) is called the Feshbach-
Schur map, it relates the eigenvalue problem on the full Hilbert
space to that on its subspace. We summarize relevant matrix
identities in Appendix C. Due to the presence of the bath
Hamiltonian ĤQ in Eq. (27), this definition cannot be used
for practical computation of the self-energy. Fortunately, a
connection with the many-body perturbation theory (MBPT)
exists [56,57]. If, for example, starting from the N -particle
Schrödinger equation Ĥ |0〉 = E0|0〉 we use a projector

P = ψ̂†(r)|+
α 〉 1

n̄α(r)
〈+

α |ψ̂(r),

where n̄(r) is the hole density of ionized state α, i.e.,
n̄(r) ≡ 〈+

α |ψ̂(r)ψ̂†(r)|+
α 〉, the eigenvalue problem on the P

subspace (C3) {〈+
α |ψ(r)[ĤP + �̂P (E) − EIP ]P |0〉 = 0}

is the Lippmann-Schwinger equation for the hole Dyson
orbital (13). Notice that ĤP contains the electrostatic and
exchange part of self-energy, whereas �̂P (E) → 0 for E →
±∞. Similarly, in 1959 Bell and Squires [37] considered a
one-body potential for the scattering of a particle incident
on a complex (many-body) target. They demonstrated that this
optical potential is exactly given by the sum of all proper linked
diagrams, i.e., many-body self-energy in the time-ordered
formulation. In fact, their Eq. (7) directly corresponds to
Eq. (C3) when P is a projection yielding a particle Dyson
orbital.

In order to study single and double photoemission, we
introduce two special projection operators. The main goal
of this section is to establish an equivalence between the
abstractly defined self-energy [Eq. (27)] and the self-energy
of the many-body perturbation theory. We consider the
expression appearing in the first line of Eq. (26), i.e., resolvents
of the type

P
1

z − Ĥ
P = P

1

z − ĤP − �̂P (z)
P.

We will demonstrate that the formalism of nonequilibrium
Green’s functions is directly paralleled with the Feshbach
projection algebra (FPA). The basic relation for the subsequent
derivations are the operator identities

(Â − B̂)−1 = Â−1 + Â−1B̂(Â − B̂)−1, (28a)

(Â − B̂)−1 = Â−1 + (Â − B̂)−1B̂Â−1. (28b)

We will show following that with

Â = z − PĤP ≡ z − ĤP , (29a)

B̂ = QĤP + PĤQ + QĤQ, (29b)

the operator identities (28) have a structure of the Dyson
equation for certain Green’s functions.

For SPE, we consider the projection operator

Pα =
∑

k

c
†
k|+

α 〉〈+
α |ck, (30)

where the sum runs over scattering states. It is common to
select these single-particle states |ϕk〉 to be eigenfunctions of
some reference Hamiltonian with proper boundary conditions.
We request that |+

α 〉 is a completely bound remainder of the
ionization event and does not emit a second electron at a later
stage (Auger electrons is a typical example). There are many
equivalent ways to impose this restriction, for instance, we will
assume

ck|+
α 〉 = 0, (31)

i.e., implying |+
α 〉 is a vacuum state for photoelectrons.

From the assumption follows the idempotency (P 2
α = Pα ,

see Appendix D for proof) and, thus, Pα represents a true
projection operator. The application of Pα restricts the possible
processes which might occur upon excitation to the definite
emission of one photoelectron, whereas the ionized system
is left in a (possibly excited) bound state |+

α 〉. From the
assumption Eq. (31) follows another restriction

lim
r→∞ ψ̂(x,t)|+

α 〉 = lim
r→∞

∑
i

〈x|i〉ci(t)|+
α 〉

+ lim
r→∞

∑
k

〈x|k〉ck(t)|+
α 〉 = 0, (32)

where the first term is equal to zero because each bound state (i)
is necessarily given by a square integrable function (converse
is not true). In the following, we will use another consequence
of the assumptions (31) and (32):

G<
ka(ω) = 0, G<

ak(ω) = 0, (33)

lim
r1→∞ G<(x1t1,x2t2) = lim

r1→∞ G<(x2t2,x1t1) = 0. (34)

The projection operator for DPE we define as

Pβ = 1

2

∑
pp′

c†pc
†
p′
∣∣2+

β

〉〈
2+

β

∣∣cp′cp. (35)

Here, |2+
β 〉 is the doubly ionized reference state, to which two

photoelectrons with continuum quantum numbers p and p′ are
added. We can easily show the idempotency of the projection
operator (35) if we require, similar to Eq. (31),

cp
∣∣2+

β

〉 = 0. (36)

C. Example of SPE

1. Equation of motion (EOM)

As a starting point, let us use the following operator identity
which can be derived from Eq. (28a) or verified by direct
computation:

(z − E+
α )Pα

1

z − Ĥ
Pα = Pα + Pα(Ĥ − E+

α )
1

z − Ĥ
Pα.

With the definition of the SPE projection operator Pα in
Eq. (30), we find

Pα

1

z − Ĥ
Pα =

∑
pq

c†p|+
α 〉〈+

α |cp
1

z − Ĥ
c†q|+

α 〉〈+
α |cq

=
∑
pq

c†p|+
α 〉G(p)

pq(z)〈+
α |cq,
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where we applied the definition of the particle-type GF (23a).
Note that the GF is defined for a particular subspace spanned
by the operator Pα and should therefore always be understood
as the GF associated with |+

α 〉. For brevity, however, we omit
labeling GF by α.

Using these notations, the operator identity reads as

(z − E+
α )

∑
pq

c†p|+
α 〉G(p)

pq(z)〈+
α |cq

=
∑

k

c
†
k|+

α 〉〈+
α |ck +

∑
pq

c†p|+
α 〉〈+

α |cp(H − E+
α )

× 1

z − Ĥ
c†q|+

α 〉〈+
α |cq.

With the help of our assumption (31) we can now remove
the sum by applying 〈+

α |cp′ from the left and c
†
q′ |+

α 〉
from the right as Eq. (31) implies 〈+

α |cp′c
†
p|+

α 〉 = δpp′ .
Furthermore, we note that 〈+

α |cp(Ĥ − E+
α ) = 〈+

α |[cp,Ĥ ]
because of Ĥ |+

α 〉 = E+
α |+

α 〉. Hence, we obtain

(z − E+
α )G(p)

pq(z) = δpq + 〈+
α |[cp,Ĥ ]

1

z − Ĥ
c†q|+

α 〉. (37)

As stated above, we can think of |+
α 〉 as a vacuum state for

free particles [cf. Eq. (31)]. The hole-type GF is identically
zero. Therefore,

G(p)
pq(E+

α + ω + iη) = GR
pq(ω).

Substituting z = E+
α + ω + iη in Eq. (37) we realize its

equivalence to Eq. (24). In other words, by applying
the FPA we can derive EOM for the retarded Green’s
function.

2. Effective Hamiltonian

In Eq. (28a), Â−1 plays the role of the reference Green’s
function. Correspondingly, PĤP is the effective Hamiltonian.
Using the standard anticommutation algebra and the assump-
tion (31), we find

〈+
α |cpĤ c†q|+

α 〉
= E+

α δpq + 〈+
α |[cp,Ĥ ]c†q|+

α 〉
= E+

α δpq + tpq +
∑
nm

(vpnmq − vnpmq)〈+
α |c†ncm|+

α 〉

= E+
α δpq + t̃pq, (38)

i.e., it consists of the total energy of the ionized system
and the Hartree-Fock Hamiltonian for continuum states.
The latter is computed with the density matrix of the
target:

t̃pq = tpq +
∑
nm

Vpnqm〈c†ncm〉. (39)

Let ĥ be an operator acting on the subspace of contin-
uum states with matrix elements given by Eq. (38). Its
resolvent

g(p)
pq (z) = 〈+

α |cp
1

z − ĥ
c†q|+

α 〉 (40)

relates to the reference retarded GF as gR
pq(ω) = g

(p)
pq (E+

α +
ω + iη).

3. Self-energy and the Dyson equation

The second correlator in EOM (37) amounts to

〈
(1)

α

∣∣[cp,Ĥ ]
1

z − Ĥ
c†q|+

α 〉

=
∑

a

tpa〈+
α |ca

1

z − Ĥ
c†q|+

α 〉

+
∑

n

∑
ab

vpnab〈+
α |c†ncacb

1

z − Ĥ
c†q|+

α 〉.

With Eq. (29) inserted into the identity (28a) we apply Pα

from left and right, use the same trick to multiply with suitable
states from left and right, and find

G(p)
pq(z) = g(p)

pq (z) −
∑
kk′

g
(p)
pk (z)t̃kk′G

(p)
k′q(z)

+
∑

k

∑
a

g
(p)
pk (z)tkaG

(p)
aq(z)

+
∑

k

∑
n

∑
ab

g
(p)
pk (z)vknab〈+

α |c†ncacb

1

z−Ĥ
c†q|+

α 〉.

