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We consider physical properties of a superconductor with a recently proposed type of odd-frequency pairing that
exhibits diamagnetic Meissner response (“odd-dia state”). Such a state was suggested in order to address stability
issues arising in an odd-frequency superconducting state with paramagnetic Meissner response (“odd-para state”).
Assuming the existence of an odd-dia state (due to a proper retarded interaction), we study its coexistence with
an odd-para state. The latter is known to be generated as an induced superconducting component in, e.g., singlet
superconductor/ferromagnet proximity structures or triplet superconductor/normal metal systems. Calculating
the superfluid density of the mixed odd-para/odd-dia state and the Josephson current between the odd-para
and odd-dia states, we find that the expressions for the currents in both cases have nonvanishing imaginary
contributions and are therefore unphysical. We show that a realization of the odd-dia state implies the absence
of a Hamiltonian description of the system, and suggest that there exists no physically realizable perturbation
that could give rise to the spontaneous symmetry breaking necessary for an actual realization of the odd-dia
superconducting state.

DOI: 10.1103/PhysRevB.91.144514 PACS number(s): 74.20.Mn, 74.25.N−, 74.20.Rp

I. INTRODUCTION

Pairing of fermions in superconductors and superfluids
can be described by the so-called anomalous Green function
F (1; 2) (here 1 and 2 denote sets of coordinates for the two
fermions). The Pauli principle requires antisymmetry under
permutation of two fermions in a Cooper pair, F (2; 1) =
−F (1; 2), leading to the standard classification [1] of super-
conducting phases: even parity under exchange of the spatial
coordinates of F (s-wave, d-wave, etc.) must be accompanied
by odd parity under exchange of the spin coordinates (singlet).
Similarly, odd parity in the spatial coordinates (p-wave,
f -wave, etc.) must be accompanied by even parity in the
spin coordinates (triplet). This classification scheme assumes
that F stays unchanged under permutation of two imaginary-
time coordinates (we assume for definiteness the Matsubara
representation).

In 1974, Berezinskii pointed out [2] that this classification,
implicitly assuming even dependence of F on the imaginary-
time difference τ = τ1 − τ2, can be doubled if one allows for
an odd symmetry with respect to time (or to the Matsubara
frequency ω in the Fourier representation). This opens up
a possibility of, e.g., an s-wave triplet [2,3] or a p-wave
singlet [4] phase without violating the Pauli principle or
the Fermi-Dirac statistics. These exotic phases are called
odd-frequency (odd-ω) states. Although there has been much
theoretical work on odd-frequency pairing states (as the
principal state, i.e., the state corresponding to a normal-
state instability in the pairing interaction channel) in bulk
systems [5–26], experimental evidence is still lacking.

However, it turns out that the s-wave triplet state can
be realized as an induced (as opposed to spontaneously)
symmetry-broken state, leading to an induced superconducting
component in a rather conventional system consisting of an

s-wave singlet superconductor (S) and a ferromagnet (F) [27].
Ferromagnetism here breaks the symmetry in the spin space
and opens up the possibility of generating triplet supercon-
ducting correlations from singlet ones [27–45]. Alternatively,
if the triplet correlations are already present in the system due
to, e.g., a principal even-ω p-wave triplet state (TS), then an
odd-ω s-wave triplet state can be generated due to breaking
the isotropy in real space [32,46,47]. This can be achieved,
e.g., by contacting the superconductor with a diffusive normal
metal (DN) [46,47]. Odd-frequency superconductivity in such
systems is an emergent inhomogeneous phase appearing in
the vicinity of an interface and penetrating into the adjacent
materials due to the proximity effect [32,47,48].

Induced odd-frequency correlations have also been dis-
cussed in connection with surface Andreev bound states
in unconventional superconductors [49–54], vortex systems
[55–57], Majorana fermions in topological superconductors
[58–64], and multiband systems [65].

An unexpected feature of the induced s-wave triplet state
in diffusive proximity structures is that the resulting local
density of state has a zero-energy peak [46,66–70]. For ballistic
structures, where both even-ω (e.g., p-wave) and odd-ω (e.g.,
s-wave) triplet states are generated at the superconductor-
ferromagnet interface, a low-energy Andreev bound state band
around zero energy was found [30,71]. Furthermore, the sign of
the local current response to an external vector potential turns
out to be unconventional (in other words, the local superfluid
density is formally negative, nS < 0) [72–76]. This would lead
to an instability of such a principal superconducting state
in a bulk homogeneous system [8–10,77,78]. On the other
hand, the induced odd-ω state is stabilized in inhomogeneous
proximity systems due to presence of a principal conventional
superconductor (note at the same time that under special
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conditions instability in thin-film proximity structures is also
possible [79]). Since the conventional (nS > 0) supercon-
ducting response corresponds to the diamagnetic Meissner
effect, we refer to the unconventional (nS < 0) state as a
(locally) paramagnetic one (odd-ω–para state) [80,81]. At the
same time, in order to avoid confusion, we note that if one
studies the Meissner effect in a proximity structure where the
surface region has a prevailing odd-ω–para component [27,46],
then this surface region would show an oscillating Meissner
effect [73,74] (since the sign of nS enters the screening length
under the square root) which finally turns to a diamagnetic one
in the bulk of the conventional superconductor.

Although surprising at first sight, the odd-ω–para state
is predicted on the basis of microscopic models and is
undoubtedly realized as an induced superconducting state
in real proximity structures [27–47]. There are numerous
experimental results consistent with manifestations of this
state [82–96]. An interesting feature of the odd-ω–para state
in proximity structures is that it can be spatially separated
from other superconducting components arising due to the
proximity effect [27–47]. For example, in S/F junctions the
so-called long-range proximity effect arises [27], meaning
that not too close to the interface the only surviving su-
perconducting component in the F layer has odd-ω–para
properties. So, this superconducting state is indeed realized
(as the only superconducting component) in certain spatial
regions.

Recently, a further extension of the classification of su-
perconducting phases was proposed in Refs. [97,98]. The
proposed state is also odd-ω, but at the same time it possesses
a conventional diamagnetic Meissner response (odd-ω–dia,
nS > 0), and thus is supposed to solve the problem of
instability for a bulk material. If so, this state could be realized
as a homogeneous principal superconducting phase. Being
more conventional at first glance, this proposal relies on an
essential assumption that a proper retarded interaction leading
to this state can exist in a real material.

Motivated by this proposal, we study physical properties
of the odd-ω–dia state (assuming it is actually realized).
It turns out that while the new state seems consistent by
itself, coexistence of the two different odd-ω states (para and
dia) leads to unphysical consequences. Below, we describe
the inconsistencies arising from the assumption of such
coexistence and propose our view on a possible resolution
of the contradiction.

The paper is organized as follows. In Sec. II, we review the
path-integral approach of Refs. [97,98] in order to establish
the notations and underline the features that are essential for
further discussion. In Sec. III A, we consider possibility of
coexistence of the odd-ω–para and odd-ω–dia states in the
same spatial region. In Sec. III B, we consider the possibility
of their coexistence in the Josephson junction. Our results are
then discussed in Sec. IV and summarized in Sec. V.

II. PATH-INTEGRAL FORMULATION

In this section, we develop the path-integral formalism
for describing superconductivity in both homogeneous and
inhomogeneous states with general interactions. We then
proceed to discuss a specific type of interactions, following

the path-integral approach of Refs. [97,98] for describing
the homogeneous principal odd-ω–dia state. Reference [97]
treated spinless fermions, while the general case of arbitrary
pairing for fermions with spin was considered in the Appendix
of Ref. [98]. We briefly outline the main points of the
derivation, following Ref. [98], with intention to set up
the general framework necessary for our later discussion of
coexistence between the odd-ω–dia and odd-ω–para states.
We pay special attention to differences between description of
the odd-ω–dia and –para states.

The reader less interested in the technical details of a
rigorous treatment can skip the following subsection which
offers a general treatment, and proceed directly to the next
subsection that presents a simplified treatment valid for a more
restricted set of interactions.

