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Symmetry-protected vortex bound state in superfluid 3He-B phase
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The superfluid 3He formed by spin-triplet p-wave Cooper pairs is a typical topological superfluid. In the
superfluid 3He-B phase, several kinds of vortices classified by spatial symmetries P1, P2, and P3 are produced,
where P1 is inversion symmetry, P2 is magnetic reflection symmetry, and P3 is magnetic π -rotation symmetry. We
have calculated the vortex bound states by the Bogoliubov–de Gennes theory and the quasiclassical Eilenberger
theory, and also clarified symmetry protection of the low-energy excitations by the spatial symmetries. On the
symmetry protection, P3 symmetry plays a key role which gives twofold-degenerate Majorana zero modes. Then,
the bound states in the most symmetric o vortex with P1, P2, and P3 symmetries and in w vortex with P3 symmetry
have the symmetry-protected degenerate Majorana zero modes. On the other hand, zero-energy modes in the v

vortex believed to be realized in the actual B phase are not protected, and in consequence become gapped by
breaking axial symmetry. The excitation gap may have been observed as the variation of critical velocity. We
have also suggested an experimental setup to create the o vortex with Majorana zero modes by a confinement
and a magnetic field.

DOI: 10.1103/PhysRevB.91.144504 PACS number(s): 67.30.he

I. INTRODUCTION

Superfluid 3He is a condensate of spin-triplet p-wave
Cooper pairs, which undergoes complex symmetry breaking,
in addition to U(1)N gauge symmetry breaking [1]. Without
magnetic fields, the superfluid phases of 3He consist of the
nodal gapped A phase in a high-temperature and high-pressure
region and the B phase with an isotropic gap in another wide
parameter region. In the full gapped B phase, the residual
symmetry group is

HB = SO(3)L+S × T × C, (1)

where SO(3)L+S is simultaneous rotation symmetry of orbital
and spin spaces, T is time-reversal symmetry, and C is particle-
hole symmetry. Three-dimensional spin-triplet superfluids
with T and C, such as the B phase, are topological phases
belonging to class DIII in the Altland-Zrinbauer symmetry
classes [2]. In consequence of the topological order, the
Majorana bound states and helical spin current exist on
surfaces of the superfluid 3He-B phase [3–9].

The topological phases are classified by whether there are
discrete symmetries T and C [2]. It has been known that also
spatial discrete symmetries in point group can give rise to a
nontrivial topology of excitations in the topological phases
[10]. The topological excitations without a gap are robust if
the symmetries are preserved. Host matters of the symmetry-
protected excitations are called topological crystalline insula-
tors [10] or topological crystalline superconductors [11,12].
The symmetry-protected excitations are mainly discussed on
gapless boundary states with reflection symmetries [13,14].
Recently, the topological classification is generalized for
excitations in a defect with a twofold symmetry including
magnetic point group symmetry [15].

An example of the symmetry-protected excitation in the
superfluid 3He-B phase is the surface Majorana bound state

under magnetic fields [16]. The gapless Majorana bound
state is preserved under weak magnetic fields parallel to the
surface although time-reversal symmetry is broken [17,18].
This system has magnetic π -rotation symmetry instead of
time-reversal symmetry because the flipped magnetic field by
time-reversal operation is recovered by the π rotation around
the axis perpendicular to the surface. The gapless Majorana
bound state under magnetic fields is due to the protection by
the magnetic π -rotation symmetry.

The symmetry-protected Majorana excitations are also
expected in the vortex bound state, where time-reversal
symmetry is broken by the phase winding of the vortex. For
an axisymmetric vortex in the B phase, the residual symmetry
group is

Hvortex = U(1)Q × P × C, (2)

where the generator of the U(1)Q symmetry is Q = Lz + Sz −
N/2 for a singly quantized vortex along the z axis [19,20]. The
residual spatial symmetry P is P2 × P3 for the most symmetric
vortex called o vortex [21], where P2 is magnetic reflection
symmetry on a plane including the vortex line and P3 is
magnetic π -rotation symmetry around an axis perpendicular to
the vortex line. The combination of P2 and P3 gives inversion
symmetry P1 = P2P3. A vortex with a symmetry P = P1,
P2, or P3 is called u, v, or w vortex, respectively, and the
lowest symmetric vortex without the symmetry P is called
uvw vortex.