(41)

With z = E+
α + ω + iη, Eq. (41) has a structure of a Dyson

equation for the retarded Green’s function in the subspace of
continuum states:

GR
pq(ω) = gR

pq(ω) +
∑
ka

gR
pk(ω)�R

ka(ω)GR
aq(ω). (42)

The second sum runs over the full set of orbitals (bound
and continuum). This is the most general form and without
additional analysis it cannot be reduced to the Dyson equation
with the self-energy from the projection formalism [cf.
Eq. (27)]. Let us compare Eqs. (41) and (42). At first we notice
that Eq. (39) defines the reference Hamiltonian only on the
subspace of scattering states. We might extend the definition
and request, for instance, that all the basis functions (bound and
scattering) are the eigenstates of the reference Hamiltonian.
This implies t̃pq = εpδpq and t̃nq = 0. Thus, mean-field terms
of the Hartree-Fock Hamiltonian are then canceled by the
frequency-independent part of the last correlator in Eq. (41).
In the case when the reference Hamiltonian is not diagonal in
the chosen basis the embedding self-energy terms additionally
appear. In the simplest case (no interaction), they can be written
as �em

pq (z) = ∑
mn tpng

(p)
nm(z)tnq. Let us now assume that the

single-particle basis is such that no embedding self-energy
appears. What would be the diagrammatic structure of the self-
energy (27)? From the Dyson equation in the bound-continuum
sector

GR
lq(ω) =

∑
mk

gR
lm(ω)�R

mk(ω)GR
kq(ω)

+
∑
mn

gR
lm(ω)�R

mn(ω)GR
nq(ω), (43)
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we determine the Green’s function in this sector (Gbc) and
substitute in Eq. (42):

GR
pq(ω) = gR

pq(ω) +
∑
kk′

gR
pk(ω)

×
[
�cc + �cb

gb

1 − gb�bb

�bc

]
kk′

GR
k′q, (44)

where for brevity the subscripts b and c denote the bound
and the continuum sectors. Expressions in square brackets
[Eq. (44)] can now be compared with the self-energy from
the projection formalism (27). Notice that the reference
Green’s function was assumed to be diagonal, i.e., gb ≡ gbb

and gbc = 0.

4. Dominant scattering mechanisms

Let us recapitulate what led us to Eq. (44). We have chosen
a projection operator in the form (30). This specifies the
state of a system after the photoionization as containing one
photoelectron in the scattering state plus the bound ionized
target. Next, we obtained an effective Hamiltonian (38) acting
on the P subspace and used it to define the reference Green’s
function (40). We want to understand what is the diagrammatic
content of the Feshbach self-energy (27). It is not possible
to use this equation directly because it involves the effective
Hamiltonian on the complementary Q subspace. However, it is
possible to use another matrix identity (28a) and to formulate
the Dyson equation for the full Green’s function in the P

subspace (41) avoiding the use of the QĤQ resolvent. This
equation can be put in a direct correspondence with the Dyson
equation for the retarded GF from the many-body perturbation
theory. The difference between them is the domain where the
self-energies are defined: the Feshbach self-energy operates on
the continuum sector only, whereas many-body perturbation
theory does not impose such a restriction. By writing another
Dyson equation (43) in the bound-continuum sector, we can
finally obtain the Dyson equation with an effective self-energy
in the continuum-continuum sector. This self-energy is an
exact counterpart of the Feshbach self-energy (27). Critical
for our derivation was the choice of the single-particle basis.
We have demonstrated that it is the projection operator that
determines the effective Hamiltonian, and if the basis is such
that the Hamiltonian is diagonal the embedding self-energy
vanishes and one arrives at Eq. (44). No further assumptions
have been made and Eq. (44) is so far exact.

Let us analyze the meaning of different terms of the
photoelectron self-energy (Fig. 2). As discussed in details
by Bardyszewski and Hedin [33], Almbladh [16], and
Fujikawa and Hedin [34], scattering states that vanish in the
sample (damped) represent the real photoelectron states more
precisely. One can derive explicitly the residual interaction
which they experience. The reasoning is easier to perform
in real space where the Coulomb interaction depends on two
coordinates only [cf. Eq. (2)] as opposite to the Coulomb
matrix elements which are four index quantities. Since the
scattering states are damped in the sample, there are only
two nonvanishing Green’s functions Gvv and GV V operating
exclusively in the inner (v) and outer (V ) spaces, respectively.
The Green’s function starting in the sample and ending outside
of it (GV v) and the reverse (GvV ) vanish. We can rewrite

FIG. 2. (a) Example of self-energy diagram that mixes bound
and continuum states and is the building block of the second term
in brackets in Eq. (44); (b) mean-field Hartree contribution to the
effective Hamiltonian (38); (c) a typical contribution to the electron
self-energy in continuum-continuum sector in the case when the
photoelectron is completely screened in the sample.

Eq. (44) in these new notations, however, it is not even
necessary as it amounts to the mere replacement b → v

and c → V . What has changed is the interaction lines in
the diagrammatic expansion of the self-energy. They can
connect v and V domains and generate therefore nonzero
contributions. It is easy to see, however, that the second
self-energy term vanishes: a diagrammatic expansion of �vV

necessarily contains at least one gvV line which is zero
according to our assumption. Thus, only �V V needs to be
analyzed. By explicitly forbidding the particle exchange with
the sample, we arrived exactly at the case of elastic electron
scattering considered in the seminal paper of Bell and Squires
[37]. We will see below that the structure of �V V is quite
general and appears in the diagrammatic consideration of other
processes, remarkably, in the parquet diagram treatment of
the Fermi edge singularities [58]. There, however, a similar
diagrammatic expansion arises due to the specific choice of
the interaction between the deep hole (labeled by m) and the
conduction electrons: Ĥ1 = ∑

kk′ Vkk′c
†
kck′cmc

†
m. In contrast

to their work, what induces a special structure of diagrams for
�V V is not a specific form of the interaction matrix elements,
but rather the absence of the off-diagonal blocks in g. It
is easy to construct the electron self-energy fulfilling these
restrictions: it consists of one open photoelectron line (depicted
as solid line on Fig. 2) and a number of closed bound electron
loops (depicted as dashed lines). Because of the restriction
(33) there are no photoelectron loops.

The topic of the present section is quite extensive, and
such an aspect as the Lehmann representation of the Green’s
functions mentioned here was completely left out of our
discussion. This is, however, very relevant for the treatment of
finite systems, with important recent progress, e.g., [59].
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D. Example of DPE

1. Equation of motion

The derivation for the two-particle case goes along the
same lines. We insert the definition of the projection operator
[Eq. (35)] in the identity

(
z − E2+

β

)
Pβ

1

z − Ĥ
Pβ = Pβ + Pβ

(
Ĥ − E2+

β

) 1

z − Ĥ
Pβ,

replace 〈2+
β |cp′cp(Ĥ − E2+

β ) = 〈2+
β |[cp′cp,Ĥ ], and as for

SPE compute the matrix elements of the whole expression.
The final results read as(
z − E2+

β

)
G

(pp)
pp′qq′(z) = δpqδp′q′ − δpq′δp′q

+ 〈
2+

β

∣∣[cpcp′ ,H ]
1

z − Ĥ
c
†
q′c

†
q

∣∣2+
β

〉
.

(45)

The prefactor 1
4 originating from the product of two projection

operators is canceled because of the symmetries of the particle-
particle GF and of the second term on the right-hand side of
Eq. (45):

G
(pp)
p′pq′q(z) = G

(pp)
pp′qq′(z) = −G

(pp)
p′pqq′(z) = −G

(pp)
pp′q′q(z). (46)

Inserting z = E2+
β + ω + iη shows the equivalence of Eq. (45)

to the equation of motion (25).

2. Effective two-particle Hamiltonian

Analogically to the SPE case we consider the Feshbach-
projected Hamiltonian in the subspace defined by Pβ and
describing two electrons including their interaction and their
mean-field interaction with the ionized system:〈

2+
β

∣∣cp′cpĤ c†qc
†
q′
∣∣2+

β

〉
= E2+

β (δpqδp′q′ − δpq′δp′q) + 〈
2+

β

∣∣[cp′cp,H ] c†qc
†
q′
∣∣2+

β

〉
,

(47)

where the last term can be expressed as follows:〈
2+

β

∣∣[cp′cp,H ] c†qc
†
q′
∣∣2+

β

〉
= tpqδp′q′ + tp′q′δpq − tpq′δp′q − tp′qδpq′ + vpp′qq′ − vpp′q′q

+
∑

n

∑
ab

[
vpnab

〈
2+

β

∣∣c†ncp′cacbc
†
qc

†
q′
∣∣2+

β

〉
− vp′nab

〈
2+

β

∣∣c†ncpcacbc
†
qc

†
q′
∣∣2+

β

〉]
. (48)

The first correlator in the square brackets evaluates in terms
of the density matrix with respect to |2+

β 〉 with bound state
indices to ∑

nm

[Vpnqmδp′q′ − Vpnq′mδp′q]〈c†ncm〉.