We adopt the following definition for the complex conju-
gation of Grassmann variables: ψ∗∗ = ψ , (ψ1ψ2)∗ = ψ∗

2 ψ∗
1 .

The temperature is denoted as T , and we put � = kB = 1
throughout the paper.

A. General treatment

1. Interaction

We consider a general interaction

Ṽαβ;γ δ(r1τ1,r2τ2; r3τ3,r4τ4) (1)

as matrix Ṽ (12; 34) with compound index 12 denoting the set
of variables r1τ1α,r2τ2β and compound index 34 denoting the
set of variables r3τ3γ,r4τ4δ. Here, α,β,γ,δ are spin indices,
while the imaginary times (we use the Matsubara represen-
tation) are denoted τ1, . . . ,τ4, and the spatial coordinates are
r1, . . . ,r4. We use a brief notation for integration∫

1
≡

∫ 1/T

0
dτ1

∫
dr1

∑
α

,

∫
12

≡
∫

1

∫
2
, etc. (2)

We will use the singular value decomposition for the inter-
action matrix defined as above. Accordingly, the interaction
matrix can be expanded into the singular vectors

Ṽ (12; 34) =
∫

λ

ζ λ(12) Vλ ηλ(34)∗, (3)

where λ labels a complete orthonormal set of left singular
vectors ζ λ(12), ∫

12
ζ λ(12)∗ζ λ′

(12) = δλλ′ , (4a)∫
λ

ζ λ(12)ζ λ(34)∗ = δ13δ24, (4b)

as well as correspondingly for the right singular vectors ηλ(34).
We use a brief delta-functional notation, e.g., δ13 ≡ δ(r1 −
r3)δ(τ1 − τ3)δαγ .

The singular values Vλ are real and can be assumed all
nonpositive (we slightly modify the convention for the usual
definition in terms of non-negative singular values). We will
also use the pseudoinverse of this matrix, defined as

Ṽ −p(12; 34) =
∫

λ

ηλ(12) V
−p

λ ζ λ(34)∗, (5)
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where V
−p

λ is obtained from Vλ by replacing all nonzero
singular values by their inverses, leaving all zero singular
values untouched.

In the following, for brevity we employ the matrix product
notation

[AB](12; 34) ≡
∫

56
A(12; 56)B(56; 34), (6a)

[aA](34) ≡
∫

12
a(12)A(12; 34), (6b)

[Aa](12) ≡
∫

34
A(12; 34)a(34), (6c)

for dealing with four-point functions (A, B) and two-point
functions (a).

Then, P1(12; 34) ≡ [Ṽ Ṽ −p](12; 34) and P2(12; 34) ≡
[Ṽ −pṼ ](12; 34) turn out to be Hermitian projector matrices
(not necessarily identity matrices), and [Ṽ −pṼ Ṽ −p] = Ṽ −p

as well as [Ṽ Ṽ −pṼ ] = Ṽ .

2. Partition function and action

The partition function Z is written in the path-integral
formulation with the help of Grassmann fields ψ(1) and ψ∗(1):

Z =
∫

Dψ∗Dψ exp(−S0 − Sint), (7)

S0 =
∫

1
ψ∗(1)(∂τ1 + ξ )ψ(1), (8)

Sint = 1

2

∫
1234

ρ∗(12) Ṽ (12; 34) ρ(34), (9)

where ξ = −∂2
r1
/2m − μ is the kinetic energy counted from

the chemical potential, and notations

ρ(12) = ψ(1)ψ(2), ρ∗(12) = ψ∗(2)ψ∗(1) (10)

are introduced for brevity for the pair-density field and its
complex conjugate.

The S0 action describes free particles, while Sint describes
spin-dependent interaction. Requiring Z = Z∗ and changing
the integration variables (Grassmann fields) into η(r,τ,α) =
ψ(r,1/T − τ,α), η∗(r,τ,α) = ψ∗(r,1/T − τ,α), we obtain
the condition

Ṽ (12; 34) = Ṽ ∗(3̄4̄; 1̄2̄), (11)

with 1̄ ≡ (r1,1/T − τ1,α), etc. This is equivalent to

Vλ

∫
12

ηλ(12)∗ζ λ′
(1̄2̄) = Vλ′

∫
12

ζ λ(12)∗ηλ′
(1̄2̄). (12)

At the same time, Ṽ fulfills the relations

Ṽ (12; 34) = Ṽ (21; 43) = −Ṽ (21; 34) = −Ṽ (12; 43), (13)

conditions that follow directly from exchanging integration
variables in Sint. These conditions are equivalent to the
relations

ζ λ(12) = −ζ λ(21), ηλ(12) = −ηλ(21), λ /∈ �0 (14)

where �0 is the set of all λ for which Vλ = 0. With the
definitions

ρλ =
∫

12
ηλ(12)∗ρ(12), ρ+

λ =
∫

12
ρ∗(12)ζ λ(12), (15)

we obtain finally

Sint = 1

2

∫
λ

ρ+
λ Vλ ρλ. (16)

3. Mean-field approximation

Performing a Hubbard-Stratonovich transformation
amounts to multiplying the partition function by a finite
constant∫

D� D� exp

{
1

2

∫
1234

�(12)Ṽ −p(12; 34)�(34)

}
, (17)

and subsequently shifting the integration fields as � �→
� + [Ṽ ρ] and � �→ � + [ρ∗Ṽ ], using [(� + ρ∗Ṽ )Ṽ −p(� +
Ṽ ρ)] = [�Ṽ −p�] + [ρ∗P1�] + [�P2ρ] + [ρ∗Ṽ ρ]. As a re-
sult, the four-fermionic term Sint is decoupled:

exp(−Sint) �→
∫

D�D� exp(−Saux − S�), (18)

where

Saux = −1

2

∫
12

(ρ∗(12)[P1�](12) + [�P2](12)ρ(12)),

S� = −1

2

∫
1234

[�P2](12)Ṽ −p(12; 34)[P1�](34). (19)

Defining the fields

�λ =
∫

12
ζ λ(12)∗�(12), �λ =

∫
12

�(12)ηλ(12) (20)

for all λ /∈ �0, and setting �λ = �λ = 0 for all λ ∈ �0, we
obtain

Saux = −1

2

∫
λ

(ρ+
λ �λ + �λρλ), (21)

S� = −1

2

∫
λ

(
�λV

−p

λ �λ

)
. (22)

We require �λ = �∗
λ for ensuring convergence in the Hubbard-

Stratonovich transformation.

4. Saddle-point solution

Now we focus on finding the saddle-point solution. Instead
of integrating over � and �, we take a trial path with respect
to which we will vary the action. Then we can define the
mean-field free-energy functional:

FMF[�,�] = −T lnZMF

= −T ln
∫

Dψ∗Dψ exp(−SMF[ψ∗,ψ,�,�]),

(23)

where SMF = S0 + Saux + S� is the mean-field action in
which � and � are replaced by the trial path. To find the
saddle point, we should minimize FMF with respect to the
trial path. As a result, we obtain the self-consistency equations
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for the mean-field pair potential �MF (also called the gap
function):

�MF(12) ≡ [P1�](12) = −
∫

34
Ṽ (12; 34)F (34), (24a)

�MF(34) ≡ [�P2](34) = −
∫

12
F+(21)Ṽ (12; 34), (24b)

where we have introduced the anomalous averages (anomalous
Green functions)

F (12) = 〈ρ(12)〉MF, F+(21) = 〈ρ∗(12)〉MF, (25)

with the help of the definition of the mean-field averaging:

〈. . . 〉MF =
∫

Dψ∗Dψ (. . . )e−SMF[ψ∗,ψ,�,�]∫
Dψ∗Dψ e−SMF[ψ∗,ψ,�,�]

. (26)

The notations F and F+ for the two anomalous averages
are standard in the theory of superconductivity, and the
+ superscript should not be confused with the Hermitian
conjugation †. From the relations

F (12) = −F (21), F+(12) = −F+(21), (27)

following directly from the properties of Grassmann variables,
and from Eqs. (13), one obtains the corresponding relations

�MF(12) = −�MF(21), �MF(12) = −�MF(21). (28)

Finally, with the definitions

Fλ =
∫

12
ηλ(12)∗F (12), F+

λ =
∫

12
F+(21)ζ λ(12) (29)

(note the difference in the definitions for Fλ and �λ, and for
F+

λ and �λ, correspondingly), we obtain

�λ = −VλFλ, �∗
λ = −VλF

+
λ . (30)

From these relations it follows that, for all components Fλ,
F+

λ for which λ /∈ �0, the symmetry relation F+
λ = F ∗

λ holds
(remember that Vλ is real). For all Fλ, F+

λ with λ ∈ �0 nothing
follows from these equations (as then Vλ = �λ = �∗

λ = 0).

