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Pauli paramagnetic effects on mixed-state properties in a strongly anisotropic
superconductor: Application to Sr2RuO4
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We study theoretically the mixed-state properties of a strong uniaxially anisotropic type-II superconductor
with the Pauli paramagnetic effect, focusing on their behaviors when the magnetic field orientation is tilted
from the conduction layer ab plane. On the basis of Eilenberger theory, we quantitatively estimate significant
contributions of the Pauli paramagnetic effects on a variety of physical observables, including transverse and
longitudinal components of the flux-line lattice form factors, magnetization curves, Sommerfeld coefficient,
field distributions, and magnetic torques. We apply these studies to Sr2RuO4 and quantitatively explain several
seemingly curious behaviors, including the Hc2 suppression for the ab-plane direction, the larger anisotropy ratio
and intensity found by the spin-flip small-angle neutron scattering, and the first-order transition observed recently
in magnetocaloric, specific-heat, and magnetization measurements in a coherent and consistent manner. Those
lead us to conclude that Sr2RuO4 is either a spin-singlet or a spin-triplet pairing with the d-vector components in
the ab plane.
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I. INTRODUCTION

Sr2RuO4 is well known to be a prime candidate for a
chiral p-wave superconductor [1–3]. The crystal structure
is the same as in La2CuO4: a mother compound of high-Tc

superconductors. The normal-state properties of Sr2RuO4 are
characterized by quite a standard Landau Fermi-liquid picture
with a moderate mass renormalization [1], in stark contrast to
the high-Tc cuprates which are strange metals in every respect.
Yet both have a strong two-dimensional metallic conduction
associated with the anisotropic layered structure. In this sense,
Sr2RuO4 has a firm foundation, out of which the supercon-
ducting state develops at Tc = 1.5 K. Thus we can safely
employ a reliable theoretical framework such as Eilenberger
theory that assumes a normal Fermi liquid for describing the
superconducting properties under an applied field.

Recently, the research front of Sr2RuO4 has been greatly
advanced: (1) The small-angle neutron-scattering (SANS)
experiment [4] shows that the anisotropy ratio of the vortex
lattice amounts to �VL ∼ 60 for the field orientation B̄ parallel
to the ab plane. This is at odds with the Hc2 anisotropy
ratio �Hc2 ≡ Hc2,ab/Hc2,c = 20, where Hc2,ab (Hc2,c) is the
upper critical field Hc2 for B̄ ‖ ab (B̄ ‖ c), because in usual
single-band superconductors �VL ∼ �Hc2 is expected [5]. (2)
The magnetocaloric effect [6], the specific-heat [7], and mag-
netization experiments [8] detect the first-order transition at
Hc2,ab in low temperatures, which is similar to superconductors
with a strong Pauli paramagnetic effect (PPE), such as in
CeCoIn5 [9–12].

We note that the three experiments [6–8] mentioned above
are mutually quite consistent with each other, since a certain
amount of quasiparticles in the superconducting state is
responsible for exhibiting the first-order transition’s jumps
at Hc2,ab in those thermodynamic quantities. There the same
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quasiparticles manifest themselves in each observable. This
means that viewing from the normal side above Hc2,ab, the
spin susceptibility χspin must decrease in the superconducting
state. However, this expectation is in conflict with the existing
Knight-shift experiments by NMR [13–15] and polarized
neutron-scattering measurements [16]. There are no triplet-
pairing theories proposed so far which are able to predict the
first-order Hc2,ab transition, including works by one of the
present authors [17–38].

There are some other experimental reports suggesting the
spin-triplet chiral p-wave superconductivity in Sr2RuO4. For
example, the observation of half-quantized fluxoids [39],
which requires a multiple-order parameter for the pairing
function with both spin and orbital degrees of freedom active,
implies the possibility of the spin-triplet pairing. The chiral
domain formations and the time-reversal symmetry breaking
are suggested by various experimental methods [40–42].
However, a scanning Hall probe experiment [43] fails to detect
the edge current expected for the chiral superconductors. In the
experiments, the estimated domain sizes for each sample used
in those experiments are strangely widely different, from 1 μm
to 1 mm (see Ref. [44] for detailed critical examinations on
this point). Therefore, in the present status of understanding
the mechanism of superconductivity in Sr2RuO4, the above-
mentioned experimental results are mutually contradicted.

The purpose of this paper is to find a clue to resolve the
contradictions, by describing the mixed-state properties for a
uniaxial strong anisotropic type-II superconductor with the
PPE in the clean limit and a single band on the basis of
quasiclassical Eilenberger theory. Then we critically examine
several experiments done recently on Sr2RuO4 and interpret
the implications of those experiments from the viewpoint of
the PPE. It is shown that the results are maximally consistent
with the experimental data, and stimulate future theoretical
and experimental studies to further understand the mechanism
of the exotic superconductivity.

The Eilenberger theory is applicable for superconductors
with kFξ � 1. For Sr2RuO4, this condition is well satisfied
because the coherence length ξ ∼ 30 nm and the inverse of
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the Fermi wave number k−1
F ∼ a few nm. In this paper, we

employ spin-singlet isotropic s-wave pairing for simplicity to
grasp the essential features of the PPE. Among the orbital and
spin parts of the pairing symmetry, an essential assumption in
the present theory is that the PPE works in the spin part of the
pairing. In addition to the case of the spin-singlet pairing, we
can expect similar behavior of the PPE also in the spin-triplet
pairing case if the d vector has components in the ab plane.
The assumption for the orbital part as an isotropic s wave is
not the intrinsic condition. Both the s-wave and the d-wave
pairing show similar high-field behaviors of the PPE [45]. Also
in the chiral p-wave pairing, we see the similar transverse
components of the internal fields [46]. Thus, the replacement
of the orbital part from the s-wave pairing to the chiral p-wave
pairing is possible, and we expect similar behaviors there, if
the PPE is active in the spin part of the pairing.

The arrangement of this paper is as follows. In Sec. II,
we give the formulation based on Eilenberger theory with
the PPE. The spatial structures of vortices, including internal
magnetic field B(r) and the paramagnetic moment Mpara(r),
are described in Sec. III. The form factors responsible for
SANS experiments are evaluated both for the longitudinal and
transverse components relative to the applied field orientation
in Sec. IV. In Sec. V, we calculate the magnetization curves
and Sommerfeld coefficient γ (B̄) as a function of the magnetic
fields to examine the first-order transition’s jumps of these
quantities at Hc2. The distributions of P (B) of B(r) and P (M)
of Mpara(r) of the vortex lattice state, which are responsible for
the resonance line shape of the NMR spectra, are calculated
in Sec. VI. The magnetic torque curves are also evaluated
in Sec. VII. We discuss the intrinsic anisotropy of �VL and
�Hc2 in Sec. VIII. The final section (Sec. IX) is devoted to the
conclusion and future problems. The present paper belongs
to our series of papers on the magnetic field orientation
dependence of uniaxial superconductors: the chiral p-wave
case [46], and s-wave and d-wave cases without the PPE [47].