Here, we have written it in terms of the matrix elements
of the antisymmetrized Coulomb interaction (2) Vabcd ≡
vabcd − vabdc. Similarly, the second correlator is obtained
from this expression by the index exchange p ↔ p′. The
effective two-particle Hamiltonian (47) is so expressible as a
Hartree-Fock Hamiltonian (39) for two independent electrons

FIG. 3. Interaction between the photoelectrons incorporated in
the effective Hamiltonian (49). Dashed lines denote bare bound-state
propagators. Dots denote the antisymmetrized Coulomb interaction
(2).

plus the interaction (Fig. 3):

hp′pq′q = E2+
β (δpqδp′q′ − δpq′δp′q) + (t̃pqδp′q′ + t̃p′q′δpq)

− (t̃pq′δp′q + t̃p′qδpq′) + Vp′pq′q. (49)

3. Kernel and Dyson equation

We return to the matrix identity (28a) and insert the splitting
(29) with P = Pβ [Eq. (35)]:

Pβ

1

z − Ĥ
Pβ = Pβ

1

z − ĥ
Pβ + Pβ

1

z − ĥ
PβĤ

1

z − Ĥ
Pβ

−Pβ

1

z − ĥ
PβĤPβ

1

z − Ĥ
Pβ,

and define the reference two-particle GF

g
(pp)
pp′qq′(z) = 〈

2+
β

∣∣cpcp′
1

z − ĥ
c
†
q′c

†
q

∣∣2+
β

〉
. (50)

Invoking again the symmetries (46), which also holds true for
the reference GF, and applying the same states from left and
right, we obtain

G
(pp)
pp′qq′(z) = g

(pp)
pp′qq′(z) +

∑
kk′

g
(pp)
pp′kk′(z)

×
[〈

2+
β

∣∣[ckck′ ,Ĥ ]
1

z − Ĥ
c
†
q′c

†
q

∣∣2+
β

〉
− 1

2

∑
nn′

〈
2+

β

∣∣[ckck′ ,Ĥ ]c†n′c
†
n

∣∣2+
β

〉
G

(pp)
nn′qq′(z)

]
.

(51)

It is instructive to divide the kernel entering the equation of
motion [second line of Eq. (45)] or the Dyson equation [second
line of Eq. (51)] into the terms containing higher correlation
functions and those expressible in terms of two-particle GFs:

〈
2+

β

∣∣[ckck′ ,Ĥ ]
1

z − Ĥ
c
†
q′c

†
q

∣∣2+
β

〉
= Tkk′qq′(z) +

∑
b

(
tk′bG

(pp)
kbqq′ (z) − tkbG

(pp)
k′bqq′(z)

)
+

∑
ab

vkk′abG
(pp)
abqq′ (z).

The latter gives rise to the particle-particle embedding
self-energy. We can now formally introduce the correlated
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frequency-dependent and the static kernels:

Tkk′qq′(z) =
∑
nn′

[
Kc

kk′nn′(z) + 1

2
K∞

kk′nn′

]
G

(pp)
nn′qq′(z)

=
∑

n

∑
ab

vknab

〈
2+

β

∣∣c†nck′cacb

1

z − Ĥ
c
†
q′c

†
q

∣∣2+
β

〉
−

∑
n

∑
ab

vk′nab

〈
2+

β

∣∣c†nckcacb

× 1

z − Ĥ
c
†
q′c

†
q

∣∣2+
β

〉
. (52)

The static part is exactly canceled by the density-dependent
part of the effective Hamiltonian:

K∞
kk′qq′ =

∑
n

〈c†ncm〉[Vknqmδk′q′ + Vk′nq′mδkq

−Vknq′mδk′q − Vk′nqmδkq′]. (53)

The embedding self-energy originates from the kernel as well
as from the effective Hamiltonian (49):∑

nn′
Kem

kk′nn′G
(pp)
nn′qq′(z)

=
∑
m

(
t̃k′mG

(pp)
kmqq′(z) − t̃kmG

(pp)
k′mqq′(z)

)
+

∑
ab

vkk′abG
(pp)
abqq′ (z) −

∑
pp′

vkk′pp′G
(pp)
pp′qq′(z). (54)

With the results (49), (52), (53), and (54) we can cast the
Dyson equation (51) in the final form

GR
pp′qq′(ω) = gR

pp′qq′(ω) +
∑
kk′

∑
nn′

gR
pp′kk′(ω)

× [
Kem

kk′nn′ + Kc
kk′nn′(ω)

]
GR

nn′qq′(ω). (55)

Equation (55) has a form of the Dyson equation for the two-
particle Green’s function, however, the reference GF gR

pp′qq′(ω)
is not given as a product of fully interacting single-particle
GFs, but rather is the full two-particle GF: the resolvent of the
effective Hamiltonian (47) which includes the full electron-
electron repulsion and the mean-field contribution from the
ionized system.

IV. FERMI GOLDEN RULE

A. Single photoemission

SPE was treated by several authors. We recapitulate the
main points. The total observed current is proportional to the
expectation value of the electron number operator N̂k = c

†
kck.

Out of all possible final states of the target we discard
all unbound states, i.e., ck|+

α 〉 = 0 and choose only those
relevant for a specific experiment. Let λα be a corresponding
distribution function. For instance, when the target is left in the
ground state we can set λ0 = 1 and λα = 0 for all excited states.
Modified particle-number operator for this process reads as

Ñ
ˆ

k =
∑

α

λαc
†
k|+

α 〉〈+
α |ck =

∑
α

λαPαc
†
kckPα.

The same expression can be obtained from the Langreth
approach starting from the Wigner distribution function [20].
Let now the SPE current be the expectation value of this
operator:

Jk = lim
η→0

2η
∑

α

λα〈0|�̂† 1

E0 + ω − Ĥ − iη
Pαc

†
kckPα

× 1

E0 + ω − Ĥ + iη
�̂|0〉. (56)

We only consider the case

Pα

1

Ei − Ĥ + iη
≈ Pα

Ei − ĤP − �̂
(+)
P (Ei)

, (57)

where we neglect the off-diagonal term in Eq. (26) and define
�̂

(±)
P (ω) = �̂P (ω ± iη). We omit the subscript α where it

does not cause a confusion. A simple calculation leads to the
modified matrix element

Mk,α = 〈+
α |ck

1

Ei − ĤP − �̂
(+)
P (Ei)

Pα�̂|0〉. (58)

Using the same assumption for the computation of the matrix
element of �̂, 〈+

α |cp�̂|0〉 = 〈p|�̂|φα〉 and the definition of
the Green’s function on the Pα subspace

G
(p)
pk,α(ω + εα ± iη) = 〈+

α |cp
1

Ei − ĤP − �̂
(±)
P (Ei)

c
†
k|+

α 〉,

we obtain for the current

Jk = lim
η→0

2η
∑

α

λα

∑
pq

〈φα|�̂†|p〉G(p)
pk,α(ω + εα − iη)

×G
(p)
kq,α(ω + εα + iη)〈q|�̂|φα〉, (59)

where εα = E0 − E+
α . As shown in Appendix B, we can

express the particle Green’s functions in terms of Møller
operators

G
(p)
pk,α(ω + εα − iη) = 1

ω + εα − εk − iη
〈p|χ (−)

k,α 〉, (60a)

G
(p)
kq,α(ω + εα + iη) = 1

ω + εα − εk + iη
〈χ (−)

k,α |q〉. (60b)

This finally leads to the current

Jk = 2π
∑

α

λα〈χ (−)
k,α |�̂|φα〉δ(ω + εα − εk)〈φα|�̂†|χ (−)

k,α 〉.

A standard definition of the spectral function entails to

Â(ζ ) =
∑

α

|φα〉δ(ζ − εα)〈φα|.

Therefore, we can recast the expression for the current in a
more familiar response form

Jk = 2π

∫ μ

−∞
dζ δ(ω + ζ − εk)〈χ (−)

k,α |�̂ ˆ̃A(ζ )�̂†|χ (−)
k,α 〉,

where the tilde denotes a spectral function with restrictions
imposed by the weighting factors λα and μ is the chemical
potential, or in the Fermi golden rule form

Jk = 2π
∑

α

λαδ(ω + εα − εk)|〈χ (−)
k,α |�̂|φα〉|2.