In experiment, two types of vortices, V1 vortex in a high-
temperature and high-pressure region and V2 vortex in a low-
temperature and low-pressure region, were observed within
the B phase [20]. The transition line between the vortex states
was determined by the nuclear magnetic resonance (NMR)
measurement [22–24] and the measurement of critical velocity
[25,26]. Since the transition pressure on the superfluid critical
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temperature is reproduced by the Ginzburg-Landau theory, the
V1 vortex and V2 vortex are believed to be axisymmetric v

vortex and nonaxisymmetric v vortex, respectively [27,28].
Breaking of the axial symmetry over the transition from V1
vortex to V2 vortex was confirmed by the observation of
the Goldstone mode related to twisting of the anisotropic
vortex core [29]. The existence of P2 symmetry, which is
a direct evidence to form v vortex, however, has not been
verified.

For the identification of the kind of vortex in the superfluid
3He-B phase, the symmetry-protected vortex bound state can
be utilized. Indeed, we will demonstrate that P3 symmetry
guarantees the existence of Majorana zero-energy modes in the
vortex bound state. On the other hand, P2 symmetry does not
provide symmetry-protected excitations in a vortex. Therefore,
many zero-energy modes in axisymmetric v vortex [30] are
gapped out by the axial symmetry breaking. The formation
of the gap in low-energy excitations through the vortex
transition implies the realization of v vortex with only P2

symmetry.
This paper is arranged as follows: In Sec. II, we formulate

the Bogoliubov–de Gennes (BdG) theory and the quasiclas-
sical theory. Vortex bound states are calculated by the BdG
theory with order parameters (OPs) which are self-consistently
obtained by the quasiclassical theory. The possible spatial
symmetries P1, P2, and P3 for an axisymmetric vortex in the
B phase are summarized in Sec. III. The spatial symmetries
play an important role in the topological classification of the
vortex bound state. In Sec. IV, we discuss the bound state in
the most symmetric o vortex with P1, P2, and P3 symmetries.
The vortex bound state has symmetry-protected Majorana zero
modes; however, o vortex is not realized in the actual B phase.
The v vortex with P2 symmetry is believed to be realized in the
B phase, whose bound state is discussed in Sec. V. There is
a difference between low-energy excitations in axisymmetric
v vortex and nonaxisymmetric v vortex in consequence of
that P2 symmetry does not protect zero-energy modes. We
also discuss the bound state in w vortex with P3 symmetry
in Sec. VI. Concerning the OP, the difference between w

vortex and v vortex is only a phase of induced components
of the OP around the vortex. However, the bound state in
the w vortex dramatically changes from that in the v vortex
and has symmetry-protected Majorana zero modes owing to
P3 symmetry. We devote the final section to the summary in
which we also mention topologically trivial bound states in the
uvw vortex and u vortex.

II. FORMULATION

A. Bogoliubov–de Gennes theory

We have numerically calculated the vortex bound states for
some kinds of vortices in the B phase by the BdG theory. The
BdG theory gives discretized modes in the vortex bound state
at �2/EF intervals, where � is a superfluid gap and EF is the
Fermi energy [31]. Note that the discreteness can be negligible
when we consider physical quantities in the superfluid 3He
owing to �/EF ∼ 10−3 [1]; however, we use the BdG theory
in order to discuss the symmetry protection for the discretized
modes in the vortex bound state.

The BdG equation in spin-triplet superfluid states is given
as [32] ∫

d r2

(
ĥ(r1,r2) �̂(r1,r2)

−�̂†(r1,r2) −ĥT(r1,r2)

)
�uν(r2)

= Eν �uν(r1), (3)

where the quasiparticle wave function with the νth excited state
with the eigenvalue Eν is �uν(r) = [u↑

ν (r),u↓
ν (r),v↑

ν (r),v↓
ν (r)]T.