II. QUASICLASSICAL THEORY INCLUDING PAULI
PARAMAGNETIC EFFECT

First, we explain the coordinate and the Fermi surface used
in our calculations. We consider the case when the magnetic
field orientation is tilted by θ from the c axis towards the ab

plane. We write the crystal coordinate as (a,b,c). To describe
the vortex structure, we use the coordinate r = (x,y,z), where
the z axis is set to the vortex line direction. Thus, the relation
to the vortex coordinate and the crystal coordinate is given by
(x,y,z) = (a,b cos θ + c sin θ,c cos θ − b sin θ ).

As a model of the Fermi surface, we use a quasi-two-
dimensional Fermi surface with rippled cylinder shape. In
the crystal coordinate, the Fermi velocity is assumed to be
v = (va,vb,vc) ∝ (cos φ, sin φ,ṽz sin pc) at p = (pa,pb,pc) ∝
(pF cos φ,pF sin φ,pc) on the Fermi surface [48]. From the
Fermi surface, the anisotropy ratio of the coherence lengths is
estimated as

� ≡ ξc/ξb ∼ 〈
v2

c

〉1/2
p

/〈
v2

b

〉1/2
p ∼ 1/ṽz, (1)

where 〈·〉p indicates an average over the Fermi surface.
The spatial structure of quasiparticles in the superconduct-

ing state is studied by the Eilenberger theory. Quasiclassical

Green’s functions f (ωn,p,r), f †(ωn,p,r), and g(ωn,p,r) are
calculated in the vortex lattice states by solving the Riccati
equation, which is derived from the Eilenberger equation,

{ωn + iμB(r) + v̂ · [∇ + iA(r)]} f = 	(r)g,
(2)

{ωn + iμB(r) − v̂ · [∇ − iA(r)]} f † = 	∗(r)g,

in the clean limit with

v̂ · ∇g = 	∗(r)f − 	(r)f †, (3)

g = (1 − ff †)1/2, Reg > 0, and Matsubara frequency ωn

[45,48–50]. The paramagnetic parameter μ = μBB0/πkBTc

is proportional to the Maki parameter. We calculate the spatial
structure of g in a fully self-consistent way without using
Pesch’s approximation [51]. We consider the case of isotropic
s-wave pairing because the paramagnetic effect does not
seriously depend on the pairing function of the orbital part [45].
Normalized Fermi velocity is v̂ = v/vF with vF = 〈v2〉1/2

p .
We have scaled length, temperature, magnetic field, and
energies in units of ξ0, Tc, B0, and πkBTc, respectively, where
ξ0 = �vF/2πkBTc and B0 = φ0/2πξ 2

0 . φ0 is the flux quantum.
The vector potential A = 1

2 B̄ × r + a(r) is related to the
internal field as B(r) = ∇ × A = [Bx(r),By(r),Bz(r)] with
B̄ = (0,0,B̄), Bz(r) = B̄ + bz(r), and (Bx,By,bz) = ∇ × a.
The spatial averages of Bx , By , and bz are zero. B̄ is the
averaged flux density of the internal field.

The pairing potential 	(r) in the isotropic s-wave pairing
is calculated by the gap equation

	(r) = g0N0T
∑

0�ωn�ωcut

〈f + f †∗〉p, (4)

where g0 is the pairing interaction in the low-energy band
|ωn| � ωc, and N0 is the density of states (DOS) at the
Fermi energy in the normal state. g0 is defined by the cutoff
energy ωc as (g0N0)−1 = ln T + 2 T

∑ωc
ωn>0 ω−1

n . We carry
out calculations using the cutoff ωc = 20kBTc. The current
equation to obtain a is given by

∇ × ∇ × a(r) = js(r) + ∇ × Mpara(r), (5)

with the screening current

js(r) = −2T

κ2

∑
0�ωn

〈v̂Im{g}〉p , (6)

and the paramagnetic moment

Mpara(r) = M0

⎡
⎣B(r)

B̄
− 2T

μB̄

∑
0�ωn

〈Im {g}〉p

⎤
⎦ . (7)

Here, the normal-state paramagnetic moment M0 = (μ/κ)2B̄,
and κ = B0/πkBTc

√
8πN0. The Ginzburg-Landau (GL) pa-

rameter κ is the ratio of the penetration depth to coherence
length for B̄ ‖ c.

We set unit vectors of the vortex lattice as

u1 = c(α/2,−
√

3/2), u2 = c(α/2,
√

3/2), (8)

with c2 = 2φ0/(
√

3αB̄) and α = 3�(θ ) [48], as
shown in Fig. 1(a). We use the anisotropic ratio
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FIG. 1. (Color online) (a) Unit vectors u1 and u2 of the vortex
lattice. Circles indicate vortex centers. The gray region is a unit cell
of our calculations. (b) |	(r)|. (c) Mpara(r). (d) Bz(r) − B̄. (e) Bx(r).
(f) By(r). (b)–(f) The density plot within a unit cell, when θ = 89◦ at
B̄ = 1.5 and μ = 0.04.

�(θ ) ≡ ξy/ξx ∼ 〈v2
y〉1/2

p /〈v2
x〉1/2

p , that is,

�(θ ) = 1√
cos2 θ + �−2 sin2 θ

, (9)

of the effective mass model. Supposing the case of
Sr2RuO4 [1], we set κ = 2.7 and the anisotropy ratio �(θ =
90◦) = � = 60, which is suggested by the SANS experi-
ment [4]. By the iteration of calculations by Eqs. (2)–(7) at
T = 0.1Tc, we obtain self-consistent solutions of 	(r), A(r),
and quasiclassical Green’s functions.

From the self-consistent solutions, we calculate the follow-
ing physical quantities. In Eilenberger theory, free energy is
given by

F = κ2〈|B(r) − B̄|2〉r − μ2〈|B(r)|2〉r

+ T
∑

|ωn|<ωcut

〈
Re

〈
g − 1

g + 1
(	f † + 	∗f )

〉
k

〉
r

, (10)

when Eqs. (2) and (4) are satisfied [48]. 〈·〉r indicates the spatial
average. The magnetization is calculated as Mtotal = B̄ − H ,

where the external field H is given by

H =
(

1 − μ2

κ2

)
{B̄ + 〈[B(r) − B̄]2〉r/B̄}

+ T

κ2B̄

〈 ∑
0<ωn

〈
μBz(r)Im {g}

+1

2
Re

{
(f †	 + f 	∗)g

g + 1

}
+ ωnRe{g − 1}

〉
k

〉
r
, (11)

from Doria-Gubernatis-Rainer scaling [52,53]. The paramag-
netic and diamagnetic components of the magnetization are,
respectively, Mpara = 〈Mpara(r)〉r and Mdia = Mtotal − Mpara.
As the resonance line shape of the NMR spectrum for the
Knight shift, we calculate the distribution function P (M) =
〈δ[M − Mpara(r)]〉r from the spatial structure of Mpara(r). On
the other hand, in the case of negligible hyperfine coupling,
the NMR signal shows the “Redfield pattern” given by the
distribution function P (B) = 〈δ[B − B(r)]〉r calculated from
the internal field B(r).