155116-10



SINGLE- OR DOUBLE-ELECTRON EMISSION WITHIN . . . PHYSICAL REVIEW B 91, 155116 (2015)

The major distinction from other approaches is that both initial
and final states are dependent on the final state of the target α.
Formally, |χ (−)

k,α 〉 is the incoming scattering state of an electron
in the optical potential of the ionized target in the state |+

α 〉.

B. Double photoemission

The total observed current is given in terms of the
expectation value of the electron-number operators N̂k1k2 =
N̂k1N̂k2 − δk1,k2N̂k1 , viz., Eq. (8). Out of all possible final states
of the target we discard all unbound states, i.e., ck|2+

β 〉 = 0
and introduce weights λβ selecting the relevant ones. The
modified observable reads as

Ñ
ˆ

k1k2 =
∑

β

λβc
†
k1

c
†
k2

∣∣2+
β

〉〈
2+

β

∣∣ck2ck1

=
∑

β

Pβc
†
k1

c
†
k2

ck2ck1Pβ. (61)

This allows us to improve upon Eq. (15):

Jk1,k2 = lim
η→0

2η
∑

β

λβ〈0|�̂† 1

E0 + ω − Ĥ − iη

×Pβc
†
k1

c
†
k2

ck2ck1Pβ

1

E0 + ω − Ĥ + iη
�̂|0〉. (62)

Using assumption (57), Eq. (62) can be written in the Fermi
golden rule form with a modified matrix element

Mk1k2,β = 〈
2+

β

∣∣ck2ck1

1

Ei − ĤP − �̂
(+)
P (Ei)

Pβ�̂|0〉.

Using the matrix elements of �̂, 〈2+
β |cqcp�̂|0〉 =

〈pq|�̂|φ(2)
β 〉 [cf. Eq. (D8)], and the properties of the two-

particle Green’s functions (Appendix B)

G
(pp)
pq,k1k2,β

(ω + ε
(2)
β ± iη)

= 〈
2+

β

∣∣cpcq
1

Ei − ĤP − �̂
(+)
P (Ei)

c
†
k2

c
†
k1

∣∣2+
β

〉

= 1

ω + ε
(2)
β − εk1 − εk2 ± iη

〈pq|ψ (−)
k1k2,β

〉, (63)

we finally obtain for Eq. (10)

Jk1,k2 = 2π

∫ μ(2)

−∞
dζ δ(ω + ζ − εk1 − εk2 )

×〈ψ (−)
k1k2,β

|�̂A(2)(ζ )�̂†|ψ (−)
k1k2,β

〉, (64)

where μ(2) = maxβ(E0 − E2+
β ) is the negative of second

ionization potential, |ψ (−)
k1k2,β

〉 is the incoming damped two-
electron scattering state in the optical potential of doubly
ionized target and Â(2)(ζ ) is the two-particle spectral function,
which can be written in terms of two-hole Dyson orbitals

Â(2)(ζ ) =
∑

β

δ
(
ζ − ε

(2)
β

)∣∣φ(2)
β

〉〈
φ

(2)
β

∣∣, (65)

with ε
(2)
β = E0 − E2+

β .
Notice that the current has been obtained using the ap-

proximation (57). Exact calculation leads to the appearance of

the vertex functions resulting from Qβ�̂|0〉 and describing a
screening of the optical field by the electrons of the target [16].

In valence shell DPE electron correlations in the valence
band are important, viz., the correlated two-particle spectral
function entering (64). In contrast, when core electrons are
involved, a dominant mechanism for DPE is due to the final-
state relaxation (so-called shake-off). Multiple stages are then
described by introducing corresponding projection operators
for each intermediate stage. In the following, we focus on the
diagrammatic approach because it allows us to treat all these
effects on equal footing.

V. DIAGRAMMATIC APPROACH

Treatment of the off-diagonal part of the Hamiltonian
resolvent is the main difficulty of the Feshbach projection
algebra. It is even more aggravated in the two-particle case.
The diagrammatic technique provides a natural and practical
solution to this problem.

A. Derivation

Equation (10) when transformed to the time domain gives
rise to the following ground-state correlator:

Z(t,t ′) = 〈0|c†b(t)ca(t)c†k1
(0)c†k2

(0)ck2 (0)ck1 (0)

× c†c(t ′)cd (t ′)|0〉, (66)

where the field operators are in the Heisenberg representation
and t, t ′ ∈ (−∞,0] are physical times. For clarity, we omitted
the indices in the notation of the correlator. It can be evaluated
diagrammatically by adiabatically switching on the interaction
in the remote past, i.e., Ĥδ = Ĥ0 + e−δ|t |Ĥ1. Now, the average
is performed over the noninteracting ground state |�0〉 and
the times t−2 ≺ t+1 lie on forward and backward branches of
Keldysh contour γ (Fig. 1), respectively:

Z(t,t ′) = 〈�0|T {e−i
∫
γ
Ĥδ (t) dt

c
†
b(t+)ca(t+)

× c
†
k1

(0)c†k2
(0)ck2 (0)ck1 (0)c†c(t ′−)cd (t ′−)}|�0〉. (67)

T here is the usual contour ordering operator [13] with the
order relation ≺. Ĥδ is such that it is equal to the Hamiltonian
of noninteracting system H0 in the remote past and is identical
to Ĥ at t = 0. Notice that it is different from adiabatic
switching on of the electromagnetic field in Eq. (7). |�0〉 is the
ground state of Ĥ0. Using Wick’s theorem, we can contract the
product of field operators in order to express the correlator in
terms of products of single-particle Green’s functions. Zeroth
order obviously yields four fermionic lines. However, if we
use the same assumption as in Sec. IV B, any zeroth-order
diagram vanishes. This is easy to understand by comparing
with SPE case. There, no-zero contributions are coming from
the following contraction:

〈c†b(t+)ca(t+)c†p(0)cp(0)c†c(t ′−)cd (t ′−)〉.
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This is the only combination that results in greater GFs when
one of the arguments is a scattering state [and is compatible
with (33)]. In particular, the above contraction equals to

g>
ap(t)g<

db(t ′ − t)g>
pc(−t ′).

In DPE, two creation operators with continuum state indices
need to be contracted with two annihilation operators on
the positive track. However, there is only one such operator.
Hence, zeroth order in interaction is zero. The argument that
excludes the first-order diagram is slightly different and is
based on the fact that bare interaction is instantaneous, i.e.,
corresponding time arguments necessarily lie on the same,
positive or negative, track.

Second-order nonvanishing contributions contain products
of two Coulomb interaction operators (e.g., at contour times
t̄+ and ¯̄t−) and already a familiar product of six operators
as in Eq. (67). From all possible contractions (they yield
eight fermionic lines), we have to exclude many terms.
Some of them immediately vanish because of the assumption
(33) for noninteracting GF. Others represent the Hartree-
Fock renormalization of two fermionic lines and likewise
vanish because of the same assumption for the full fermionic
propagators [Fig. 4 (a)]. Then, there are diagrams [Fig. 4 (b)]
containing isolated islands of pluses and minuses which also
vanish because otherwise the two-particle current cannot be
written in the Fermi golden rule form [60,61]. Finally, there

FIG. 4. Second-order diagrams (in bare Coulomb interaction)
representing the DPE process. The dots labeled k1 and k2 correspond
to the scattering state of two electrons observed in a coincidence
measurement by the detector. Notice that not all combinations of
pluses and minuses are possible because Coulomb interaction can
only connect vertices on the same branch of the Keldysh contour.
(a) Diagram vanishes according to the assumption (33) for dressed
GFs. (b) Diagram vanishes because it contains an isolated island
of minuses. (c) and (d) are the lowest-order nonzero diagrams. The
remaining two are obtained by permuting k1 and k2.

FIG. 5. (a) Diagram for the two-particle current involving dressed
two-particle propagators. (b) Simplest diagram where the optical
field is screened. (c) Example of a diagram describing external
losses. Thick wavy line denotes the screened Coulomb interaction.
(d) Generic diagram for the two-particle current.

are only four (times two for exchange) nonzero diagrams. Two
of them are depicted at Figs. 4(c) and 4(d).

It is clear now how more general diagrams for the two-
electron current can be constructed: (i) One replaces all bare
fermionic propagators and interaction lines with the dressed
ones. (ii) Each pair of parallel fermionic lines are replaced
by the corresponding two-particle propagator [Fig. 5(a)]. In
doing so, one obtains, in principle, diagrams given by Fig. 1(b)
of Fominykh et al. [54] with a small correction that zeroth-
and the first-order two-particle GF should be excluded from
the vertical track. (iii) Next class of the diagrams are those
that describe the screening of the optical field [Fig. 5(b)]. (iv)
Processes involving intrinsic or extrinsic losses are given by the
diagrams with interaction lines connecting points on different
tracks, i.e., “+−,” “+ 0,” “− 0.” They cannot be obtained
by the renormalization of fermionic or bosonic propagators;
one such example shown in Fig. 5(c) reveals a process with
extrinsic losses.