B. Simplified treatment

1. Interaction

In order to make our consideration more transparent and fa-
cilitate comparison with Refs. [97,98], we now assume that the
interaction is homogeneous with respect to spatial coordinates
and time. For that we slightly change notations, indicating
the spin indices explicitly, while the spatial coordinates and
imaginary times are gathered in 4-vectors denoted as 1 ≡
x1 = (r1,τ1) and 2 ≡ x2 = (r2,τ2). The general interaction of
Sec. II A [Eq. (1)] now takes the form Vαβ;γ δ(1 − 2)δ(1 −
3)δ(2 − 4), where we denote δ(1 − 3) ≡ δ(r1 − r3)δ(τ1 − τ3),
etc.

At the same time, we keep general form with respect
to interactions in both the singlet and triplet channels (so
that later we can consider specific cases on the basis
of general equations). So, we assume interaction of the

form

Vαβ;γ δ(1 − 2) = Vs(1 − 2)
(iσ2)αβ(iσ2)∗γ δ

2

+
3∑

j=1

V
(j )
t (1 − 2)

(iσjσ2)αβ(iσjσ2)∗γ δ

2
. (31)

The singlet interaction Vs(1 − 2) and the three components
of the triplet interaction V

(j )
t (1 − 2) are assumed to be either

negative definite or zero [99]. For this case, the matrix inverse
of the interaction matrix with two compound spin indices is
defined as

[V −1(1 − 2)]αβ;γ δ

= Vs(1 − 2)−1
(iσ2)αβ(iσ2)∗γ δ

2

+
3∑

j=1

V
(j )
t (1 − 2)−1

(iσjσ2)αβ(iσjσ2)∗γ δ

2
, (32)

with V (1 − 2)−1 ≡ 1/V (1 − 2) for nonzero components and
zero otherwise.

2. Partition function and action

The partition function Z is written in the path-integral
formulation with the help of Grassmann fields ψα(1) and
ψ∗

α (1):

Z =
∫

Dψ∗
↑Dψ∗

↓Dψ↑Dψ↓ exp(−S0 − Sint), (33)

S0 =
∫

1
ψ∗

α (1)(∂τ1 + ξ )ψα(1), (34)

Sint = 1

2

∫
12

Vαβ;γ δ(1 − 2)ρ∗
αβ (1,2)ργδ(1,2), (35)

where ξ = −∂2
r1
/2m − μ is the kinetic energy counted from

the chemical potential, summation over repeated spin indices
(α,β,γ,δ) is implied, and notations

ραβ (1,2) = ψα(1)ψβ(2), ρ∗
αβ(1,2) = ψ∗

β (2)ψ∗
α (1) (36)

are introduced for brevity for the pair-density field and its
complex conjugate. The brief notation for integration is∫

1
≡

∫ 1/T

0
dτ1

∫
dr1,

∫
12

≡
∫

1

∫
2
, etc. (37)

The S0 action describes free particles, while Sint describes
spin-dependent interaction. Requiring Z = Z∗ and changing
the integration variables (Grassmann fields) into ηα(x) =
ψα(−x), η∗

α(x) = ψ∗
α (−x), we obtain the condition

Vαβ;γ δ(1 − 2) = V ∗
γ δ;αβ(2 − 1). (38)

At the same time, V fulfills the relation

Vαβ;γ δ(1 − 2) = Vβα;δγ (2 − 1), (39)

a condition that follows directly from exchanging integration
variables in Sint. These two symmetries lead to the require-
ments that the singlet and triplet interactions Vs(1 − 2) and
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V
(j )
t (1 − 2) are real and even:

Vs(1 − 2) = Vs(2 − 1), V
(j )
t (1 − 2) = V

(j )
t (2 − 1). (40)

3. Mean-field approximation

Performing a Hubbard-Stratonovich transformation
amounts to multiplying the partition function by a finite
constant ∫

D�∗D� exp

{
1

2

∫
12

[V −1(1 − 2)]αβ;γ δ

×�∗
αβ(1,2)�γδ(1,2)

}
, (41)

and subsequently shifting the integration field as �αβ(1,2) �→
�αβ(1,2) + Vαβ;γ δ(1 − 2)ργδ(1,2).

As a result, the four-fermionic term Sint is decoupled,

exp(−Sint) �→
∫

D�∗D� exp(−Saux − S�), (42)

with

Saux = −1

2

∫
12

[�αβ(1,2)ρ∗
αβ (1,2) + �∗

αβ(1,2)ραβ(1,2)],

(43)

S� = −1

2

∫
12

[V −1(1 − 2)]αβ;γ δ�
∗
αβ(1,2)�γδ(1,2). (44)

Restricting the Hubbard-Stratonovich transformation to neg-
ative definite V (1 − 2) means that the quadratic form in the
exponent of Eq. (41) is negative definite, ensuring that the
integration in Eq. (41) is convergent.

4. Saddle-point solution

Now we focus on finding the saddle-point solution. Instead
of integrating over �∗ and �, we take a trial path with respect
to which we will vary the action. Then, we can define the
mean-field free-energy functional:

FMF[�∗,�] = −T lnZMF

= −T ln
∫

Dψ∗Dψ exp(−SMF[ψ∗,ψ,�∗,�]),

(45)

where SMF = S0 + Saux + S� is the mean-field action in
which �∗(1,2) and �(1,2) are replaced by the trial path.
Further below we will treat the homogeneous case, for which
the saddle-point solution does not depend on the center-of-
mass coordinate (x1 + x2)/2; for this case one chooses the trial
path �∗(x), �(x) depending only on the relative coordinate
x = x1 − x2.

To find the saddle point, we should minimize FMF with
respect to the trial path. As a result, we obtain the self-
consistency equations for the mean-field pair potential � (also
called the gap function):

�αβ(1,2) = −Vαβ;γ δ(1 − 2)Fγδ(1,2), (46a)

�∗
αβ(1,2) = −V ∗

βα;δγ (2 − 1)F+
δγ (2,1), (46b)

where we have introduced the anomalous averages (anomalous
Green functions)

Fαβ(1,2) = 〈ψα(1)ψβ(2)〉MF, (47a)

F+
αβ(1,2) = 〈ψ∗

α (1)ψ∗
β (2)〉MF, (47b)

with the help of the definition of the mean-field averaging:

〈. . . 〉MF =
∫

Dψ∗Dψ (. . . )e−SMF[ψ∗,ψ,�∗,�]∫
Dψ∗Dψ e−SMF[ψ∗,ψ,�∗,�]

. (48)

The notations F and F+ for the two anomalous averages are
standard in the theory of superconductivity, and the + super-
script should not be confused with the Hermitian conjugation
†. Grassmann variables ensure fermionic antisymmetry of the
anomalous averages:

Fαβ(1,2) = −Fβα(2,1), F+
αβ(1,2) = −F+

βα(2,1). (49)

Together with the symmetry of the interaction, Eq. (39), this
property translates into fermionic antisymmetry of the pair
potential

�αβ(1,2) = −�βα(2,1). (50)

Introducing for notational simplicity

�+
αβ(1,2) ≡ �∗

βα(2,1), (51)

we can write the fermionic part of the action in the form

S0 + Saux = 1

2

∫
12

(ψ∗
α (1),ψα(1))M̂αβ(1,2)

(
ψβ(2)

ψ∗
β (2)

)
, (52)

M̂αβ(1,2) =
(

δ(1 − 2)δαβ(∂τ + ξ ) �αβ(1,2)

�+
αβ(1,2) δ(1 − 2)δαβ(∂τ − ξ )

)
.