When we calculate the electronic states, we solve Eq. (2)
with iωn → E + iη. The local density of states (LDOS) is
given by N (r,E) = N↑(r,E) + N↓(r,E), where

Nσ (r,E) = N0〈Re{g(ωn + iσμB,k,r)|iωn→E+iη}〉k, (12)

with σ = 1 (−1) for the up (down) spin component. We typi-
cally use η = 0.01. The DOS is obtained by the spatial average
of the LDOS as N (E) = N↑(E) + N↓(E) = 〈N (r,E)〉r. We
consider the B̄ dependence of the Sommerfeld coefficient
of the specific heat given by the zero-energy DOS, γ (B̄) =
N (E = 0)/N0, and the paramagnetic susceptibility χspin(B̄) =
〈Mpara(r)〉r/M0. These are normalized by the normal-state
values.

III. SPATIAL STRUCTURES OF VORTICES

To discuss the B̄ dependence of the internal field distribu-
tion B(r) = ∇ × A, we consider flux-line lattice (FLL) form
factors F(qh,k) = (Fx(h,k),Fy(h,k),Fz(h,k)), which are obtained
by Fourier transformation of the internal field distribution
as B(r) = ∑

h,k F(qh,k) exp(iqh,k · r) with wave vector qh,k =
hq1 + kq2. h and k are integers. Unit vectors in reciprocal
space are given by q1 = (2π/c)(1/α, − 1/

√
3) and q2 =

(2π/c)(1/α,1/
√

3). The z component |Fz(h,k)|2 from Bz(r)
gives the intensity of conventional non-spin-flip SANS. The
transverse component, |Ftr(h,k)|2 = |Fx(h,k)|2 + |Fy(h,k)|2, is
accessible by spin-flip SANS experiments [4,54].

First, we study the vortex states when the magnetic field
orientation is tilted by 1◦ from the ab plane (θ = 89◦). In
Fig. 1, we show the calculated spatial structures within a
unit cell of vortex lattice at B̄ = 1.5 and μ = 0.04. The pair
potential 	(r) has phase winding 2π at the vortex center,
and the amplitude |	(r)| in Fig. 1(b) is suppressed at the
vortex core. The paramagnetic moment Mpara(r) in Fig. 1(c) is
suppressed outside of the vortex core. Mpara(r) appears within
the narrow region around the vortex core and has a large peak
at the vortex center. As shown in Fig. 1(d), the z component
of the internal field, Bz(r), has a peak at the vortex center,
and decreases as a function of the distance from the center.
The peak height of Bz(r) is enhanced by the contribution
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FIG. 2. (Color online) (a) B̄ dependence of the pair potential
when θ = 89◦ (solid lines) and θ = 90◦ (dashed lines). Spatial
averaged values of |	(r)| are presented for μ = 0 and μ = 0.04.
The latter (μ = 0.04) exhibits first-order transitions for both 89◦

and 90◦.

of Mpara(r) at the vortex core [45]. The vortex state has a
conventional spatial structure in the vortex lattice also when B̄
is tilted from the ab plane, if length is scaled by the effective
coherence length in each direction. When B̄ is tilted from the
ab plane, the transverse components Bx(r) and By(r) appear in
the internal field distribution, as shown in Figs. 1(e) and 1(f).
The magnitude of By(r) is larger than that of Bx(r). The stream
lines of By(r) in Fig. 1(f) flow toward the −y direction along
the vertical-stripe region connecting the vortex cores. Between
the neighbor stripe regions, the stream line flows towards the
+y direction. The weak contribution of Bx(r) in Fig. 1(e)
indicates that the stream lines have weak counterclockwise
(clockwise) winding at the positive-x (negative-x) region near
the vortex core. These stream-line structures of the transverse
field are qualitatively the same as those obtained by London
theory [55], and as those in a chiral p-wave pairing [46].

When the paramagnetic effect is not considered (μ = 0), the
upper critical field is Hc2,c = 0.56 for B̄ ‖ c and Hc2,ab = 43
for B̄ ‖ ab, reflecting large anisotropy �. Figure 2 presents
the amplitude of the pair potential as a function of B̄. In the
case μ = 0.04, the paramagnetic pair breaking is negligible
for B̄ ‖ c so that Hc2,c is unchanged. However, for B̄ ‖ ab, the
paramagnetic pair breaking becomes eminent at high fields
and limits the upper critical field to Hc2,ab = 9.1. The phase
transition at Hc2,ab becomes first order as coinciding with the
observation in Sr2RuO4 at low temperatures [6–8].

For the field orientation tilted by 1◦ away from the
ab plane, namely, θ = 89◦, Hc2 is suppressed from Hc2,ab

at θ = 90◦, as seen in Fig. 2. It is noted that those Hc2

suppressions are quite different: While in the μ = 0 case,
Hc2(θ = 89◦)/Hc2(θ = 90◦) = 32/43 ∼ 0.74, approximately
satisfying the expectation based on our effective mass model
as �(θ = 89◦)/�(θ = 90◦) ∼ 0.69, the Hc2 suppression in the
μ = 0.04 case is very small and remains first order. This
is because Hc2 is determined by the PPE and controlled
by the Pauli paramagnetic critical field Hp(θ ), which has a
weak θ dependence [45]. This point will be discussed later in
connection with the nature of the phase transitions.

IV. FLUX-LINE LATTICE FORM FACTORS

A. Longitudinal component

We discuss the B̄ dependence of the FLL form factor
for θ = 90◦ and 89◦. Figures 3(a) and 3(b) present the B̄

FIG. 3. (Color online) B̄ dependence of the FLL form factors.
(a) |Fz(1,0)|2 and |Fz(1,1)|2 for μ = 0, when θ = 89◦ (solid lines) and
90◦ (dashed lines). (b) The same as (a), but for μ = 0.04. (c) |Fx(1,0)|2
for μ = 0 and 0.04 when θ = 89◦. (d) |Fy(1,1)|2 for μ = 0 and 0.04
when θ = 89◦.

dependence of |Fz(1,1)|2 and |Fz(1,0)|2. These correspond to the
intensity of the non-spin-flip SANS experiments. When μ = 0
in Fig. 3(a), |Fz(1,1)|2 and |Fz(1,0)|2 show exponential decay
as a function of B̄. However, when μ = 0.04 in Fig. 3(b),
both |Fz(1,0)|2 and |Fz(1,1)|2 increase towards a maximum
at B̄ ∼ 7 for θ = 90◦. This increasing behavior is due to
the enhancement of the paramagnetic moment at the vortex,
which enhances the peak of Bz(r). This mechanism [45] was
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discussed to explain the B̄ dependence of the SANS intensity
in CeCoIn5 [12,56] and TmNi2B2C [57]. Compared to the
case of θ = 90◦, the intensities of |Fz(h,k)|2 are more enhanced
for θ = 89◦ at low fields. This is because the intensity
|Fz(h,k)|2 is roughly related to the effective GL parameter κθ as
|Fz(h,k)|2 ∝ κ−2

θ . By the anisotropy of v̂ in Eq. (6), κθ ∼ κ�(θ )
for the field orientation θ . Thus, κ89◦ < κ90◦ . At high fields, the
peak position of |Fz(h,k)|2 is shifted to B̄ ∼ 6 when θ = 89◦,
reflecting the θ dependence of anisotropic Hc2.