The single-particle Hamiltonian and the OP are described as

ĥ(r1,r2) =
[
−�

2∇2
1

2m
− EF

]
δ(r1 − r2)1̂, (4)

�̂(r1,r2) =
(

�↑↑(r1,r2) �↑↓(r1,r2)
�↓↑(r1,r2) �↓↓(r1,r2)

)
, (5)

where m is the mass of the condensed particle and
�σσ ′(r1,r2) = V (r ′)

∑
ν uσ

ν (r1)[vσ ′
ν (r2)]∗f (Eν) with the

interparticle interaction V (r ′) at r ′ = |r1 − r2| and the Fermi
distribution function f (Eν).

Here, we consider the bound state in a vortex along the
z axis; then, the wave number kz becomes a well-defined
quantum number. The BdG equation for the kz-resolved
two-dimensional (2D) form is given as [33]∫

dρ2

(
ĥkz

(ρ1,ρ2) �̂kz
(ρ1,ρ2)

−�̂
†
−kz

(ρ1,ρ2) −ĥT
−kz

(ρ1,ρ2)

)
�uν,kz

(ρ2)

= Eν,kz
�uν,kz

(ρ1), (6)

where

ĥkz
(ρ1,ρ2) =

[
−�

2∇2
2D

2m
− E2D

F (kz)

]
δ(ρ1−ρ2)1̂, (7)

with ∇2
2D = ∂2

x1
+ ∂2

y1
. The 2D form of the Fermi energy

E2D
F (kz) = (�2/2m)(k2

F − k2
z ) reflects the kz cross section of the

Fermi surface, where kF is the Fermi wave number. Although
the OP �̂kz

(ρ1,ρ2) should be calculated self-consistently with
the quasiparticle wave function �uν,kz

(ρi) and the eigenvalue
Eν,kz

, an approximate solution can be derived from the
quasiclassical theory for superfluid states with a small gap
�/EF 	 1. We expand the OP to the Fourier integral with the
relative coordinate ρ ′ = ρ1 − ρ2 as

�̂kz
(ρ1,ρ2) =

∫
dk2D

(2π )2
eik2D·ρ ′

�̂(k,ρ)�(k), (8)

where ρ = (ρ1 + ρ2)/2 is the center-of-mass coordinate and
k2D = (kx,ky) is the 2D component of the relative momentum

k. In this model, the Gaussian factor �(k)=e−(k2−k2
F)ξ 2

p indi-
cates that the pairing interaction is nonzero near the Fermi
surface k = kF with the range of the interaction ξp [34]. The
OP �̂(k,ρ) is obtained by the quasiclassical theory in Sec. II B.

If the kz-resolved quasiparticle wave function �uν,kz
=

(u↑
ν,kz

,u
↓
ν,kz

,v
↑
ν,−kz

,v
↓
ν,−kz

)T satisfies the condition u
↑
ν,kz

=
(v↑

ν,−kz
)∗ and u

↓
ν,kz

= (v↓
ν,−kz

)∗, the creation and annihilation
operators are equivalent for the zero-energy quasiparticle with
kz = 0 [32,35]. Then, the quasiparticle is a Majorana zero
mode.
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B. Quasiclassical theory

The spatial structure of OP with a vortex has been calculated
by the quasiclassical theory, which is valid for superfluids and
superconductors with � 	 EF , such as the superfluid 3He. We
have found self-consistent solutions of the OP �̂(k̄,ρ) with the
quasiclassical Green’s function ĝ(k̄,ρ,ωn) by the Eilenberger
equation [36–38]

−i�v(k̄) · ∇ĝ(k̄,ρ,ωn)

=
[(

iωn1̂ −�̂(k̄,ρ)
�̂†(k̄,ρ) −iωn1̂

)
,̂g(k̄,ρ,ωn)

]
, (9)

where the wide hat indicates the 4 × 4 matrix in particle-
hole and spin spaces. The quasiclassical Green’s function is
described in particle-hole space by