(53)

The M̂ matrix is written explicitly in the particle-hole space,
and each its element is a matrix in the spin space.

In addition to the Gor’kov (anomalous) Green func-
tions (47), we also introduce the standard Green functions:

Gαβ(1,2) = −〈ψα(1)ψ∗
β (2)〉MF, (54)

G′
αβ(1,2) = −〈ψ∗

α (1)ψβ(2)〉MF = −Gβα(2,1). (55)

The quadratic form of the action (52) implies that the Green
functions are expressed in terms of the M̂ matrix [98]:

M̂αβ(1,2) =
(−Gαβ(1,2) Fαβ(1,2)

F+
αβ(1,2) −G′

αβ (1,2)

)−1

. (56)

C. Symmetry relations

In this section we discuss a relation between the two types
of the anomalous averages [Eqs. (47)] for simplicity focusing
mainly on the homogeneous case, when the Green functions
depend on the difference of the coordinates (1 − 2). In the
homogeneous case, Fourier-transformed functions A(1,2) (see
Appendix A) take the form A(k,k′) = A(k)δ([k − k′]/2π ).

Similarly to the procedure discussed in Ref. [97] (gener-
alizing it to the case of fermions with spin), we can obtain
a relation between F and F+ directly from definitions (25)
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and (47), applying complex conjugation to one of the anoma-
lous averages. This procedure is nontrivial because in the
path-integral formulation with averaging defined according
to Eqs. (26) and (48), we have SMF �= S∗

MF due to the ∂τ term
in the action SMF, and then 〈A〉∗MF is not necessarily equal to
〈A∗〉MF in the general case. In order to relate F ∗ to F+, we have
to take into account fermionic antiperiodicity ψα(τ + β) =
−ψα(τ ), change τ �→ −τ , and define new variables of the
path integration η depending on the symmetry of �: for
the case of �(τ ) = �(−τ ), we define ηα(r,τ ) = ψα(r,−τ ),
η∗

α(r,τ ) = ψ∗
α (r,−τ ), while for the case of �(τ ) = −�(−τ ),

we define ηα(r,τ ) = iψα(r,−τ ), η∗
α(r,τ ) = −iψ∗

α (r,−τ ) [97].
The relation then depends on the symmetry of �(τ ) or �(ω).
We find

F+
αβ(k,ω) = s�F ∗

βα(k,−ω), (57)

where s� = ±1 for the even-/odd-ω dependence of �. The
type of Meissner response is eventually determined by the
relative sign between F+

αβ(k) and F ∗
βα(k), so it depends on both

s� and the frequency symmetry of the anomalous averages.
In the model of Refs. [97,98], it was implicitly assumed that

the frequency symmetry of � directly determines (coincides
with) the frequency symmetry of F and F+. In this case,
Fαβ(k,−ω) = s�Fαβ(k,ω), and then Eq. (57) immediately
yields F+

αβ(k) = F ∗
βα(k) (both in the even-ω and odd-ω cases).

This relation corresponds to the conventional diamagnetic
Meissner response, therefore the authors of Refs. [97,98]
concluded that the odd-ω superconducting state can be realized
as a bulk state (if a proper interaction leading to odd-ω pair
potential really exists).

On the other hand, relation (57) is more general and remains
valid, for example, if the Zeeman term (exchange energy)
is added to the action determined by Eqs. (34) and (35).
This term breaks the symmetry in the spin space and leads
to appearance of superconducting components (anomalous
averages) with the symmetry differing from that of the
interaction V and the pair potential �. The simplest example is
the “superconducting ferromagnet” considered in Appendix B.
Since the (instantaneous) interaction in this model is of
conventional BCS type [99], the pair potential is defined at
coinciding imaginary times so that instead of �(τ ) we only
have nonzero value �(0). This situation is only compatible
with the symmetry class having even-τ dependence, for which
the case of s� = 1 is realized. However, the anomalous
averages are mixtures of even-ω singlet and odd-ω triplet
components [see Eqs. (B4)–(B6)]. So, while � is even-ω, F

and F+ do not have definite frequency symmetry.
Similar situation is realized in S/F [27–45] and

TS/DN [32,46,47,101] proximity structures. Generally, this
type of odd-ω state does not correspond to the symmetry of
the underlying effective electron-electron attraction, and is
induced due to symmetry breaking either in spin or coordinate
space. At the same time, � belongs to the even-ω class so that
relation (57) with s� = 1 is realized. This relation is valid
for all components of the anomalous averages. For odd-ω
components, it yields F+

αβ(k) = −F ∗
βα(k), which corresponds

to the paramagnetic Meissner response.
Note that relation (57) was obtained directly from the

definitions of the anomalous averages. One may suggest that
an alternative way to obtain a relation between F and F+

could rely on the self-consistency equations (46). In order to
avoid confusion, we note that in general the pair potential can
be directly calculated from F and the interaction V , however,
for the calculation of F in terms of � in general a set of
differential equations must be solved (the Gor’kov equations),
which depends on additional interactions and, importantly,
on boundary conditions. If one decomposes the functions F

and F+ into symmetry components F = F̄ + F̆ , where F̄ has
the same symmetry as �, while F̆ has differing symmetries
[see, e.g., Eq. (B4)], then �αβ = −Vαβ;γ δ(1 − 2)F̄γ δ(1,2) and
Vαβ;γ δ(1 − 2)F̆γ δ(1,2) = 0 hold. Then, only for the component
F̄ can one obtain a relation F̄+

αβ(1,2) = F̄ ∗
βα(2,1), finally

leading to F̄+
αβ(k) = F̄ ∗

βα(k). This relation applies, e.g., to
conventional bulk superconducting states, or the odd-ω–dia
state of Refs. [97,98]. However, it does not apply to the induced
odd-ω–para components of Refs. [27,33,34,37] since about the
relation between F̆ and F̆+ nothing can be inferred from the
self-consistency equations.

We call the superconducting correlations with the same
symmetry as the pair potential principal components, while
other components, induced (e.g., by additional interactions,
interfaces, other inhomogeneities, or external fields). In other
words, the principal components of F and F+ correspond to
the symmetry components of �, while induced components
of F and F+ do not contribute to the right-hand sides of
Eqs. (46) due to the structure of V . The odd-ω–dia state
discussed in Refs. [97,98] was implicitly assumed to be the
principal component.