B. Transverse components

The B̄ dependence of the transverse component is shown in
Figs. 3(c) and 3(d). As for the (1,0) spot, |Ftr(1,0)|2 ∼ |Fx(1,0)|2
since |Fy(1,0)|2 < 10−11. |Fx(1,0)|2 decreases monotonically as
a function of B̄. As for the (1,1) spot, |Ftr(1,1)|2 ∼ |Fy(1,1)|2
since Fx(1,1) ∼ 0. |Fy(1,1)|2 decreases as a function of B̄, after
it increases at low B̄. As in the chiral p-wave pairing [46],
|Fy(1,1)|2 has large intensity, compared with |Fx(1,0)|2 and
|Fz(h,k)|2. This is consistent with the fact that only the spin-flip
scattering at (1,1) is observed in the SANS experiment [4]
on Sr2RuO4. From Figs. 3(c) and 3(d), we see that the
enhancement due to the paramagnetic effect does not appear
in the transverse component |Ftr(h,k)|2. Rather, |Ftr(h,k)|2 de-
creases rapidly at higher fields, reflecting the paramagnetic
suppression of superconductivity.

For the quantitative comparison with the experimental
data [4] in Sr2RuO4, we discuss the form factors and B̄ in
units of Hc2,ab, as plotted in Fig. 4. In the case μ = 0.04,
|Fy(1,1)/Hc2,ab|2 is larger because Hc2,ab is smaller. In Fig. 4,
we also show the experimental data [4] on Sr2RuO4 with
Hc2,ab = 1.5 (T), i.e., Ftr(1,1) = 0.677 (mT) at B̄ = 0.5 (T)
and Ftr(1,1) = 0.485 (mT) at B̄ = 0.7 (T). The magnitude of
|Fy(1,1)/Hc2,ab|2 in the experimental data can be quantitatively
reproduced in the case μ = 0.04 including the effect of Hc2,ab

suppression. From Fig. 4, we also see that 10−2-times finer
resolution is necessary in the SANS experiment to observe
the spot of |Fz(h,k)|2 for the non-spin-flip scattering, which is
expected to be an increasing function of B̄ at the middle-field
range.

The θ dependence of the |Fy(1,1)|2 is presented in Fig. 5. As
a function of θ , |Fy(1,1)|2 increases until a peak near 90◦. After
the peak, it decreases rapidly towards zero just at 90◦. At low
enough field B̄ = 1.5, |Fy(1,1)|2 shows similar behavior both

FIG. 4. (Color online) B̄ dependence of the FLL form factors
when θ = 89◦. We plot renormalized values |Fy(1,1)/Hc2,ab|2 as a
function of B̄/Hc2,ab for μ = 0.04 and 0. The points + indicate
experimental values [4] on Sr2RuO4. We also present |Fz(1,0)/Hc2,ab|2
and |Fz(1,1)/Hc2,ab|2. The vertical axis is a logarithmic scale.

FIG. 5. (Color online) Field-orientation θ dependence of the
transverse FLL form factor. (a) |Fy(1,1)|2 as a function of
θ for μ = 0 at B̄ = 1.5, 4.5, 9.0, and 13.5. (b) |Fy(1,1)|2
as a function of θ for μ = 0.04 at B̄ = 1.5, 3.0, and 4.5.
(c) |Fy(1,1)/Hc2,ab|2 in a logarithmic scale as a function of θ for
μ = 0.04 at B̄/Hc2,ab ∼ 0.33 and 0.5 (B̄ = 3.0 and 4.5). The points
+ indicate experimental values [4] on Sr2RuO4 at 0.5 (T) and 0.7 (T).
We also plot |Fy(1,1)/Hc2,ab|2 for μ = 0 at B̄ = 9.0 (B̄/Hc2,ab = 0.21).
(d) θ dependence of the longitudinal FLL form factor |Fz(1,1)/Hc2,ab|2
for μ = 0.04 at B̄/Hc2,ab = 0.17, 0.33, and 0.50.

for μ = 0 and 0.04. With increasing B̄, the peak position is
shifted to higher θ , and the amplitude is decreased. At higher
fields such as B̄ = 13.5, |Fy(1,1)|2 becomes very small for
μ = 0. However, these high-field regions vanish for μ = 0.04
because of high-field suppression of superconductivity. For the
quantitative comparison, Fig. 5(c) shows renormalized values
|Fy(1,1)/Hc2,ab|2 in a logarithmic scale with the SANS results
on Sr2RuO4 for two cases, B̄/Hc2,ab ∼ 0.33 [B̄ = 3.0B0 and
0.5 (T)] and B̄/Hc2,ab ∼ 0.5 [B̄ = 4.5B0 and 0.7 (T)]. We
see that the experimental data are well fit by the theory for
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μ = 0.04 near θ = 89◦. The theoretical values for μ = 0 are
very small compared to the SANS results.

We also plot the longitudinal component |Fz(1,1)/Hc2,ab|2
for μ = 0.04 in Fig. 5(d) that is not yet observed in Sr2RuO4.
It is seen that |Fz(1,1)/Hc2,ab|2 grows as B̄ increases at
θ = 90◦ because of the PPE, as seen in Fig. 3(b). At a
low field B̄/Hc2,ab= 0.17, |Fz(1,1)|2 monotonically increases
when θ decreases, since |Fz(1,1)|2 ∝ κ−2

θ . We notice that
the longitudinal components of the form factor are already
observed for θ = 0, i.e., H ‖ c [58]. A detailed analysis of
those form factors has not been done yet, but it seems to be
similar to the results for the square lattice for the d-wave
case [59]. For larger fields B̄/Hc2,ab = 0.33 and 0.50, it takes
a peak at finite θ because the effective magnetic field B̄/Hc2

becomes large as θ decreases from 90◦. Then Fz(1,1) vanishes
ultimately towards Hc2 where the order parameter is zero. This
peak behavior in Fz(1,1) is similar to those shown in Fig. 3(b),
where the longitudinal components as a function of B̄ exhibit
peaks just below Hc2.

V. JUMPS AT FIRST-ORDER Hc2 TRANSITION

A. Magnetization curves

We calculate the magnetization curves for θ = 89◦ and 90◦
both in the cases of μ = 0 and μ = 0.04 at T = 0.1Tc, as
shown in Figs. 6(a) and 6(b). In the μ = 0 case, Mtotal(B̄) cor-
responds to that of an ordinary type-II superconductor because
Mtotal(B̄) comes exclusively from the orbital diamagnetism due
to the orbital current. Since the second-order transition occurs
at Hc2 in this case, Mtotal(B̄) smoothly becomes zero.