ĝ(k̄,ρ,ωn) = −iπ

(
ĝ(k̄,ρ,ωn) if̂ (k̄,ρ,ωn)

−if̂ (k̄,ρ,ωn) −ĝ(k̄,ρ,ωn)

)
, (10)

where ωn = (2n + 1)πkBT is the Matsubara frequency and
k̄ is the normalized relative momentum on the Fermi surface.
The quasiclassical Green’s function satisfies the normalization
condition ĝ2 = −π 2̂1. The Fermi velocity is given as v(k̄) =
vF k̄ on a three-dimensional Fermi sphere.

The spin-triplet OP is defined by

�̂(k̄,ρ) = id(k̄,ρ) · σ̂ σ̂y, (11)

where σ̂ is the Pauli matrix. The d vector is perpendicular
to the spin S of a Cooper pair, namely, d · S = 0. The
description using projections of spin angular momentum is
more convenient than the description by the d vector for the
OP with an axisymmetric vortex, namely,

�̂(k̄,ρ) =
(−√

2C+(k̄,ρ) C0(k̄,ρ)
C0(k̄,ρ)

√
2C−(k̄,ρ)

)
, (12)

where C± = (dx ∓ idy)/
√

2 and C0 = dz. Each coefficient can
be expanded in projections of orbital angular momentum

Ca(k̄,ρ) = Ca+(ρ)k̄+ + Ca0(ρ)k̄0 + Ca−(ρ)k̄−, (13)

with a = 0 or ±, where k̄± = (k̄x ± ik̄y)/
√

2 and k̄0 = k̄z [19].
The self-consistent condition for �̂ is given as

�̂(k̄,ρ) = N0πkBT
∑

|ωn|�ωc

〈V (k̄,k̄′
)f̂ (k̄′

,ρ,ωn)〉k̄′ , (14)

where N0 is the density of states in the normal state, ωc

is a cutoff energy setting ωc = 20kBTc with the critical
temperature Tc, and 〈. . .〉k̄ indicates the Fermi surface average.
The pairing interaction V (k̄,k̄′

) = 3g k̄ · k̄′
, where g is a

coupling constant with the relation (gN0)−1 = ln(T/Tc) +
πkBT

∑
|ωn|�ωc

|ωn|−1. We solve Eqs. (9) and (14) alternately
at T = 0.2Tc, and obtain a self-consistent solution. Then, we
use the self-consistent OP �̂(k̄,ρ) after the replacement of k̄
by k/kF as �̂(k,ρ) in Eq. (8).

III. SPATIAL SYMMETRIES FOR AN
AXISYMMETRIC VORTEX

For the OP with an axisymmetric vortex, the coefficients
in Eq. (13) are described by Cab(ρ) = Cab(ρ)einabφ , where ρ

is a radial distance from a vortex core and φ is an azimuthal
angle in the xy plane. Since the OP has U(1)Q symmetry with
Q = Lz + Sz − N/2 as Eq. (2), the phase winding number
nab in each coefficient satisfies

na+1,b = na,b − 1,
(15)

na,b+1 = na,b − 1.

The following coefficients are finite in the bulk B phase:

C+− = C00 = C−+ = �B, (16)

where �B is the amplitude of a gap in the bulk, because the
total angular momentum J = L + S = 0 in the B phase [1].
With a singly quantized vortex, the OP has 2π -phase winding
around the vortex, namely, phase winding numbers

n+− = n00 = n−+ = 1. (17)

Then, the general description of the coefficients with a singly
quantized axisymmetric vortex in the superfluid 3He-B phase
is

C(ρ) =
⎛⎝C++(ρ)e−iφ C+0(ρ) C+−(ρ)eiφ

C0+(ρ) C00(ρ)eiφ C0−(ρ)e2iφ

C−+(ρ)eiφ C−0(ρ)e2iφ C−−(ρ)e3iφ

⎞⎠, (18)

where Cab approaches �B for a + b = 0 and vanishes for
a + b �= 0 when ρ → ∞.