D. Homogeneous case

In the homogeneous case, the self-consistency equa-
tion (46a) takes the form

�αβ(k) = −
∫

(dk′)Vαβ;γ δ(k − k′)Fγδ(k′). (58)

Relation (51) turns to (A9) and is simplified as

�+
αβ(k) = �∗

βα(k). (59)

In the general case, the pair potential can be decomposed
into the singlet component d0(k) and the triplet component
d(k) as

�αβ(k) = d0(k)(iσ2)αβ + d(k)(iσσ2)αβ, (60)

where σi with i = 1,2,3 denotes the Pauli matrices in the spin
space (below we will also use σ0 to denote the unity matrix).
Fermionic antisymmetry of � [Eq. (50)] implies

d0(k) = d0(−k) = s�d0(−k,ω), (61)

d(k) = −d(−k) = −s�d(−k,ω). (62)

When discussing principal odd-ω states with s� = −1 (recall
that superconducting components of � are principal by
definition), we assume that it can indeed be realized due
to some proper interaction. The possibility to find such an
interaction is not at all clear to date.
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From Eq. (56) we then find the Green functions [98]

Gαβ(k) = −G′
βα(−k) = G0(k)δαβ + G(k)σ αβ, (63)

Fαβ(k) = F+
βα(k)∗ = F0(k)(iσ2)αβ + F(k)(iσσ2)αβ, (64)

where the scalar and vector components are given by

G0(k) = − (iω + ξk)
[
ω2 + ξ 2

k + D0(k)
]

[ω2 + E2+(k)][ω2 + E2−(k)]
, (65)

G(k) = (iω + ξk)D(k)

[ω2 + E2+(k)][ω2 + E2−(k)]
, (66)

F0(k) =
(
ω2 + ξ 2

k

)
d0(k) + [

d2
0 (k) − d2(k)

]
d∗

0 (k)

[ω2 + E2+(k)][ω2 + E2−(k)]
, (67)

F(k) =
(
ω2 + ξ 2

k

)
d(k) − [

d2
0 (k) − d2(k)

]
d∗(k)

[ω2 + E2+(k)][ω2 + E2−(k)]
, (68)

with

E±(k) =
√

ξ 2
k + D0(k) ± D(k). (69)

The real functions D0, D, and D arise from the expression

�(k)�+(k) = D0(k)1̂ + D(k)σ , (70)

and have the following explicit forms:

D0(k) = d∗
0 (k)d0(k) + d∗(k)d(k),

D(k) = d0(k)d∗(k) + d∗
0 (k)d(k) + i[d(k) × d∗(k)], (71)

D(k) =
√

D2(k).

Note that relation F+
αβ(k) = F ∗

βα(k) [see Eq. (64)] is realized
here since we explicitly consider the superconducting state
originating from Eqs. (34) and (35), and having only principal
components of the anomalous averages.

E. Meissner kernel and superfluid density

Assuming the London gauge qA(q) = 0, we find the linear
response of the current to the external vector potential in the
form

ji(q) = −1

c
Kij (q)Aj (q), (72)

with the Meissner kernel [97,98]

Kij (q) = e2

m

∫
(dk)

kikj

m
[Gαβ(k)Gβα(k − q)

+Fαβ(k)F+
βα(k − q)] + ne2

m
δij , (73)

where q = (q,εl) with the bosonic Matsubara frequency εl =
2lπT , and n is the electronic density.

The tensor structure of the kernel depends on the orbital
symmetry of the superconducting state. We discuss here for
brevity isotropic (s-wave) superconducting states, when the
Green functions do not depend on the direction of the wave
vector. Integrating over d3k in Eq. (73), we choose q as
the polar axis z of the spherical coordinate system. Then,
due to integration in the azimuthal plane all nondiagonal
components ofKij (q) vanish. The tensor is thus diagonal, with

Kxx = Kyy due to symmetry, while Kzz is generally different.
At the same time, due to the London gauge, A(q) does not have
a component along q, so that the current (72) is insensitive to
the Kzz component, which allows us to choose it arbitrarily.
For simplicity, we take

Kij (q) = K(q)δij . (74)

The integral in Eq. (73) is divergent, and we employ the
usual trick regularizing the divergency by subtracting the
normal-metal expression [since K(q) = 0 in the normal state]:

K(q) = Kii(q)

3
= e2

3m

∫
(dk)

k2

m

[
Gαβ(k)Gβα(k − q)

+ Fαβ(k)F+
βα(k − q) − G

(0)
αβ(k)G(0)

βα(k − q)
]
, (75)

here the (0) superscript denotes the normal-metallic functions.
At q = 0, the kernel gives the superfluid density nS :

K(0) = e2nS

m
. (76)

Taking into account the explicit spin structure of the Green
functions (63) and (64), we find

nS

n
= T

∑
ω

∫ ∞

−∞
dξ

[
G2

0(ξ,ω) + G2(ξ,ω)

+F ∗
0 (ξ,ω)F0(ξ,ω) + F∗(ξ,ω)F(ξ,ω)

]
. (77)

Note the positive contribution from the anomalous com-
ponents of the Green function, which stems from relation
F+

αβ(k) = F ∗
βα(k) [see Eq. (64)], which is realized here since

we explicitly consider the superconducting state with only
principal components of the anomalous averages.

F. Principal s-wave singlet even-ω state

In the s-wave singlet (hence, even-ω) case, the triplet
component d(k) is zero, and we have

G0 = − iω + ξ

ω2 + ξ 2 + |d0|2 , F0 = d0

ω2 + ξ 2 + |d0|2 , (78)

where d0 = d0(|k|,ω) is an even function of ω. Even though d0

depends in general on |k|, we make the usual approximation
of weak dependence near the Fermi surface, so that during
integration over ξ in Eq. (77) we can fix |k| = kF . Then, we
reproduce the standard result

nS

n
= πT

∑
ω

|d0|2
(ω2 + |d0|2)3/2

, (79)

and the superfluid density is positive.

G. Principal s-wave triplet odd-ω–dia state

In the s-wave triplet (hence, odd-ω) case, d0 = 0 while
d = d(|k|,ω) is an odd function of ω, and we have

G0 = − (iω + ξ )(ω2 + ξ 2 + D0)

(ω2 + ξ 2 + D0 + D)(ω2 + ξ 2 + D0 − D)
, (80)

G = (iω + ξ )D
(ω2 + ξ 2 + D0 + D)(ω2 + ξ 2 + D0 − D)

, (81)
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F0 = 0, (82)

F = ω2 + ξ 2 + D0

(ω2 + ξ 2 + D0 + D)(ω2 + ξ 2 + D0 − D)
d, (83)

where

D0 = d∗d, D = i[d × d∗], D =
√

D2
0 − (dd)∗(dd).

(84)
We again approximate d(k) by its value at the Fermi surface.
Then, Eq. (77) yields

nS

n
= πT

∑
ω

1

8D

[
2D0ω

2 + 2D2
0 − 2D2 + D0D

(ω2 + D0 − D)3/2

− 2D0ω
2 + 2D2

0 − 2D2 − D0D

(ω2 + D0 + D)3/2

]
. (85)

Taking into account that D � D0 [see Eq. (84)], one can
check that the expression in the square brackets is always
non-negative, so nS > 0. In the case of unitary pairing, i.e.,
D = 0, the result has a form similar to the singlet case (79):

nS

n
= πT

∑
ω

d∗d
(ω2 + d∗d)3/2

. (86)

Thus, the superfluid density is positive also for the s-wave
triplet odd-ω case.

H. Induced s-wave triplet odd-ω–para state

The odd-ω state discussed above [Eqs. (80)–(86)] demon-
strates diamagnetic response to the external magnetic field
(nS > 0), and, according to Refs. [97,98], is therefore consis-
tent as a principal superconducting state (while the question
of finding a proper interaction is to date unclear). Below,
we discuss the induced s-wave triplet odd-ω–para state
(which is undoubtedly realized, e.g., in S/F [27,33,34,37] or
TS/DN [46,58,66,101] proximity structures) using the same
language.

Since the odd-ω–para state is induced, it does not have
a pair potential in the corresponding symmetry channel,
while the corresponding superconducting correlations are
described by anomalous averages. In order to use the language
established above, we can still use notations � and �+,
however, consider them now simply as auxiliary quantities
parametrizing the Green functions. The Green functions found
in microscopic models are, of course, model dependent, but
here we are interested in fundamental properties determined by
symmetries. For an example of a simple microscopic model,
see Appendix B.

As has been previously discussed [97,98], the odd-ω–dia
and –para states are characterized by different signs in the
relation between F and F+. Instead of Eq. (57) with s� = −1
(odd-ω–dia state), one has s� = 1 in this relation for the odd-
ω–para state (this state is realized in microscopic models with
even-ω pair potentials). In order to capture this property, we
parametrize the Green functions taking the same form (60) for
�αβ(k), and define �+ according to

�+
αβ(1,2) ≡ −�∗

βα(1,2), �+
αβ(k) = −�∗

βα(k); (87)

note that the signs are different from Eqs. (51) and (59) (which
were valid, in particular, for a principal odd-ω–dia state). The
Green functions can then be found from Eqs. (53) and (56).
The result can be obtained from Eqs. (80)–(83) by inverting
the signs in front of D0 and D in all expressions.