As seen from Fig. 6(b) in μ = 0.04, Mtotal(B̄) exhibits the
jumps 	Mtotal at Hc2 both for θ = 89◦ and 90◦, corresponding
to the first-order transition. The magnetization jump 	Mtotal

consists of the two components: the orbital diamagnetism
	Mdia and the spin paramagnetism 	Mpara. For θ = 90◦
Mpara = 1.3 × 10−3 and Mdia = −0.7 × 10−4 at B̄ = Hc2 =
9.1. Thus, 	Mtotal is dominated by the spin paramagnetic com-
ponent. Since at B̄ = Hc2, Mnormal = 2.0 × 10−3, the relative
jump 	Mtotal/Mnormal = 38.5%. As seen from Fig. 6(b), the
θ = 89◦ case also gives rise to a similar 	Mtotal value.

This number is favorably compared with the experimental
value 	Mtotal/Mnormal = 15% in Sr2RuO4 at low tempera-
tures [8]. A slightly larger value of 	Mtotal/Mnormal in our
calculation can be remedied by considering the multiband
effect because near Hc2 the minor band may be almost
in the normal state where the minor gap is already van-
ishing. The minor-band contribution can be estimated as
	Mtotal/(Mnormal + Mminor) ∼ 19% because the DOS of the
minor band is one-half of the total DOS.

As seen from Fig. 6(c), the contribution of the orbital
diamagnetism Mdia to the first-order jump amounts to 	Mdia =
−0.7 × 10−4. The weight of the jump, 	Mdia/Mnormal =
3.5%, is an order too small compared to the observed value.
Thus, without the PPE, it is impossible to understand the large
magnetization jump. We also point out that the magnetization
curve for the chiral p-wave case (see Fig. 6(a) in Ref. [46]) is
almost the same as in the usual type-II superconductor without
the PPE shown in Fig. 6(a). Thus, if we assume a hypothetical
first-order transition at H1st, then H1st ∼ 0.25Hc2 to account
for the magnetization jump 	Mtotal/Mnormal = 15%. So far

FIG. 6. (Color online) B̄ dependence of the magnetization.
(a) Mtotal(B̄) = Mdia(B̄) for μ = 0, when θ = 89◦ (solid line) and
90◦ (dashed line). Inset: Mtotal(B̄) is enlarged near Hc2. (b) Mtotal(B̄),
Mpara(B̄), and Mdia(B̄) for μ = 0.04 when θ = 89◦ (blue solid lines)
and 90◦ (red dashed lines). (c) Mdia(B̄) is focused near Hc2 for θ = 89◦

and 90◦ to see the jumps of 	Mdia at Hc2. (d) The scaling behaviors of
γ (B̄) and χspin(B̄) for θ = 90◦. The jumps of 	γ and 	χspin relative
to its normal values are seen at the first-order Hc2 transition.

there is no known theory to explain the first-order transition in
the chiral p-wave pairing.

B. Specific-heat jump at Hc2

We show the calculated results of the DOS at the Fermi level
at low temperature T = 0.1Tc in Fig. 6(d), which corresponds
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to the Sommerfeld coefficient γ (B̄), namely, C/T at low
temperatures in the superconducting state. It is known by the
explicit calculations [45] that γ (B̄) is approximately scaled
to the spin susceptibility χspin(B̄), as is seen from Fig. 6(d).
This is because both quantities χspin(B̄) and γ (B̄) come
from the same DOS of the quasiparticles near the Fermi
level [45]. In fact, the experimental value [7] of the specific-
heat jump at Hc2 is 	γ/γnormal ∼ 10%, roughly coinciding
with 	Mtotal/Mnormal = 15% mentioned above. As is seen
from Fig. 6(d), the jump of γ (B̄) is slightly smaller than that
of χspin because two quantities are not exactly identical, where
the former is an integration of the DOS over μBB̄ while the
latter is the DOS at the Fermi level.

It should be noted that the entropy jump [6] probed
by the magnetocaloric measurement is consistent with the
specific-heat jump as discussed in Ref. [7], meaning that
three experiments, i.e., magnetocaloric, specific heat, and
magnetization, are mutually consistent with each other. If
this identification is true, the Knight shift should decrease
as shown in Fig. 6(d), which is contrasted with the claim by
the NMR experiments [13–15] where the Knight shift remains
unchanged, irrespective of nuclear species (17O, 87Sr, 101Ru,
and 99Ru), field orientations, and field values. This is quite at
odds with the present analysis.

VI. FIELD DISTRIBUTIONS

Figures 7(a) and 7(b) display the field evolutions of P (B)
and P (M) together with the contour maps of Bz(r) and

)
(

)
(

FIG. 7. (Color online) Topographic maps of (a) Bz(r) − B̄ and
(b) Mpara(r) within one unit cell at B̄ = 1.5, 4.5, and 8.5 for μ = 0.04
and θ = 90◦. The field distribution (c) P (B) and (d) P (M) associated
to (a) and (b), respectively.

Mpara(r) within a unit cell. It is seen that with increasing field
towards Hc2, the vortex core site and its surrounding sites
exclusively accommodate the paramagnetic moments induced
by the PPE where the highest Bz and Mpara are situated. The
mean value of P (M) equals χspin in Fig. 6(d). At B̄ = 8.5, due
to the contributions of the paramagnetic moment enhanced
at the vortex core, P (B) and P (M) have larger weights near
the small peak at highest edges, whose positions of highest
edge exceed B̄ and M0, respectively. Thus, the so-called
Redfield pattern P (B) is strongly modified from the standard
asymmetric distribution in ordinary superconductors [60,61],
such as Nb [62]. This is also true for P (M) where the
asymmetric pattern is modified so that the higher M range
of the spectrum is enhanced.

Those asymmetric spectrum patterns should be observed
by NMR experiments, where neither asymmetric P (B) nor
P (M) patterns are observed in any nuclear species (17O, 87Sr,
101Ru, and 99Ru) for B̄ ‖ ab. They remain the same patterns as
in the normal state [13]. Note that the characteristics in Fig. 7
are indeed observed in CeCoIn5 [11]. On the other hand, for
B̄ ‖ c, a clear Redfield pattern is observed by the muon spin-
resonance experiment [63]. By analyzing this pattern, they
correctly reduce the vortex lattice symmetry, namely, a square
lattice that is confirmed later by SANS experiments [58].

VII. MAGNETIC TORQUE

Since we obtained the self-consistent solutions of Eilen-
berger equation under a given T and B̄, it is not difficult
to calculate the magnetic torque τ (θ ) = dF/dθ by using
the free energy F as a function of θ . The obtained free
energy F (θ ) is displayed in Figs. 8(a) and 8(b) for μ = 0 and
μ = 0.04, respectively. It is seen that for both cases, all of the
free-energy curves smoothly become zero when θ decreases
away from θ = 90◦, meaning that those are all second-order
Hc2 transitions in the field range B̄ � Hc2 (θ = 88◦).