The B phase with a vortex can have the additional symmetry
P as Eq. (2). Under the symmetry operation, the semiclassical
BdG Hamiltonian

ĤBdG(k,ρ) =
(

ĥ(k) �̂(k,ρ)
�̂†(k,ρ) −ĥT(−k)

)
(19)

satisfies

P̂ĤBdG(k,ρ)P̂−1 = ĤBdG(k′,ρ ′), (20)

where the symmetry operator is P̂ = diag(P̂,P̂∗) and k and ρ

are transformed into k′ and ρ ′, respectively, by the operation.
The normal-state Hamiltonian ĥ(k) = (�2/2m)(k2 − k2

F)1̂ im-
plies P̂ĥ(k)P̂−1 = ĥ(k). Since the operation P̂�̂(k,ρ)(P̂∗)−1

can be regarded as PC(k,ρ) (P∗)−1, the inversion symmetry
operator P1 acts on Ca(k,ρ,φ) as

P1C(k,ρ,φ)(P∗
1 )−1 = C(−k,ρ,φ + π )

=
⎛⎝C++(ρ)e−iφ −C+0(ρ) C+−(ρ)eiφ

−C0+(ρ) C00(ρ)eiφ −C0−(ρ)e2iφ

C−+(ρ)eiφ −C−0(ρ)e2iφ C−−(ρ)e3iφ

⎞⎠⎛⎝k+
k0

k−

⎞⎠.

(21)

The symmetry P2 is the combined symmetry with the
time reversal and mirror reflection on a plane including
the vortex line, namely, the magnetic reflection symmetry.
The time-reversal operator T acts as T Ca,b(ρ,φ) (T ∗)−1 =
−C∗

−a,−b(ρ,φ) and the mirror reflection operator M acts as
MCa,b(ρ,φ) (M∗)−1 = −C−a,−b(ρ, − φ); therefore,

P2C(k,ρ,φ)(P∗
2 )−1

=
⎛⎝C∗

++(ρ)e−iφ C∗
+0(ρ) C∗

+−(ρ)eiφ

C∗
0+(ρ) C∗

00(ρ)eiφ C∗
0−(ρ)e2iφ

C∗
−+(ρ)eiφ C∗

−0(ρ)e2iφ C∗
−−(ρ)e3iφ

⎞⎠⎛⎝k+
k0

k−

⎞⎠.

(22)
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The symmetry P3 is the magnetic π -rotation symmetry around
an axis perpendicular to the vortex line. The π -rotation
operator R acts as RCa,b(ρ,φ) (R∗)−1 = C−a,−b(ρ,π − φ).
Then, the combination of T and R gives

P3C(k,ρ,φ)(P∗
3 )−1

=

⎛⎜⎝C∗
++(ρ)e−iφ −C∗

+0(ρ) C∗
+−(ρ)eiφ

−C∗
0+(ρ) C∗

00(ρ)eiφ −C∗
0−(ρ)e2iφ

C∗
−+(ρ)eiφ −C∗

−0(ρ)e2iφ C∗
−−(ρ)e3iφ

⎞⎟⎠
⎛⎝k+

k0

k−

⎞⎠.

(23)

IV. o VORTEX

The o vortex is the most symmetric vortex in the superfluid
3He-B phase. Since it has the all possible discrete symmetries
P1, P2, and P3, several coefficients should vanish as

C(ρ) =
⎛⎝C++(ρ)e−iφ 0 C+−(ρ)eiφ

0 C00(ρ)eiφ 0
C−+(ρ)eiφ 0 C−−(ρ)e3iφ

⎞⎠, (24)

where all remaining coefficients Cab(ρ) are real and they ap-
proach C+− = C00 = C−+ = �B and C++ = C−− = 0 when
ρ → ∞. The component C++ (C−−) is induced around the
vortex by the spatial variation of the bulk component C+−
(C−+) [21].