Finally, we give a description of a general diagram for the
photoemission process. Examining SPE and DPE diagrams
we see that all of them are constructed from the common
ancestor: the density-density response function χ< ≡ χ−+
having a form of two islands with time arguments belonging to
either forward or backward tracks of the Keldysh contour. Now,
we introduce detectors [shown as black squares at Fig. 5(d)]
measuring Jk1,k2 . As explained before, (i) the lesser GF with
one of the indices being a continuum state vanishes because of
the assumptions (31) and (32); and (ii) observation is made at
the rightmost point of the contour (i.e., at t− = t+ = 0 in our
notations), thus, each detector measuring particle numbers Nki
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is connected to two greater GF. In view of this, the detectors
“lie” on the fermionic lines flowing from the “−” (forward
track) to “+” (backward track) islands. Each response function
constructed in this way has an important property that it can be
represented in the Fermi golden rule form, such construction
obviously generalizes to an arbitrary number (n) of emitted
particles. Simple counting shows that these processes are of at
least 2(n − 1) order in the Coulomb interaction.

The diagram in Fig. 5(d) is a generic one describing all the
DPE processes including the ones with losses such as shown
in Fig. 5(c). One can go a step further and give a prescription
for classes of lossless diagrams. A detailed analysis of this
particular situation is possible and will be done elsewhere.
Here, we mention without a derivation that such diagrams can
be split into the scattering part [the two-particle propagators
can be written in terms of the scattering states |ψ (−)

k1k2,β
〉, cf.

Eq. (63)] and the spectral part [containing the two-particle
spectral function, Eq. (65)].

B. Example of plasmon-assisted DPE

As an example, we consider the processes depicted in Fig. 6.
The diagrams show a very common situation where a primary
electron excited by the laser pulse is losing its energy on the
way to the detector by exciting a secondary electron. There
could be either bare or screened Coulomb interaction between
the two electrons. In the latter case, some resonant phenomena
related to the excitation of, e.g., plasmon are expected. The
SPE case [Figs. 6(a) and 6(b)] is identical to the process of
secondary electron excitation considered by Caroli et al. [21].
All DPE processes covered by the diagram in Fig. 6(c) form
a subset of the SPE process. The only difference between the
two scenarios is whether primary, secondary, or both electrons
are observed in the detector.

Since we do not take into account the interaction between
the two emitted electrons [as given, for, instance by two
� blocks in Fig. 5(a)], one can express the final result for
the current as a matrix element over the direct product of
two single-particle scattering states. This is typically a good
approximation for the case when two electrons have different
energies (momenta), or for approximately equal k1 and k2 in
the case of larger energies [48].

FIG. 6. Diagrams for the plasmon-assisted photoemission. SPE
setup: only the primary (a), secondary electron (b) is observed, the
fate of another electron is not specified. (c) DPE setup: both primary
and secondary electrons are observed in coincidence.

To work this out, consider a part of the DPE diagram
that contains a product of two GFs involving the external
momentum k. Introducing the Fourier representations for
each of the GFs G>

ak(τ ) = ∫ ∞
−∞

dν
2π

e−iντG>
ak(ν), G>

kb(−τ ′) =∫ ∞
−∞

dν ′
2π

eiν ′τ ′
G>

kb(ν ′), expressing the interacting GF as a
product of the Møller operator and the free-particle Green’s
function (see Appendix B), we obtain expressions similar
to Eqs. (60). Thus, in the time domain the product of two
interacting single-particle GFs reduces to a simple propagator
computed on the scattering states with incoming boundary
conditions:

G>
ak(τ )G>

kb(−τ ′) = 〈χ (−)
k |b〉e−iεk(τ−τ ′)〈a|χ (−)

k 〉
× θ (−τ )θ (−τ ′)eδ(τ+τ ′). (68)

As an exercise, let us evaluate the diagram in Fig. 7(a)
describing the SPE process with extrinsic plasmon losses. The
current is given by the following expression in the time domain:

Jk = lim
η→0

2η lim
δ→0

∑
abcd

∫
d(xx ′)

∫ 0

−∞
d(t t ′)eη(t+t ′)

∫ 0

−∞
d(ττ ′)

× eiω(t−t ′)�cdG
<
db(t ′,t)G−−

x ′c (τ ′,t ′)W>
xx ′ (τ,τ ′)

×G>
kx ′ (0,τ ′)G>

xk(τ,0)G++
ax (t,τ )(�ab)†. (69)

Representing the lesser Green’s function on the vertical track
in terms of the electron spectral function [normalized as∑

b

∫ μ

−∞
dζ

2π
Abb(ζ ) = N , N is the number of electrons in the

system]

G<
db(t ′,t) = i

∫ μ

−∞

dζ

2π
Adb(ζ )e−iζ (t ′−t), (70)

and the greater component of the screened interaction in terms
of the plasmon spectral function

W>
xx ′ (τ,τ ′) = −i

∫ ∞

0

dξ

2π
Bxx ′ (ξ )e−iξ (τ−τ ′), (71)

representing time-ordered G−−
x ′c (τ ′,t ′) and anti-time-ordered

G++
ax (t,τ ) as Fourier integrals and using expression (68), we

FIG. 7. Energy flows in (a) SPE diagram with external plasmonic
losses, (b) DPE diagram describing a related plasmon-assisted
process. Analytical expressions corresponding to these diagrams are
first written in the time domain, then the integrations are performed by
Fourier transforming all the propagators, and lastly the limits η → 0
and δ → 0 are taken.
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obtain

Jk = lim
η→0

lim
δ→0

∑
abcd

∫
d(xx ′)

∫ μ

−∞

dζ

2π

∫ ∞

0

dξ

2π
Bxx ′ (ξ )

×
∫

d(ω1ω2)2η
1

ω + ζ − ω1 − iη

1

ω + ζ − ω2 + iη

× 1

ω1 − ξ − εk − iδ

1

ω2 − ξ − εk + iδ
G−−

x ′c (ω2)G++
ax (ω1)

×〈χ (−)
k |x ′〉�cdAdb(ζ )(�ab)†〈x|χ (−)

k 〉. (72)

Now, the limits can be taken making use of an identity
discovered by Almbladh [16] (see Appendix E). It transforms
the product of four fractions in the equation above into the
product of three δ functions (2π )3δ(ω1 − ω − ζ )δ(ω2 − ω −
ζ )δ(ξ + εk − ω + ζ ), and after the frequency integration we
obtain

Jk = 2π

∫ μ

−∞

dζ

2π

∫ ∞

0

dξ

2π
δ(ξ + εk − ω − ζ )

×
∫

d(xx ′)〈χ (−)
k |x ′〉Bxx ′ (ξ )〈x|χ (−)

k 〉

× [Ĝ−−(ω + ζ )�̂Â(ζ )�̂†Ĝ++(ω + ζ )]x ′x. (73)

The two-particle current is obtained along the same lines
using the energy flow as shown on Fig. 7(b):

Jk1k2 = 2π

∫ μ

−∞

dζ

2π

∫ μ

−∞

dζ̄

2π

∫ ∞

0

dξ

2π
δ(ξ + εk1 − ω − ζ )

×
∫

d(xx ′zz′)〈χ (−)
k1

|x ′〉W−−
z′x ′ (ξ )W++

xz (ξ )〈x|χ (−)
k1

〉

× 〈χ (−)
k2

|z′〉Az′z(ζ̄ )〈z|χ (−)
k2

〉 δ(εk2 − ξ − ζ̄ )

× [Ĝ−−(ω + ζ )�̂Â(ζ )�̂†Ĝ++(ω + ζ )]x ′x. (74)

Similarly to the previous case, the limits η → 0, δ → 0 yield
a product (of five) δ function which were subsequently used
to perform three frequency integrations here (see Appendix
E). All the quantities in Eqs. (73) and (74) can be expressed in
terms of the spectral functions. We can, for instance, start with a
general expression for the time-ordered and anti-time-ordered
functions in terms of the functions on the Keldysh contour:

f̂ −−(τ ) = f̂ δδ(τ ) + θ (τ )f̂ >(τ ) + θ (−τ )f̂ <(τ ), (75a)

f̂ ++(τ ) = −f̂ δδ(τ ) + θ (−τ )f̂ >(τ ) + θ (τ )f̂ <(τ ), (75b)

where in the first equation τ ≡ t− − t ′− is equal to the time
difference on the forward branch of the contour, and τ ≡ t+ −
t ′+ is equal to the time difference on the backward branch of
the contour in the second equation. After the Fourier transform
f̂ (ω) = ∫ ∞

−∞dτ eiωτ f̂ (τ ), we have

f̂ −−(ω) = f̂ δ +
∞∫

−∞

dω′

2π

[
if̂ >(ω′)

ω − ω′ + iδ
− if̂ <(ω′)

ω − ω′ − iδ

]
.