Figures 8(c) and 8(d) show the magnetic torque curves
τ (θ ) for μ = 0 and μ = 0.04, respectively. It is seen from
those that the sharp minima in τ (θ ) for both cases are located
just near θ = 90◦. The fact that the minimum position θmin

in τ (θ ) is confined near θ = 90◦ is due to the large uniaxial
anisotropy � = 60. This behavior is easily fit by the Kogan
torque formula [64] based on the London theory:

τ (θ ) ∝ sin 2θ̃√
cos2 θ̃ + �2 sin2 θ̃

ln
η̃�Hc2,c

B̄
√

cos2 θ̃ + �2 sin2 θ̃
,

(13)

with θ̃ = 90◦ − θ , where η̃ is a coefficient with the order ∼1.
The minimum θmin occurs at θmin = 88.7◦ for � = 60 with
η = 1.5, which is consistent with our Eilenberger solution. It
should be noticed that at lower fields, τ (θ ) is insensitive to
the presence or absence of the PPE, according to our results
in Figs. 8(c) and 8(d). Thus, both cases are described by
the Kogan formula which only depends on �. In fact, the
minima observed experimentally show θ

exp
min ∼ 89◦ at higher

fields, which becomes θ
exp
min ∼ 88◦ towards lower fields (see

Fig. 3(d) by Ref. [8]). Also in the numerical calculation with
� = 60, θmin shows similar weak B̄ dependence. Thus the
torque data support the large uniaxial anisotropy with � = 60
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FIG. 8. (Color online) The θ dependences of the free energies
for various fields B̄. (a) μ = 0 and (b) μ = 0.04. The corresponding
torque curves τ (θ ) = dF/dθ . (c) μ = 0 and (d) μ = 0.04.

for Sr2RuO4. We note that if we choose � = 20 as indicated
by Hc2,ab/Hc2,c ∼ 20, we find θmin ∼ 87◦, which is far off
the experimental data [8] within the present experimental
accuracy. Thus, the intrinsic anisotropy of Sr2RuO4 should
be � = 60 rather than � = 20. The latter number is now
understood as arising from the suppressed Hc2 by the PPE.

Since the magnetic torque is related to the transverse
components of the internal field, it is interesting to compare
the |τ (θ )| curves with the form factor |Fy(1,1)|2 for both μ = 0
and μ = 0.04, as shown in Figs. 9(a) and 9(b). An approximate
scaling relationship between them is seen from both cases. In
particular, the maximum position θmax in both quantities yields
the same value for the higher-field data. This is, indeed, seen
experimentally (see Figs. 3(c) and 3(d) in Ref. [8]).

FIG. 9. (Color online) The scaling behaviors between |Fy(1,1)|2
and |τ (θ )| as a function of θ . (a) μ = 0 and (b) μ = 0.04. Magnitude
of each quantity is scaled by the maximum value.

In Fig. 10(a), we compare the theoretical torque curves and
corresponding experimental data [8] for selected field values.
It is seen that they show a good agreement, in particular in the
higher-field data, including the maximum angles and vanishing
angles of the torque curves. The highest-field theoretical curve,
B̄ = 8.6, exhibits a first-order jump at θ = 89.1◦, which nicely
coincides with the data at 1.4 (T). On the other hand, the lower-
field data at 0.2 (T) show a deviation from the theoretical curve,
B̄ = 1.5, in their maximum angles. This may come from the
multiband effect, which will be discussed in the forthcoming
paper [65].

In Fig. 10(b), we summarize our maximum angle data
coming from the torque curves and the transverse form factors
and compare those with the experimental data [4,8]. As already
indicated in Fig. 9, the discrepancies of the maximum angles
between the torque and form factor occur when the field is
lowered. Since the form factor data at lower fields is lacking
at present, we cannot judge whether or not those discrepancies
are strengthened further by future SANS experiments. Except
for those lowest-field data, the overall agreement seems to be
satisfactory. In other words, the present single-band theory
gives a reasonable explanation for those data.

VIII. DISCUSSIONS ON PHASE DIAGRAM
AND INTRINSIC ANISOTROPY

In previous sections, the vortex lattice anisotropy �VL(θ ) ≡
α/3 in the definition of Eq. (8) is assumed to be given by the
effective mass model in Eq. (9). We also perform calculations
to determine �VL(θ ) by the minimization procedure of the free
energy, which is a very time-consuming process compared to
the above. The results are shown in Fig. 11(a). It is seen that
this yields a slightly larger �VL(θ ) compared with the effective
mass model shown by a line there around the θ = 90◦ ± 2◦
region, beyond which all data points tend to coincide with a
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FIG. 10. (Color online) (a) Comparison with the theoretical
torque curves |τ (θ )| for B̄ = 1.5, 3.0, 4.5, 8.6 (lines) and experimental
data [8] for B̄ = 0.2, 0.5, 0.7, 1.4 (T) (empty symbols). We have
adjusted the maximum values of the torque curves and displayed
those curves by changing the maximum values arbitrarily to be clearly
seen. The highest-field theoretical data B̄ = 8.6 and experimental
data 1.4 (T) clearly show the jumps associated with the first-order
transition. (b) Maximum angles of the form factors (triangles) and the
torque curves (circles) in the B̄ and angle θ plane. Theoretical results
(filled symbols) are compared with the corresponding experimental
data [4,8] (empty symbols). In the scale of vertical axis, Hc2,ab = 9.1
in the theoretical estimate is assigned to be 1.5 (T).

line of the effective mass model. We confirm that this deviation
of �VL(θ ) does not alter our results in previous sections in a
serious way.

We note that as presented in Fig. 11(a), the experimental
data [4] also slightly deviate from the effective mass model for
87◦ < θ < 89◦, which is similar to �VL(θ ) by the free-energy
minimum. This behavior will be discussed in a forthcoming
paper based on a multiband model [65]. From the θ dependence
of �VL(θ ) in Fig. 11(a), the intrinsic uniaxial anisotropy
of the system can be identified as � = 60. This number
just corresponds to the Fermi velocity anisotropy of the β

band, since the band-dependent anisotropies are estimated
as �α = 117, �β = 57, and �γ = 174 for the α, β, and
γ Fermi-surface sheets, respectively, according to the de
Haas–van Alphen (dHvA) experiments [1]. We emphasize that
this is not accidental, if the β band plays a major role to govern