Instead of Eq. (85) we now have

nS

n
= πT

∑
ω

1

8D

[−2D0ω
2 + 2D2

0 − 2D2 − D0D

(ω2 − D0 − D)3/2

− −2D0ω
2 + 2D2

0 − 2D2 + D0D

(ω2 − D0 + D)3/2

]
. (88)

We assume that the ω dependence of D0 and D is such
that ω >

√
D0 − D, so that the combinations in the de-

nominators of Eq. (88) are positive (it can be verified that
this phenomenological assumption corresponds to existing
microscopic models for the odd-ω–para state).

Taking into account that D � D0 [see Eq. (84)], one obtains
that the expression in the square brackets in Eq. (88) is always
nonpositive, so nS < 0 (paramagnetic response). In the case
of unitary pairing, i.e., D = 0, we find

nS

n
= −πT

∑
ω

d∗d
(ω2 − d∗d)3/2

. (89)

III. COEXISTENCE OF ODD-ω–DIA
AND ODD-ω–PARA STATES

A. Superfluid density

Now, we consider a possibility of coexistence of odd-ω–
dia and –para states in some region of space. We assume
that the Green functions are linear combinations of the two
contributions:

Gαβ = (Gd )αβ + (Gp)αβ, (90)

Fαβ = (Fd )αβ + (Fp)αβ, (91)

F+
αβ = (F+

d )αβ + (F+
p )αβ, (92)

where the dia and para contributions, in accordance with our
previous consideration, have the following properties:

(F+
d )αβ(k) = (Fd )∗βα(k), (93)

(F+
p )αβ(k) = −(Fp)∗βα(k). (94)

Instead of Eq. (77), from Eqs. (75) and (76) we now find

nS

n
= T

∑
ω

∫ ∞

−∞
dξ [(G0d + G0p)2 + (Gd + Gp)2

+ (F0d + F0p)(F ∗
0d − F ∗

0p) + (Fd + Fp)(F∗
d − F∗

p)].

(95)

This result contains separate contributions from the dia and
para states, as well as the cross term

δnS

n
= T

∑
ω

∫ ∞

−∞
dξ [2G0dG0p + 2GdGp

+ (F ∗
0dF0p − F0dF

∗
0p) + (F∗

dFp − FdF∗
p)]. (96)
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We see that the contribution from the anomalous functions is
purely imaginary, so the cross term is complex valued.

Considering unitary pairing for simplicity, we have

G0d = − iω + ξ

ω2 + ξ 2 + D0d

, G0p = − iω + ξ

ω2 + ξ 2 − D0p

, (97)

Gd = Gp = 0, F0d = F0p = 0, (98)

Fd = dd

ω2 + ξ 2 + D0d

, Fp = dp

ω2 + ξ 2 − D0p

, (99)

and then

δnS

n
= πT

∑
ω

1

D0d + D0p

[
4ω2 + 2D0d + ddd∗

p − d∗
ddp√

ω2 + D0d

− 4ω2 − 2D0p + ddd∗
p − d∗

ddp√
ω2 − D0p

]
. (100)

This expression is complex due to the purely imaginary
combination (ddd∗

p − d∗
ddp).

A complex-valued cross term would mean a complex cur-
rent and is therefore unphysical. We conclude that assuming a
possible coexistence of odd-ω–dia and odd-ω–para states, we
arrive at an unphysical result.

B. Josephson junction

Now, we consider a Josephson junction in the tunneling
limit, assuming that the banks are represented by odd-ω
superconducting states. Our main interest is the combination
of dia and para states.

The tunneling contribution to the action has the standard
form

ST =
∫

dτdrLdrR

[
TrLrR

ψ∗
Lα(rL,τ )ψRα(rR,τ )

+ T ∗
rLrR

ψ∗
Rα(rR,τ )ψLα(rL,τ )

]
, (101)

with the tunneling matrix element TrLrR
.

In addition to the particle-hole (PH) and spin spaces, we
now also have the left-right (LR) space, so we deal with the
direct product of the three spaces: PH ⊗ spin ⊗ LR. In order
to write the quadratic (over fermions) part of the action in a
compact form, we define the vector field

�α = (ψLα,ψ∗
Lα,ψRα,ψ∗

Rα)T. (102)

Then, instead of Eq. (52) we can write the fermion part of the
action as

S0 + Saux + ST = 1

2

∫
12

�†
α(1)

(
M̂Lαβ T̂LRαβ

T̂RLαβ M̂Rαβ

)
�β(2),

(103)

T̂LRαβ =
(
Tr1r2 0

0 −T ∗
r1r2

)
PH

δαβδ(τ1 − τ2), (104)

T̂RLαβ =
(
T ∗

r2r1
0

0 −Tr2r1

)
PH

δαβδ(τ1 − τ2). (105)

After integrating over fermions we find

S0 + Saux + ST = −1

2
Tr ln

(
M̌L ŤLR

ŤRL M̌R

)
, (106)

where the matrix under the logarithm is written explicitly in
the LR space, while its elements are 4 × 4 matrices in the PH
⊗ spin space.

In the tunneling limit we expand the logarithm over the
nondiagonal (in the LR space) part. The tunneling contribution
arises in the second order:

ST = 1
2 Tr

(
M̌−1

L ŤLRM̌−1
R ŤRL

)
. (107)

We make the standard assumption that the tunneling matrix
element in the momentum representation Tkk′ does not depend
on the momenta (we denote this value by T = |T |eiα). Then,

ST = 1

2

∑
ω

∫
(d3kL)(d3kR) Tr[|T |2{ĜL(ω,kL)ĜR(ω,kR)

+ Ĝ′
L(ω,kL)Ĝ′

R(ω,kR)} − T ∗2F̂L(ω,kL)F̂+
R (ω,kR)

− T 2F̂+
L (ω,kL)F̂R(ω,kR)], (108)

where the Green functions are written as matrices in the spin
space.

For a junction between two conventional s-wave singlet
even-ω superconductors (with superconducting phases ϕL and
ϕR), we obtain

ST = −πG

2

∑
ω

ω2 + |d0L||d0R| cos ϕ√
ω2 + |d0L|2

√
ω2 + |d0R|2

, (109)

where ϕ = (ϕR − ϕL + 2α) and G is the interface conductance
in units of e2/�,

G = 4π |T |2νLνR, (110)

with νL(R) being the normal-metallic density of states in the
L(R) superconductor. The phase α of the tunneling matrix
element only shifts the superconducting phase difference, so
we can set α = 0 and then deal with the junction characterized
by zero phase difference in equilibrium. The anomalous part
of the tunneling action describes Josephson coupling and can
be written in terms of the critical current Ic:

SJ = − Ic

2eT
cos ϕ, (111)

leading to the standard Josephson relation I = Ic sin ϕ.
Considering a junction between two triplet unitary (for

simplicity) odd-ω superconductors [see Eqs. (97)–(99)], we
find

ST =
∑

ω

∫
(d3kL)(d3kR)[2|T |2G0L(ω,kL)G0R(ω,kR)

− sRT ∗2FL(ω,kL)F∗
R(ω,kR)

− sLT 2F∗
L(ω,kL)FR(ω,kR)], (112)

where sL and sR are the signs originating from Eqs. (93)
and (94) and defined as follows: sL(R) = ±1 if the correspond-
ing superconductor is odd-ω-dia/para. Consequently, if both
sides of the junction are of the same type, the Josephson
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(anomalous) part of the action is real, while if they are of
different types, the Josephson contribution is purely imaginary.