(76)
The fluctuation-dissipation theorem at zero temperature allows
us to express the lesser and greater propagators in terms of
the corresponding spectral functions [Kubo-Martin-Schwinger

(KMS) conditions [10]]:

Ĝ<(ω) = iθ (μ − ω)Â(ω), Ĝ>(ω) = −iθ (ω − μ)Â(ω).

The screened interaction obeys KMS conditions for bosonic
propagators

Ŵ<(ω) = iθ (−ω)B̂(ω), Ŵ>(ω) = −iθ (ω)B̂(ω),

with the symmetry property for the spectral function B̂(−ω) =
−B̂(ω) [follows, e.g., from the fact that ŴR(t,t ′) is a real
function or, more precisely, a Hermitian matrix]. We have
already used these equations [cf. Eqs. (70) and (71)] to express
SPE current in terms of spectral functions. Using Eq. (76),
we can write the spectral representation of the fermionic
propagator

Ĝ−−(ω) =
∫ ∞

−∞

dω′

2π
Â(ω′)

[
θ (μ − ω′)

ω − ω′ − iδ
+ θ (ω′ − μ)

ω − ω′ + iδ

]
,

where μ is the Fermi energy. The anti-time-ordered GF
is obtained similarly G++(ω) = −[G−−(ω)]†. The screened
interaction is expressed as an integral over the positive
frequencies:

Ŵ−−(ω) = v̂ +
∫ ∞

0

dω′

2π
B̂(ω′)

2ω′

ω2 − (ω′ − iδ)2
,

while Ŵ++(ω) = −[Ŵ−−(ω)]†.
Let us consider plasmon-mediated DPE. This process is

of relevance for metallic and large molecular systems. Since
plasmon is a long-wavelength or small-momentum electronic
excitation, it is useful to go from the abstract basis to
momentum representation and write W−−(k,ω) in a short form
as

W (k,ω) = vk

[
1 + ω2

p

ω2 − ω2
p(k)

]
, (77)

where ωp(k) is the plasmon dispersion, ωp ≡ ωp(0) is the
classical plasmon frequency, and vk = 4π

k2 is the matrix element
of Coulomb interaction. It is clear that in this form the plasmon
peak completely exhausts the f -sum rule. Such plasmon
pole approximation for the screened interaction is broadly
used in the electronic-structure calculation when full-fledged
calculations are not feasible. Similarly, it can be used to
simplify Eq. (74).

C. Numerical results

Let us make some simplifications. Usually, it is a good
approximation to start with the mean-field Green’s functions

G−−
xy (ω) =

∑
a∈occ

〈x|a〉nα〈a|y〉
ω − εa − iδ

+
∑

a∈unocc

〈x|a〉na〈a|y〉
ω − εa + iδ

, (78)

where na is the occupation number of the state a and
na ≡ 1 − na . After straightforward, but tedious, calculation
the frequency integrations in Eq. (74) can be performed [for
technical reasons it is better to start from the time rather
than frequency expression, and it can be obtained by directly
transcribing the diagram in Fig. 7(b) using standard rules]
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yielding the following expression for the two-particle current:

Jk1k2 = 4π
∑
abcd

nbnd�cb�baδ(ω + εb + εd − εk1 − εk2 )

(εc + εd − εk1 − εk2 )(εk1 + εk2 − εa − εd )

×
∑
q1q2

[
f

q1
k1c

(
f

q1
k2d

)∗
vq1ω

2
p

(εd − εk2 )2 − ω2
p(q1)

]

×
[

f
q2
ak1

(
f

q2
dk2

)∗
vq2ω

2
p

(εd − εk2 )2 − ω2
p(q2)

]
, (79)

with the following matrix elements:

f
q
ak =

∫
d3r 〈a|r〉e−iq·r〈r|χ (−)

k 〉. (80)

Notice that it is not necessary to separately treat the bare
Coulomb interaction; it can be recovered as ωp → ∞ limit as
explained in [62].

Let us compare Eq. (79) with the general result obtained
using the Feshbach projection formalism (64). For the mean-
field approximation (78), the two-particle spectral function is
diagonal and is given by the convolution of two single-particle
spectral densities:

A
(2)
bd (ζ ) =

∫
dζ Abb(ζ − ζ )Add (ζ )

=
∫

dζ nbndδ(ζ − ζ − εb)δ(ζ − εd )

= nbndδ(εb + εd − ζ ). (81)

The energy conservation for the whole process, which is given
by the δ function in the numerator of (79), is expressed in
terms of the two-particle spectral function A(2)(εk1 + εk2 − ω)
[cf. Eq. (65)]. The denominator of the first line reflects the
resonant character of the considered two-step process. From
the resonance conditions (zeros of the denominator) we see
that the double photoemission is enhanced when a and c are
continuum states and therefore we denote them as ka and
kc. We replace the scattering states |χ (−)

k1
〉 and |χ (−)

k2
〉 entering

the matrix elements (80) by the plane waves and perform
the integration yielding f

q
kak = δ(k − ka − q). Combining all

together we obtain the following concise expression for the
plasmon-assisted DPE process:

Jk1k2 = 4π
∑
kakc

∑
bd

�kcb�bka
A

(2)
bd (εk1 + εk2 − ω)

× 〈k1 + k2 − ka|d〉〈d|k1 + k2 − kc〉
(εkc

+ εd − εk1 − εk2 )(εk1 + εk2 − εka
− εd )

×W (k1 − kc,εd − εk2 )W (k1 − ka,εd − εk2 ). (82)

We have seen that the plane-wave approximation for the
scattering states (i.e., the Møller operator is given by
the identity operator) results in a great simplification for
the two-particle current: it is given by a sum over two
bound states (they correspond to two lesser propagators in the
diagrammatic representation of this process) and by the two
momentum integrals corresponding to the propagators of the
secondary electron. In contrast, in the full-fledged calculations
based on Eq. (79), the momenta of the secondary electron
and the emitted electrons are not rigidly related. Therefore, in

general, two additional momentum integrations are required.
This will be the subject of a forthcoming publication where
this formalism is applied to a large molecular system.

The DPE process described by Eq. (82) is suited to probe
the plasmon dispersion and damping. First, let us look at
the classical plasmon that carries vanishing momentum and
otherwise is strongly damped. This leads us to consider
the case ka ≈ kc ≈ k1, and εd − εk2 = ωp is the condition
for the plasmon resonance. In this case, the second line
reduces to |〈k2|d〉|2/ω2

p, and is clearly off resonance. The
situation greatly changes if we allow for the plasmon to
carry finite momentum qc and consider a large momentum of
the secondary electron ka ≈ kc ≈ k1 >

√
ωp. For simplicity,

take a symmetric situation when both screened interaction
lines carry approximately the same energy and momentum
and denote K ≈ 1

2 (ka + k1) ≈ 1
2 (kc + k1) and q ≈ ka − k1 ≈

kc − k1. In this case, one achieves the resonant enhancement
when

εka
− εk1 ≈ εkc

− εk1 = 2(q · K) = ωp.

Thus, for collinear ka , kc, and k1 the probability for the
plasmon-assisted emission of the secondary electron is en-
hanced when K reaches the value of ωp/qc.

In order to illustrate the features arising due to the
plasmon-assisted process in an experiment, we computed
the current for a simple model system. To be concrete,
we consider the basic jellium model for the C60 molecule
(treated as spherically symmetric) [63,64], which is known for
its pronounced (dipolar) plasmon resonance at ωp ∼ 22 eV.
Inserting a smoothed boxlike potential as approximation to
the Kohn-Sham potential, we solved the Schrödinger equation
for the 120 orbitals required (240 electrons in total). This
procedure yields the single-particle energies εd associated to
the orbitals φd (r), from which we can compute all quantities
in Eq. (82). Because of the spherical symmetry, we can
separate the radial and the angular dependence, that is,
φd (r) = ud (r)

r
Y�dmd

(r̂) [Y�m(r̂) are the spherical harmonics] and
only solve the radial Schrödinger equation. For the optical
matrix elements, we choose the length gauge and assume a
linear polarization along the z axis (�̂ = z). Since we are not
interested in the absolute scale, a prefactor proportional to the
field strength will not be included. The matrix elements �kb

attain the form

�kb = 4π
∑
�m

C�m�bmb
sb�(k)Y�m(k̂),

sb�(k) =
∫ ∞

0
dr r2ub(r)j�(kr),

where j� denotes the spherical Bessel function. The coef-
ficients C�m�bmb

are obtained from the standard Clebsch-
Gordan algebra [65,66]. Similarly, the Fourier-transformed
orbitals 〈k|d〉 = φ̃d (k) can be expressed in terms of
the Bessel transformation: φ̃d (k) = 4πũd (k)Y�dmd

(k̂) with
ũd (k) = ∫ ∞

0 dr rud (r)j�d
(kr).