The self-consistently obtained OP by the quasiclassical
theory is shown in Fig. 1(a). The bulk components C+−, C00,
and C−+ rise up with ρ-linear from a vortex core, where C00

recovers the bulk gap �B with slightly shorter length than C+−
and C−+. Rises of C++ and C−− are ρ-linear and ρ-cubic,
respectively, which reflect phase winding numbers n++ = −1
and n−− = 3. This difference makes a little variance between
C+− and C−+ via a coupling between the same orbital state.

FIG. 1. (Color online) Numerical results for o vortex. (a) OP
configuration Cab(ρ) for finite components C+−, C00, C−+, C++,
and C−−. Real part of wave functions uσ

0 (ρ) and vσ
0 (ρ) with Eν,kz

= 0
for the ↑-spin state (b) and ↓-spin state (c). (d) Eigenvalues for
quasiparticles with kz = 0. The degenerate eigenstates indicated by
an arrow correspond to the two wave functions in (b) and (c). (e)
kz dispersion of the vortex bound state whose color denotes angular
momentum l of quasiparticles.

The discretized eigenvalues of the vortex bound state, which
are derived from the BdG theory with the self-consistent OP,
are shown in Figs. 1(d) and 1(e). In Fig. 1(d), the eigenvalues
for kz = 0 are classified into quantized orbital angular mo-
mentum l. The low-energy eigenvalues are discretized at the
order of �2

B/EF intervals, where we take �B/EF = 0.1. The
vortex bound state has spin degenerate exact two zero-energy
modes at l = 0 indicated by an arrow. The wave functions
of the degenerate zero-energy modes for ↑-spin and ↓-spin
states are shown in Figs. 1(b) and 1(c), respectively. Since
the orbital chirality of the ↑-spin state is antiparallel to the
vorticity but the orbital chirality of the ↓-spin state is parallel
to the vorticity, u

↑
0 (ρ) = [v↑

0 (ρ)]∗ ∝ J0(kFρ) exp(−ρ/ξ ) and
u

↓
0 (ρ) = [v↓

0 (ρ)]∗ ∝ J1(kFρ) exp(−ρ/ξ )eiφ [39,40], where Jn

is the nth-order Bessel function and (kFξ )−1 = �B/EF = 0.1.
These zero-energy modes are Majorana zero modes because
the quasiparticle wave functions for both spin states satisfy
the condition u

↑
0 = (v↑

0 )∗ and u
↓
0 = (v↓

0 )∗, as demonstrated in
Figs. 1(b) and 1(c).

The kz dispersion of the vortex bound state for various l’s is
shown in Fig. 1(e), where two different spin states exist for each
l. As demonstrated in Appendix A, the l = 0 branches linearly
cross the zero energy at kz = 0 as E± ∝ ±kz. Their wave func-
tions are distinguished into �u± = (�u↑

0 ± �u↓
0 )/

√
2 + �O(kz/kF),

where �u↑
0 = (u↑

0 ,0,[u↑
0 ]∗,0)T and �u↓

0 = (0,u
↓
0 ,0,[u↓

0 ]∗)T are
the wave functions of the Majorana zero modes in the ↑-
spin and ↓-spin states, respectively. Note that the inversion
symmetry P1 maps each eigenstate to another one, namely,
�u± = P̂1 �u∓.

The spin degenerate Majorana zero modes are protected
by spatial symmetry. The vortex bound state with P2 and P3

symmetries is classified by a topological invariant Z which is
demonstrated in Appendix B by using Clifford algebras. Note
that P1 symmetry does not provide symmetry-protected defect
zero modes in general.

The appropriate topological invariant for the o vortex is
calculated by the one-dimensional winding number, which is
evaluated from the BdG Hamiltonian at an infinite point from
a vortex

ĤBdG(k,φ) =
(

ĥ(k) �̂(k,φ)
�̂†(k,φ) −ĥT(−k)

)
, (25)

where ĥ(k) = (�2/2m)(k2 − k2
F)1̂ and

�̂(k,φ) = �B

kF

(−kx + iky kz

kz kx + iky

)
eiφ.