FIG. 11. (Color online) (a) The θ dependences of the vortex
lattice anisotropy �VL(θ ). Open circles indicate the experimental data
for B = 0.5 (T) [4]. Other symbols are for �VL(θ ) evaluated by the
free-energy minimum at B̄ = 2, 4, 8, and 16 for μ = 0. The line
presents �(θ ) of the effective mass model in Eq. (9) with � = 60.
(b) The θ dependences of Hc2(θ )/Hc2,c at T = 0.1Tc for μ = 0.04.
(c) Enlarged figure of (b). The results of numerical calculations by
Eilenberger theory are presented by square points. The experimental
data [8] are shown by circles. There, the filled (empty) symbols
indicate the first- (second-) order transition. The solid line shows
�(θ ) of the effective mass model with � = 60. The dashed lines
correspond to the theoretical curves calculated by Eq. (A3) with
� = 60, where μ = 0.04 for fitting to numerical calculations and
μ = 0.0293 for fitting to experimental data. (d) The anisotropy
�Hc2 (T ) = Hc2,ab(T )/Hc2,c(T ) as a function of T . The experimental
data [67] (circles) and the numerical results by Eilenberger theory
with μ = 0.04 (squares) are shown. The three continuous lines are
evaluated by Eqs. (A3) and (A4) with (1) � = 180 and μ = 0.0293,
(2) � = 60 and μ = 0.0293, and (3) � = 60 and μ = 0.04.
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the mixed-state properties of the total system in high fields,
further suggesting that the γ band plays a secondary role,
which is contrary to what many previous works claim, such as
Nomura and Yamada [20].

According to the present analysis, the Hc2,ab suppression
is explained by the PPE. We evaluate Hc2(θ ) for each θ by
the estimate of the critical field where the order parameters
vanish on raising B̄, as done in Fig. 2. The θ dependence
of Hc2(θ )/Hc2,c is presented in Figs. 11(b) and 11(c), where
the filled (empty) symbols correspond to the first- (second-)
order transitions. Our calculation shows that the first-order
transitions only occur for θ = 89◦,90◦,91◦, beyond which
all Hc2 transitions become second order, as displayed in
Figs. 11(b) and 11(c). This is consistent with the experimental
data [8] presented in the figures. There, in Sr2RuO4, the
first-order transitions occur within 90◦ ± 2◦. The first-order
transition near the ab plane appears because the effective
paramagnetic parameter μ̃(θ ) = μ�(θ ) in Eq. (A2) exceeds
the critical value μcr ∼ 1.7 for the first-order transition only
for the angles 89◦ < θ < 91◦.

As seen from Figs. 11(b) and 11(c), Hc2(θ )/Hc2,c values by
the numerical calculations are well fit by a simple function [66]
in Eq. (A3) with μ = 0.04, which is explained in the Appendix.
The values of Hc2(θ )/Hc2,c are slightly under the experimental
values. This can be easily remedied by changing the μ

value. Namely, instead of the present value μ = 0.04, the
refined value μ = 0.0293 shows much better fitting to the
experimental data by Eq. (A3), as shown in Figs. 11(b)
and 11(c).

We also evaluate the temperature dependence of the
ratio �Hc2 (T ) ≡ Hc2,ab(T )/Hc2,c(T ), and compare it with the
experimental data [67] in Fig. 11(d). Near T = Tc, both in
the numerical and experimental data, �Hc2 (T ) shows the large
anisotropy ratio, tending to ∼60, which is governed by the
Fermi velocity anisotropy ratio of the β band, �β = 57. Upon
decreasing T , this ratio progressively becomes small because
of the PPE. This is captured by our numerical calculation,
and the tending limit towards the lowest T is 16. The T

dependence is well fitted by Eq. (A3) with Eq. (A4) for
μ = 0.04, as shown in Fig. 11(d). The experimental data
at low T [67], which reduces to 20, are fitted by Eq. (A3)
with μ = 0.0293, as in the case of Figs. 11(b) and 11(c). We
also note that the fitting line with � = 180 largely deviates
from the experimental data. A similar analysis of the Hc2

anisotropy data [67] is performed by Choi [36] and comes to
the same conclusion. We point out again that in the numerical
calculation (blue square), the point in the low-T range in
Fig. 11(d) corresponds to the first-order Hc2,ab transition, while
at least above T/Tc > 0.5, Hc2,ab is of second order. According
to the experiments [7,8], the first-order line at Hc2,ab(T )
extends to around T/Tc > 0.4 ∼ 0.5. The accurate termination
point between the first- and second-order transitions will be a
future problem.

To summarize this section, in both estimations of �VL(θ )
and �Hc2 (T ), the intrinsic anisotropy � of Sr2RuO4 is identified
as � = 60. It corresponds to �β = 57 given by the β

band among the known three bands. The anisotropy � = 60
indicates that the β band is fully responsible for determining
various observables. Thus this should be the major band, while
the γ band with �γ = 174 is not appropriate for the major

band, as seen from Fig. 11(d), and must be the minority band;
also, the α band plays a negligible role because its DOS is 10%
of the total. Those considerations partly justify the present
single-band model to grasp the essential points.

IX. CONCLUSION AND UNSOLVED PROBLEMS

The essential assumption in the present theory is that the
PPE works in the spin part of the pairing function. The
assumption for the orbital part as isotropic s wave is not
intrinsic in our calculations. As the pairing function inducing
the PPE, in addition to the spin-singlet pairing, the spin-triplet
pairing is also available if the d vector has components in the
ab plane.

There exist several outstanding experiments to claim as
the evidence for a spin-triplet chiral p-wave pairing realized
in Sr2RuO4. Among them, only the Knight-shift experi-
ments [13–16] using NMR and polarized neutron scattering
are treated as evidence that the spin part of the pairing
function is the spin triplet. There the Knight shift remains
unchanged for any magnetic field orientations, any H , T , and
any nuclear species available so far. These are against the
present theory. However, the unchanged T dependence for all
field orientations is a mystery, since the Knight shift is expected
to be decreased for some of the field orientations, even in the
spin-triplet pairing.

Other experiments besides the Knight shift are evidence for
the orbital part of the pairing. There, the time-reversal symme-
try breaking is suggested by muon spin rotation (μSR) [40],
which shows the appearance of the spontaneous moments
below Tc. These varieties of the orbital part can be easily
accommodated in the present theoretical framework. As for the
time-reversal symmetry breaking, the possible pairing can be
an s + id or d + id in the spin-singlet pairing, or px + ipy in
the spin-triplet pairing. Even in the spin-triplet pairing, the PPE
works if the d vector has a component within the ab plane. The
essential characteristics of the mixed-state magnetic properties
investigated here remain intact even for those pairings. In the
present paper, we have taken the isotropic s wave just for
computational convenience and for the illustrative purpose.

From the results that the PPE makes significant contri-
butions to the superconducting properties for B̄ ‖ ab, we
recognize the importance of further studies to determine the
spin part of the pairing function. In Sr2RuO4, due to the
spin-orbit coupling of the electronic states, we have to consider
the coupling of the spin and the orbital parts in the spin-triplet
pairing function [22,68–70]. This may be an essential factor
to realize a spin-triplet superconductor where the d vector has
the component in the ab plane.

Several important experimental facts remain unanswered in
the present theory:

(1) As shown in Fig. 5(c), the transverse form factors as a
function of θ under a fixed field in the SANS experiment [4]
exhibit a strong decay of their amplitudes long before reaching
the expected Hc2, when θ decreases away from the ab plane at
θ = 90◦ in the lower fields. We anticipate the interplay of the
multiband effect to explain it [65].