Next, we transform the summation over ka and kc into
integrations and substitute them by the integration over the
momentum transfer vectors qa,c = k1 − ka,c. At this stage,
no further simplification can be made, such that the six-
dimensional integral has to be evaluated. However, it is

155116-15
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reasonable to consider qa,c as small since the plasmon branch
enters the particle-hole continuum for growing momentum,
where it is strongly damped. Hence, we introduce the momen-
tum cutoff qmax and assume k1,k2 � qmax. Thus, we approx-
imate �ka,cb = �k1−qa,cb ≈ �k1b and φ̃d (k1 + k2 − ka,c) =
φ̃d (k2 + qa,c) ≈ φ̃d (k2). Furthermore, we integrate over the
spherical angles of k1 and k2, keeping only the dependence on
their magnitude. Thus, the two-electron current can be written
as

Jk1,k2 ∝
∑
bd

∑
�m

|C�m�bmb
sb�(k1)|2 |̃ud (k2)|2

×
(

1 + Re
ω2

p

(εd − εk2 − i�)2 − ω2
p

)2

Fd (k1,k2), (83)

where

Fd (k1,k2) =
(∫ qmax

0
dq

1

q2 + 2k1q − k2
2 + 2εd

)2

.

Note that we inserted the imaginary shift i� in the energy
argument accounting for a finite width (lifetime in the
time domain) of the plasmon resonance (which is assumed
dispersionless for simplicity).

In an experiment, the distinction between primary (k1)
and secondary electron (k2) is, of course, not possible. For
this reason, the photocurrent needs to be symmetrized (let
us denote it by J sym). Representing the J sym as a function
of εk1 and εk2 yields the typical energy-sharing diagrams
(Fig. 8). Spectral properties of the system [dominated by
A(2)(ε)] display themselves along the main diagonal, as only
the sum εk1 + εk2 enters. Dominant scattering events mediated
by the (screened) interaction on the other hand are visible along
lines εk1 = const (or εk2 = const). As Eq. (83) indicates, the
two-particle current contains contributions from (i) the bare
Coulomb [two interacting lines in Fig. 7(b) are not screened],
(ii) plasmonic scattering (both lines are screened), and the
interference terms. (i), (ii), and the total contribution are
shown at Figs. 8(a), 8(b), and 8(c), respectively. For vanishing
�, the current is dominated by sharp plasmonic resonances.
For finite damping parameter such as used for the present
simulations (� = 0.1, we use a realistic value as in Ref. [67]),
the interference terms are important: we still have a large
plasmonic contribution [viz., Fig. 7(b)], however, the bare
Coulomb contributes with the opposite sign. Therefore, in total
current the large peak at εk2 ≈ 0.15 becomes less pronounced
and additional peaks at higher energies (e.g., at εk2 ≈ 0.5)
appear. The whole spectral width of the signal is limited by the
two-particle spectral function shown in Fig. 7(d) as a shaded
curve.

VI. CONCLUSIONS

There are a large number of theoretical works devoted to
the interaction of light and matter which involve the emission
of one or more electrons. This contribution is meant to
expose parallels between the single- and the double-electron
photoemission in a formal way. We started by defining corre-
sponding observables and deriving expressions for one- and
two-particle currents based on the first-order time-dependent
perturbation theory. These expressions are suitable if exact

FIG. 8. (Color online) The symmetrized two-electron current as
a function of the photoelectron energies (energy-sharing diagram)
for typical parameters: ω = 2.0 and ωp = 0.8. The color scale is the
same for all three panels and runs from dark blue to red, indicating
increasing values. (a) The process is mediated by the pure Coulomb
interaction. (b) Pure plasmonic contribution. (c) Total (bare Coulomb
and plasmonic contributions) signal including the interference terms.
(d) Equal energy sharing (εk1 = εk2 ) for the current and trace of the
two-particle spectral density (shaded curve).

formulas in terms of many-body states are required. In
order to obtain computationally useful expressions, many-
body effects should also be accounted for in a perturbative
fashion. Thus, in the first part of the paper we applied
the projection operator formalism. Starting from the explicit
form of the projection operators dividing the whole Hilbert
space of the system into that of the emitted electron(s) and
the target, we derived the effective one- and two-particle
Hamiltonian, discussed integral equations for the Green’s
functions describing emitted particles, and demonstrated a
close connection of this formalism to the nonequilibrium
Green’s function theory. For the latter, one can easily derive the
diagrammatic expansions for one- and two-particle currents
starting from the time-dependent perturbation theory and using
the adiabatic switching of the electron-electron interaction.
Hence, we have electromagnetic field switched on at the
remote past (as eηt ) and independently adiabatically switched
on the interaction such that the total Hamiltonian takes a form
Ĥδ = Ĥ0 + e−δ|t |Ĥ1. We analyzed in details the diagrammatic
structure of one- and two-particle currents. It is surprisingly
simple: one starts with the density-density response function
χ< which necessarily contains two blocks associated with
the forward (“−”) and backward (“+”) parts of the Keldysh
contour. Requesting that one or two lines flowing from “−”
to “+” blocks are associated with scattering states (with
momenta ki), one obtains exactly the diagrams for SPE and
DPE currents showing the close connection between these
types of light-matter interaction. It is not difficult to generalize
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this approach to an arbitrary number of particles. Finally, we
presented a detailed analysis of the plasmon-assisted DPE
and showed that if one of the emitted particles is unobserved,
its diagrammatic representation reduces to the one describing
external losses in the SPE process considered by Caroli et al.
[21]. Plasmon pole approximation was employed to derive
computationally manageable expressions. We illustrated the
distinct features to be expected in an experiment by analyzing
the simple and yet realistic jellium model for the C60 molecule.
This will be used in the forthcoming paper devoted to the ab
initio treatment of this large molecular system.
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APPENDIX A: PARTICLE-IMPACT IONIZATION

Under some circumstances, the formalism developed in the
main text can be extended to other mechanisms of ionization,
e.g., particle-impact ionization. The basic requirement we
impose is the distinguishability of the projectile from the target
electrons. This applies also for a projectile electron if the
impact energy is high and the small-momentum transfer is
small (optical limit).

The target we describe by the Hamiltonian (4). The
Coulomb interaction between the projectile (with charge Z)
and the sample reads as

V̂ = Z

2

∑
ab

∑
νμ

vaνbμc†ad
†
νdμcb. (A1)

dν (d†
ν ) is the annihilation (creation) operator of the projectile

states |ν〉. These states can be chosen as the eigenstates of the
projectile Hamiltonian ĥp with energy εν .

Assuming that the projectile initially possesses the mo-
mentum ki , we can construct the asymptotic state prior to the
interaction (that is, at t = −∞) as the product state

|0,ki
〉 = |ki〉 ⊗ |0〉.

V̂ is switched on reaching its full strength at t = 0. Assuming
that its average value is much smaller than the kinetic energy
of the projectile, we can apply the first-order perturbation
theory (i.e., the first Born approximation in the projectile-target
interaction [47]). Denoting the full Hamiltonian by Ĥ + ĥp,
one may write

|̃(+)〉 = |0,ki
〉 + lim

η→0

1

E0 + εki
− Ĥ − ĥp + iη

V̂ |0,ki
〉.

(A2)
The projectile has a well defined final momentum kf . In
analogy to Sec. IV A, we introduce the particle-number
operator

N̂k → Pf N̂kPf

with Pf = |kf 〉〈kf | projecting only onto the projectile space.
N̂k acts on the system’s states only (including the ejected
electrons upon particle impact). Evaluating then the current as
in Sec. II A and approximating the projectile states by plane

waves 〈r|k〉 = eik·r yields

Jk = lim
η→0

2η
〈
0,ki

∣∣V̂ † 1

E0 + εki
− Ĥ − ĥp − iη

Pf c
†
kckPf

× 1

E0 + εki
− Ĥ − ĥp + iη

V̂
∣∣0,ki

〉

= lim
η→0

2η〈0|V̂ eff(q)†
1

E0 + εki
− εkf

− Ĥ − iη
c
†
kck

× 1

E0 + εki
− εkf

− Ĥ + iη
V̂ eff(q)|0〉, (A3)

where q = ki − kf is the momentum transfer, and V̂ eff(q) is
the effective single-particle operator acting on the target wave
function, explicitly

V̂ eff(ki − kf) = 〈ki |V̂ |kf 〉 = Z

2

∑
ab

vakf bki
c†acb. (A4)

In this optical limit,

V̂ eff(q) = 4πZ

q2
eiq·r (A5)

acts similar to the light-matter interaction �̂; the transferred
energy (or energy loss) εki

− εkf
resembles the photon energy.