The d vector for the unitary pairing can be represented as
d̃eiϕ with a real vector d̃. Then, taking the Green functions
given by Eqs. (97)–(99), we obtain

ST = −πG

2

∑
ω

ω2 + d̃Ld̃R(sLeiϕ + sRe−iϕ)/2√
ω2 + sLd̃2

L

√
ω2 + sRd̃2

R

. (113)

The phase-dependent combination in the anomalous part takes
a form depending on the types of superconductors composing
the junction:

sLeiϕ + sRe−iϕ

2
=

⎧⎨
⎩

− cos ϕ, odd-ω–para/para,
cos ϕ, odd-ω–dia/dia,
−i sin ϕ, odd-ω–para/dia.

(114)

We can obtain equivalent results in the quasiclassical tech-
nique (ξ -integrated Green functions) with proper boundary
conditions [102,103].

Strikingly, the last case (odd-ω–para/odd-ω–dia junction)
yields purely imaginary Josephson coupling, leading to the
Josephson current proportional to i cos ϕ. This result is un-
physical and signifies problems regarding possible coexistence
of odd-frequency pairings with different types of Meissner
response.

Summarizing the results of the present section, we see that
while a conventional even-ω/even-ω junction demonstrates
the standard Josephson current proportional to sin ϕ, the
situation with odd-ω superconductors is more complicated.
In even-ω/odd-ω junctions, the first-order Josephson coupling
is absent due to different spin structure of the banks. Same-type
combinations odd-ω–dia/odd-ω–dia and odd-ω–para/odd-ω–
para lead to sinusoidal current-phase relation (the general sign
can be negative, which corresponds to the π junction). At the
same time, considering a different-type odd-ω–para/odd-ω–
dia junction, we arrive at the Josephson current proportional
to i cos ϕ, which is imaginary and thus unphysical. Similarly
to Sec. III A, we conclude that the assumption of coexistence
of an odd-ω–dia and an odd-ω–para state leads to unphysical
results.

One could try to avoid the contradiction, assuming that in
odd-ω–para/dia junctions only configurations with d̃L ⊥ d̃R

are realized, so that the imaginary contribution vanishes in
the first-order Josephson coupling in Eq. (113). However, an
argument of this sort (pair potentials adjusting to each other in a
junction) could work if other configurations were energetically
unfavorable (i.e., they would yield a free energy not in the
minimum). In our case, they yield a complex free energy,
hence are simply unphysical. Therefore, this argument can
hardly solve the issue.

Calculations for a specific microscopic model of the odd-
ω–para state in Appendix B confirm the results of the present
section.

IV. DISCUSSION

Recently, it was demonstrated that in uniform systems
with broken time-reversal symmetry [104] and in nonuniform
systems with preserved time-reversal symmetry [105], even-ω
and odd-ω superconducting components can mix with each

other. At the same time, it turns out that the states are divided
into two separate classes [104,105]: while the even-ω–dia state
can mix only with the odd-ω–para state, the even-ω–para state
can mix only with the odd-ω–dia state. The two classes seem
to avoid coexistence between themselves.

From this point of view, when studying odd-ω–para/odd-ω–
dia mixtures, we assume coexistence between representatives
of the two different classes. Our results demonstrate that this
leads to unphysical superconducting transport properties of the
systems.

How can this contradiction be resolved? Superconductivity
belonging to the first class is realized, e.g., in conventional s-
wave superconductors (even-ω–dia) and in proximity systems
with conventional superconductors (even-ω–dia and odd-ω–
para states), and these states are described by well-established
microscopic models. At the same time, the question of
possible realization of superconductivity belonging to the
second class is still open. The contradiction arising from the
assumption of coexistence between the two classes then raises
doubts about the actual possibility to realize the second-class
superconductivity (in particular, the odd-ω–dia state).

On the other hand, if the odd-ω–dia state cannot be
realized, then what is possibly wrong in the arguments of
Refs. [97,98], where existence of this state was proposed
from the general viewpoint of symmetry and stability (with-
out presenting explicit microscopic interaction leading to
this state)? The authors of Refs. [97,98] argue that the
odd-ω–dia state can be realized only in a system with
strongly retarded interaction, and cannot be described by a
mean-field Hamiltonian. Assuming existence of a mean-field
Hamiltonian immediately leads to Eq. (57) with s� = 1
that signifies the odd-ω–para state [97,98]. On the other
hand, an effective retarded low-energy theory in the path-
integral formulation [Eqs. (7)–(9) or (33)–(35)] emerges
after integrating out high-energy degrees of freedom in
a many-body Hamiltonian. Assuming some general initial
many-body Hamiltonian Ĥ (that, e.g., contains all electrons
and nuclei of the solid with their mutual interactions), one
can define the Heisenberg operators ψ̂α(r,τ ) = eĤτ ψ̂α(r)e−Ĥ τ

and ψ̂+
α (r,τ ) = eĤτ ψ̂†

α(r)e−Ĥ τ , and the anomalous Green
functions

Fαβ(r1,τ1; r2,τ2) = 〈Tτ ψ̂α(r1,τ1)ψ̂β(r2,τ2)〉, (115a)

F+
αβ(r1,τ1; r2,τ2) = 〈Tτ ψ̂

+
α (r1,τ1)ψ̂+

β (r2,τ2)〉, (115b)

where averaging is over the exact many-body state. We are
interested in the general relation between F and F+, which can
be obtained directly from definitions (115), following the same
logic as discussed for the mean-field case in Refs. [97,98].
Applying this to the homogeneous case, we immediately find
the relation F+

αβ(k,ω) = F ∗
βα(k, − ω) between the many-body

anomalous averages, which has exactly the same form as
Eq. (57) with s� = 1. This seems to be an unavoidable
fundamental relation. Therefore, in order to obtain the odd-
ω–dia state described by relation (57) with s� = −1, one has
to assume the impossibility of a Hamiltonian description of
the system at any level (both mean field and many body). This
seems unnatural to us and increases our skepticism about a
possible realization of the odd-ω–dia state.
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Having established a fundamental incompatibility between
a Hamiltonian description of the system at any level and the
possibility of the odd-ω–dia state, we still have to explain
how relation (57) with s� = −1 can be avoided if one starts
from the path-integral formulation of Eqs. (33)–(35). We
suppose that the key issue here is the spontaneous symmetry
breaking. Taking a trial path for the pair potential instead
of integration over the �∗ and � fields [introduced for
the Hubbard-Stratonovich transformation in Eq. (41)], we
arrive at the mean-field definitions of the anomalous averages,
Eqs. (47). This step in the derivation assumes that while the
free energy has a superconducting manifold of equivalent
minima (with arbitrary superconducting phase), due to an
infinitesimally small perturbation (which is not even explicitly
considered) the system chooses some definite phase (thus
breaking the gauge symmetry). This choice of a single point
from the manifold corresponds to taking the mean-field value
of � (the trial path) instead of integrating over this field.

At the same time, the symmetry-breaking (phase-fixing)
perturbation is an essential issue. In the case of con-
ventional superconductivity, we can write it explicitly in
the second-quantized representation as

∫
dr[δ0ψ̂

†
↑(r)ψ̂†

↓(r) +
δ∗

0ψ̂↓(r)ψ̂↑(r)], with |δ0| → 0. This Hermitian term breaks
the global gauge symmetry, setting the preferential value
of the phase to be equal to the phase of δ0. On the other
hand, for the odd-ω–dia solution of Refs. [97,98] [Eq. (57)
with s� = −1], our hypothesis is that there is no sponta-
neous physical perturbation (fluctuation) that can lead to
the spontaneous gauge-symmetry breaking, thus fixing the
phase of this state (this point of view correlates with the
absence of a Hamiltonian description of the odd-ω–dia state).
Then, one has to retain integration over the superconducting
phase, and the anomalous averages (47) vanish, so that
Eq. (57) with s� = −1 is trivially satisfied. In other words,
the corresponding odd-ω–dia minimum manifold can exist,
but the symmetry cannot be spontaneously broken since there
exists no physical fluctuation that could fix the phase. Note
that in a related problem of an odd-ω–dia state in Ref. [15],
the authors admit that the properties of the anomalous averages
“depend on the properties of the unphysical, time-dependent,
symmetry-breaking field.”