(2) It is also obvious that the γ (H ) behavior shown in
Fig. 6(d) is quite different from the observed C/T at low T ,
especially at lower-field regions [71] where a

√
H -like sharp
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increase is observed. This was interpreted as coming from the
minor band (α + β) that is assumed to have a line-node-like
gap structure simply because the DOS value attained in that
field region seems to be that for the α + β bands (43% of the
total DOS). The γ band with 57% of the total DOS is regarded
as the major band.

This interpretation is at odds with the present theory in
several points. If this is true, the “major” γ band should be
responsible for the high-field region. Since the Fermi velocity
anisotropy �γ = 174 for the γ band, we would expect �VL ∼
174 for B̄ ‖ ab. There is no indication of this in the available
SANS data [4] and other data [67]. Instead, the SANS data [4],
�VL ∼ 60, indicate that the high-field phase should be the
β band. We point out also the data [67] Hc2,ab(T )/Hc2,c(T )
shown in Fig. 11(d), which is directly related to the Fermi
velocity anisotropy in Eq. (1) near Tc. Thus, the β band is
also responsible for it [65]. There is no trace in the existing
data to show that the γ band plays a major role. The present
single-band theory assumes the β band as the major band,
neglecting the minor γ band. We need to refine it by taking
into account both bands in addition to the remaining α band. A
multiband theory based on the Eilenberger framework belongs
to a future work [65].

In order to further advance the Sr2RuO4 problem concern-
ing its pairing symmetry and multiband nature, we propose
here several decisive experiments:

(a) The SANS experiments to observe the longitudinal
component Fz in the FLL form factors. As already predicted
in Figs. 4 and 5(c), the magnitudes Fz(1,0) and Fz(1,1) near
Hc2 are within the observable range. We expect to see the
enhanced Fz behavior towards Hc2, with a similar behavior
already observed in CeCoIn5 [56], which is known to be a
typical superconductor with strong PPE.

(b) To determine the detailed gap structure on the α, β,
and γ bands, the field angle-resolved specific-heat experiment
is decisive. The existing data [71] at low fields are only
down to 100 mK, which was concluded to have a dxy-like
nodal structure, judging from the existing fourfold oscillation
pattern. We expect that the sign of the fourfold oscillation
in C/T might change because the γ band responsible for
this oscillation at low fields and low temperatures should
have a dx2−y2 -like nodal structure. Such a sign change of the
oscillation has been observed in CeCoIn5 [72]. This dx2−y2 -like
nodal structure on the γ band is fully consistent with other
experiments. In particular, the square vortex lattice pattern
oriented to the (110) direction is observed for B̄ ‖ c in the
SANS experiments [58]. Note in passing that the gap structures
of the β and α bands are relatively isotropic [65]. This might be
consistent with the c-axis tunneling data [73] that selectively
probes the β band with the least Fermi velocity along this
direction and shows a full gap.

(c) Finally, according to the present theory with the PPE,
Sr2RuO4 is quite likely to exhibit the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) phase in low-T and high-H regions just
below Hc2. One of the best ways to detect it is to measure
T −1

1 by NMR, which is enhanced in the FFLO phase. This
method is successfully applied to the organic superconductor
κ-(BEDT-TTF)2Cu(NCS)2 [74].

In summary, we investigate the mixed-state properties
of a uniaxially anisotropic superconductor with the Pauli

paramagnetic effect on the basis of microscopic Eilenberger
theory in the clean limit, assuming a single-band model. By
these studies, we discussed the field-orientation dependence
near B̄ ‖ ab, and tried to explain curious behaviors in Sr2RuO4,
focusing on contributions by the Pauli paramagnetic effect. In
the study of the longitudinal and transverse components of the
flux-line lattice form factors, the effects of Hc2,ab suppression
due to the paramagnetic pair breaking are important to
quantitatively explain the intensity of the spin-flip SANS
experiment observed in Sr2RuO4 [4]. In the magnetization
curve and field-dependent Sommerfeld coefficient, the jumps
at the first-order Hc2,ab transition mainly come from the
contribution of the paramagnetic susceptibility. From the
study of the field-orientation dependence of torque curves and
Hc2(θ ), the intrinsic anisotropy ratio between the c and ab

directions is � ∼ 60, suggesting the main contribution of the
β band in the superconductivity of Sr2RuO4. These consistent
behaviors between experimental observation and the theoreti-
cal calculation indicate that the Pauli paramagnetic effect plays
an important role to understand the curious behaviors at high
fields for B̄ ‖ ab in Sr2RuO4. This suggests that the pairing
symmetry is either a spin-singlet or a spin-triplet pairing with
the d-vector components in the ab plane. We expect future
experimental and theoretical studies to confirm the mechanism
of high-field behaviors for B̄ ‖ ab in Sr2RuO4.
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APPENDIX

According to Ref. [66], an analytic expression for the μ

dependence of the upper critical field Hc2(μ) was derived
by the fitting to the numerical solutions of the Eilenberger
equation under the PPE at low temperatures. The expression
for Hc2(θ,μ) is given by

Hc2(θ,μ)

H orb
c2 (θ )

= 1√
1 + 2.4μ̃(θ )2

(A1)

for each field orientation θ in a uniaxial superconductor.
There, H orb

c2 (θ ) = Hc2(θ,μ = 0) = H orb
c2,c�(θ ) is the orbital

limited upper critical field without the PPE. The effective
paramagnetic parameter μ̃(θ ) at each θ depends on anisotropy
�(θ ) in Eq. (9) as

μ̃(θ ) = μ
H orb

c2 (θ )

H orb
c2,c

= μ�(θ ), (A2)

since μ̃(θ ) ∝ H orb
c2 (θ )/Hp. The Pauli paramagnetic critical

field Hp is proportional to the pair potential 	 at a zero field.
By combining Eqs. (A1) and (A2), we obtain

Hc2(θ,μ)

H orb
c2,c

= 1√
cos2 θ + �−2 sin2 θ + 2.4μ2

. (A3)
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This gives the θ -dependent Hc2(θ ) in Figs. 11(b) and 11(c).
When we evaluate the T dependence of Hc2(θ,μ)/H orb

c2,c in
Eq. (A3), μ = μ(T = 0) is modified to the T -dependent
paramagnetic parameter μ(T ) given by

μ(T ) = μ
	(0)

	(T )

H orb
c2,c(T )

H orb
c2,c(0)

. (A4)

The T -dependent orbital limited H orb
c2,c(T ) is given by

the Werthamer-Helfand-Hohenberg (WHH) formula [75] or
the solution of the Eilenberger equation in the clean limit. The
T -dependent order parameter 	(T ) follows the BCS form.
The T dependence of Hc2 anisotropy Hc2,ab(T )/Hc2,c(T ) when
θ = 90◦ is obtained by Eqs. (A3) and (A4), which is displayed
in Fig. 11(d).
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