APPENDIX B: GREEN’S FUNCTIONS

Let us recast the following many-body correlators from
Sec. IV A,

G(p)
pq,α(z) = 〈+

α |cp
1

z − Ĥp − �̂p(z)
c†q|+

α 〉,

in the form of one-particle averages. We define the particle
propagator of one-particle system in the presence of optical
potential Ŵ (z):

Gpq(z) = 〈p| 1

z − Ĥf − Ŵ (z)
|q〉.

Consider G
(p)
pq,α(ω + E0 ± iη). The matrix element of the ef-

fective Hamiltonian operator in its definition can be simplified
to

〈+
α |cp[ĤP + �̂P (z)]c†q|+

α 〉 = E+
α + 〈p|Ĥf + Ŵα(z)|q〉,

where we decompose the total N -particle Hamiltonian H as a
sum of three terms:

Ĥ = Ĥf + Ĥ+ + V̂ .

Here, Ĥf is the free-particle Hamiltonian, Ĥ+ is the Hamilto-
nian of ionized system

Ĥ+|+
α 〉 = E+

α |+
α 〉,

and V̂ is the frequency-independent part of the self-energy. If
the optical potential is identified with the self-energy, then we
can relate two propagators

G(p)
pq,α(ω + E0 ± iη) = G(±)

pq,α(ω + εα),

where we introduced the Green’s functions G(±)
pq (ω) =

G(±)
pq (ω ± iη) and εα = E0 − E+

α . From the formal scattering
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theory (see Sec. 20 of Joachain [47]) and independent of the
concrete choice of the representation, we can express them
in terms of the Møller operator and the free-particle Green’s
function

G±(ω) = �̂(±)G(±)
0 (ω). (B1)

Two-particle case. For DPE, the two-particle Green’s
function over the excited state 2+

β is required:

G
(pp)
pq,k1k2,β

(z) = 〈
2+

β

∣∣cpcq
1

z − Ĥp − �̂P (z)
c
†
k1

c
†
k2

∣∣2+
β

〉
,

where the projection operator is defined by Eq. (35). This
propagator can be related to the scattering Green’s function of
the two-particle system in the presence of the optical potential
of doubly ionized target

G
(pp)
pq,k1k2,β

(ω + E0 ± iη) = G(±)
pq,k1k2,β

(
ω + ε

(2)
β

)
,

with ε
(2)
β = E0 − E2+

β . G(±)
pq,k1k2,β

can be likewise expressed in
the form (B1).

APPENDIX C: MATRIX IDENTITIES

The formalism presented here works in finite- as well
as in infinite-dimensional Hilbert spaces. For illustration we
formulate it in the matrix form. Given M is square block
matrix

M =
[
A B
C D

]
, (C1)

where D is square invertible matrix, the Schur complement
[68] (also known in physics as the Feshbach map [57,69,70])
is defined as

Ã = A − BD−1C.

We might think of M as a Hamiltonian operator acting in
some larger Hilbert space, whereas A is the same operator, but
acting in a physically relevant subspace. P is the projection
operator onto this subspace (PMP = A) and Q = I − P is
its complement (QMQ = D). For definiteness we may take
M to be a compact self-adjoint operator on the Hilbert space
describing an N -fermion system H(N) and A its projection
upon the Hilbert space of two particles H(2). Because of
the couplings between subspaces (for physical Hamiltonians
obviously holds B = C†), M and A have different spectral
properties. Nonetheless, one can show the following equiva-
lence:

MV = 0 ⇐⇒ ÃPV = 0 (C2)

for a vector V ∈ H(N). If M ≡ H − EI , the first part implies
that V is an eigenvector of H with the energy E. The second
part implies that PV is a corresponding eigenvector of Ã(E)
with the same energy:

[HP + �P (E) − EIP ]PV = 0. (C3)

Expression for the self-energy (27) is derived for instance
in Sec. 20.2.3 of Joachain [47]. A mathematically rigorous
proof of the theorem (C2) as well as other properties of the
Feshbach-Schur map can be found in Chap. 11 of Gustafson

and Sigal [71]. It is further possible to write the inverse of the
matrix M explicitly:1

M−1 =
[

Ã−1 −Ã−1BD−1

−D−1CÃ−1 D−1 + D−1CÃ−1BD−1

]
. (C4)

This identity is natural to apply to compute resolvents. For
instance, Eq. (26) is given the first line of Eq. (C4). This
formula can also be found in Almbladh as Eq. (19) [16].

APPENDIX D: PROPERTIES OF PROJECTION
OPERATORS

Our basic assumptions for operators with continuum indices
cp|+

α 〉 = 0 and cp|2+
β 〉 = 0 imply that final states of the

target are the vacuum states for these operators. Thus, standard
Wick’s theorem can be used for the calculation of various
correlators. It follows

cpc
†
q|+

α 〉 = δpq|+
α 〉, (D1)

ck2ck1c
†
pc

†
q

∣∣2+
β

〉 = (δk1pδk2q − δk1qδk2p)
∣∣2+

β

〉
. (D2)

These equations lead to the idempotency relations PαPα = Pα

and PβPβ = Pβ and to the properties

c
†
k|+

α 〉〈+
α |ck = Pαc

†
kckPα, (D3)

c
†
k1

c
†
k2

∣∣2+
β

〉〈
2+

β

∣∣ck2ck1 = Pβc
†
k1

c
†
k2

ck2ck1Pβ. (D4)

The matrix element of a one-particle operator Ô = Ô(x1) +
Ô(x2) over the determinant two-particle states 〈x1x2|ab〉 =

1√
2
[φa(x1)φb(x2) − φb(x1)φa(x2)] can be verified by direct

evaluation:

〈ab|Ô|cd〉 = 〈a|Ô|c〉δbd + 〈b|Ô|d〉δac

−〈a|Ô|d〉δbc − 〈b|Ô|c〉δad . (D5)

If one of the states is a two-hole Dyson orbital, the matrix
element is computed similarly:

〈ab|Ô∣∣ϕ(2)
β

〉 = 1

2

∑
cd

〈ab|Ô|cd〉〈2+
β

∣∣cccd |0
〉

=
∑
cd

(〈a|Ô|c〉δbd − 〈b|Ô|c〉δad

)〈
2+

β

∣∣cccd |0
〉
.

(D6)

Using this result and the vacuum assumption for the initial
states, we can compute a matrix element entering the Fermi
golden rule formula for SPE,

〈+
α |ck�̂|0〉 =

∑
ab

�ab〈+
α |ckc

†
acb|0〉

≈
∑

b

〈k|�̂|b〉〈+
α |cb|0〉 = 〈k|�̂|φα〉, (D7)

1According to Zhang [68], it was a Polish astronomer Banachiewicz
who obtained this formula for the first time. However, it was
reinvented many times (see a short historical review at the top of
p. 699 of Ref. [72] where the authors suggest to use the name
Schur-Livsic-Feshbach-Grushin for the equation).
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and DPE, 〈
2+

β

∣∣ck1ck2�̂|0〉 =
∑
ab

�ab

〈
2+

β

∣∣ck1ck2c
†
acb|0〉 ≈

∑
bc

[〈k1|�̂|b〉δk2c − 〈k2|�̂|b〉δk1c]
〈
2+

β

∣∣cbcc|0〉

= 〈k1k2|�̂
∣∣φ(2)

β

〉
. (D8)

We used an assumption ck|0〉 ≈ 0 to derive (D7) and ck1ck2 |0〉 ≈ 0 to derive (D8).

APPENDIX E: SOKHOTSKI-PLEMELJ–TYPE IDENTITIES

The following identities were used to perform frequency integrations leading to Eqs. (73) and (74):

lim
η→0

lim
δ→0

2η
1

ω1 − z1 − iη

1

ω2 − z2 + iη

1

z3 − ω3 − iδ

1

z3 + z2 − z1 − ω3 + iδ
=

3∏
i=1

2πδ(zi − ωi) (E1)

for ω1 = ω2, and

lim
η→0

lim
δ→0

2η
1

ω1 − z1 − iη

1

ω2 − z2 + iη

1

z3 − z2 + ω2 − ω3 − iδ

1

z4 − z1 + ω1 − ω4 + iδ

1

ω4 + ω5 − z4 − z5 + iδ

× 1

ω3 + ω5 − z3 − z5 − iδ
=

5∏
i=1

2πδ(zi − ωi) (E2)

for ω1 = ω2, ω3 = ω4. The first equation appears in [16]. To the best of our knowledge the second equation has not been addressed
in the literature. These identities can be verified by the Fourier transformation with respect to zi variables.
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