V. CONCLUSIONS

We have considered physical consequences of the odd-ω–
dia superconducting state proposed recently in Refs. [97,98].
This is the odd-frequency state with diamagnetic Meissner
response, which has no stability issues in the bulk and could
therefore be realized as a principal superconducting state
(at the same time, a convincing demonstration of such a
state in a microscopic model is still lacking). Assuming the
possibility to realize this state (due to a proper retarded
interaction), we have studied its coexistence with the odd-ω–
para superconducting state, which is known to be generated as
an induced superconducting component in, e.g., S/F or TS/DN
proximity structures. Calculating the superfluid density of the
mixed odd-ω–para/dia state and the Josephson current in the
odd-ω–para/dia junction, we find that the currents in both cases
have imaginary contributions and are therefore unphysical.

Taking into account rigorous microscopic derivations of the
odd-ω–para state in a number of models, we thus encounter
the question of an actual realizability of the odd-ω–dia state.
Further analysis shows that a realization of this state implies
the absence of a Hamiltonian description for the system at any
(mean-field or many-body) level. Technically, the essential
difference between the two states is described by different
signs in the relation between the two anomalous averages, see
Eq. (57) that has s� = 1 for the odd-ω–para and s� = −1 for
the odd-ω–dia state. We conclude that in the latter case there is
no physical perturbation leading to the global phase-symmetry
breaking, and in the absence of a physical perturbation in
a mean-field Lagrangian formalism, Eq. (57) with s� = −1
is trivially satisfied because the anomalous averages vanish
due to integration over the superconducting phase. This also
seems to be the only way to avoid unphysical imaginary current
components in such a hypothetical odd-ω–dia superconductor
when brought in contact with the well-established induced
odd-ω–para state in, e.g., S/F or TS/DN hybrid structures.
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APPENDIX A: FOURIER TRANSFORMATION

The Fourier transformation is introduced according to the
following rules:

A(1,2) =
∫

(dk)
∫

(dk′)A(k,k′)ei(kx1−k′x2), (A1)

A(k,k′) =
∫

1

∫
2
A(1,2)e−i(kx1−k′x2), (A2)

where

k = (k,ω), kx ≡ kr − ωτ, (A3)∫
(dk)(. . .) ≡ T

∑
ω

∫
dk

(2π )3
(. . .). (A4)

The fermionic Matsubara frequencies are ω = πT (2n + 1).
According to these definitions,∫

1
e−i(k−k′)x1 = δnn′

T
(2π )3δ(k − k′) ≡ δ

(
k − k′

2π

)
. (A5)
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So, for the Fourier transforms of the Green functions and
the pair potentials we have

Gαβ(k,k′) = −G′
βα(−k′,−k)

= −〈ψα(k)ψ∗
β (k′)〉MF, (A6)

Fαβ(k,k′) = 〈ψα(k)ψβ(−k′)〉MF, (A7)

F+
αβ(k,k′) = 〈ψ∗

α (−k)ψ∗
β (k′)〉MF, (A8)

�+
αβ(k,k′) = �∗

βα(k′,k). (A9)

APPENDIX B: “SUPERCONDUCTING
FERROMAGNET” AS A MICROSCOPIC
MODEL OF THE ODD-ω–PARA STATE

In Sec. III B, we discuss Josephson junctions between
odd-ω–para and odd-ω–dia states introducing the former in a
phenomenological manner with the help of auxiliary quantities
� and �+, in order to use the same language as for the

odd-ω–dia case. We require Eqs. (87) to be fulfilled, so that
the resulting state reproduces the symmetry and properties of
the odd-ω–para state known from microscopic models. At the
same time, since clear microscopic models of the odd-ω–para
state are available, in this Appendix we check our general
conclusions taking a specific microscopic model.

The simplest microscopic example of the odd-ω–para state
is realized in a “superconducting ferromagnet,” which is the
conventional singlet superconductor (pair potential �) with
homogeneous exchange field h. The exchange field leads
to appearance of the (induced) s-wave triplet odd-ω–para
component, in addition to the conventional s-wave singlet
even-ω–dia one.

Instead of Eq. (34), we now have

S0 =
∫

[ψ∗
α (∂τ + ξ )ψα + h(ψ∗

↑ψ↑ − ψ∗
↓ψ↓)], (B1)

and instead of Eq. (53), we obtain

M̂αβ(1,2) =
(

δ(1 − 2)[δαβ(∂τ + ξ ) + h(σ3)αβ] i�(σ2)αβ

−i�∗(σ2)αβ δ(1 − 2)[δαβ(∂τ − ξ ) − h(σ3)αβ]

)
. (B2)

The Green functions (matrices in the spin space) are then given by

Ĝ(k) = − [(iω + ξ )(ω2 + ξ 2 + |�|2 − h2) + 2iωh2]σ̂0 − h[ω2 + ξ 2 + |�|2 − h2 + 2iω(iω + ξ )]σ̂3

(ω2 + ξ 2 + |�|2 − h2)2 + (2ωh)2
, (B3)

F̂ (k) = F̂s(k) + F̂t (k), F̂+(k) = F̂ †
s (k) − F̂

†
t (k), (B4)

where the singlet and triplet parts of the anomalous Green
function have the following form:

F̂s(k) = (ω2 + ξ 2 + |�|2 − h2)�

(ω2 + ξ 2 + |�|2 − h2)2 + (2ωh)2
(iσ̂2), (B5)

F̂t (k) = −2iωh�

(ω2 + ξ 2 + |�|2 − h2)2 + (2ωh)2
(iσ̂3σ̂2). (B6)

Note that F̂s(k) and F̂t (k) have even-ω/odd-ω symmetry,
respectively, and Eqs. (B4) are consistent with the general
relation (57) at s� = 1 (since the pair potential belongs to the
even-ω symmetry class).

Now, we consider a Josephson junction taking the above
superconducting ferromagnet as the left bank of our junction,
with � = |�|eiϕL . At the same time, we assume that the right
bank of the junction is the principal s-wave triplet odd-ω–dia
state, determined by Eqs. (80)–(83). For simplicity, we assume
the unitary case with d = d̃eiϕR and a real vector d̃, which is
an odd function of ω. Then,

G0 = − iω + ξ

ω2 + ξ 2 + d̃2
, F = d

ω2 + ξ 2 + d̃2
, (B7)

F̂ = F(iσ̂ σ̂2), F̂+ = F∗(iσ̂ σ̂2)†. (B8)

Although the anomalous Green functions of the left bank,
Eqs. (B4), are mixtures of the even-ω and odd-ω components,

the lowest-order Josephson coupling in the junction is provided
only by the triplet component from the left bank, so that the
Josephson coupling is effectively between the odd-ω–para and
–dia states.

The Josephson action [the anomalous part of the tunneling
action (108)] takes the form

SJ = −i
πG

2
cos ϕ

∑
ω

Im

( |�|√
(ω + ih)2 + |�|2

)

× d̃3(ω)√
ω2 + d̃2

3 (ω)
. (B9)

Both the factors under the sum in the right-hand side are odd
functions of ω, so that their product is even and the sum is
nonzero. Note that the phase dependence in the case of this
odd-ω–para/dia junctions is determined by cos ϕ [in contrast to
the last line in Eq. (114)] because the phase of the odd-ω–para
component in the superconducting ferromagnet is shifted by
π/2 with respect to the phase of � [note additional i in the
numerator in Eq. (B6)].

At the same time, the main qualitative result of Eq. (B9) is
that the general consideration of Sec. III B is confirmed and
the Josephson action for the odd-ω–para/dia junction turns out
to be purely imaginary and thus unphysical.
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