From combination of P3 and particle-hole symmetry, the
BdG Hamiltonian for the o vortex obeys (ĈP̂3)ĤBdG(kx, −
ky, − kz, − φ)(ĈP̂3)−1 = −ĤBdG(k,φ) where P̂3 = iσ̂zτ̂zK
and Ĉ = τ̂xK are operators for the magnetic π ro-
tation and particle-hole symmetry with the complex-
conjugation operator K. The combined symmetry defines the
chiral symmetry �̂ĤBdG(kx,ky = 0,kz = 0,φ = 0,π )�̂−1 =
−ĤBdG(kx,ky = 0,kz = 0,φ = 0,π ) with �̂ = τ̂y σ̂z in the
symmetric space ky = kz = 0 and φ = 0 or π . The chiral sym-
metry enables us to introduce the one-dimensional winding
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number as [41,42]

wφ=0,π = − 1

4πi

∫
dkx tr

[
�̂Ĥ−1

BdG(kx,ky =0,kz =0,φ=0,π )

× ∂kx
ĤBdG(kx,ky = 0,kz = 0,φ = 0,π )

]
. (26)

For the o vortex, the one-dimensional winding number is
evaluated as w0 = 2 and wπ = −2. The difference of the
winding (w0 − wπ )/2 = 2 provides the Z topological invari-
ant for the o vortex. This topological number corresponds
to the number of the zero-energy states at kz = 0. [More
precisely, the Z topological invariant is equal to the index tr�̂
of the quasiparticle states at kz = 0. Since the chiral symmetry
requires that the zero-energy states at kz = 0 are eigenstates of
�̂, the index tr�̂ reduces to the difference between the number
of the zero-energy states with eigenvalue �̂ = +1 and that with
�̂ = −1 [42]. Hence, if (w0 − wπ )/2 = N , there exist at least
|N | zero-energy states at kz = 0.] The obtained topological
number, i.e. (w0 − wπ )/2 = 2, guarantees the existence of
two zero-energy states at kz = 0, which are indeed realized as
the two l = 0 zero modes in Fig. 1.

Note that the second Chern number, which characterizes
bound states in a line defect for the symmetry class D, vanishes
in the presence of P1 symmetry. The second Chern number Ch2

is obtained by [43,44]

Ch2 = 1

8π2

∫
dk dφ εijktr[fφifjk], (27)

where f mn
αβ = ∂αamn

β − ∂βamn
α + i[aα,aβ ]mn is the curvature

of the non-Abelian Berry connection aα with α = (φ,i) =
(φ,kx,ky,kz), and the non-Abelian Berry connection is given
by

amn
α = −i〈m,k,φ|∂α|n,k,φ〉, (28)

with eigenstates |m,k,φ〉 and |n,k,φ〉 of the BdG Hamil-
tonian ĤBdG(k,φ). The indices m and n label quasiparticle
states with negative energies. For o vortex, the eigenstates
have P1 symmetry which gives the periodicity of Berry
curvature fφi(k,φ + π ) = −fφi(−k,φ) and fjk(k,φ + π ) =
fjk(−k,φ). Therefore, the integral in Eq. (27) yields Ch2 = 0.
Since the second Chern number generally vanishes when there
is P1 symmetry, it is not appropriate for the topological number
of the bound states in the o vortex.

V. v VORTEX

In the actual B phase, it is believed that two kinds of v

vortices are realized. One v vortex has axial symmetry and the
other v vortex breaks the axial symmetry. In this section, we
show the difference of the vortex bound states between the two
kinds of v vortices.

A. Axisymmetric v vortex

The axisymmetric v vortex has the magnetic reflection
symmetry P2. From Eq. (22), all coefficients Cab(ρ) in Eq. (18)
are real, where C+− = C00 = C−+ = �B and the other coeffi-
cients vanish when ρ → ∞. Since C0+ and C+0 corresponding
to the A phase and β phase components, respectively, do not
have any phase winding, they can compensate a vortex core.

FIG. 2. (Color online) Numerical results for axisymmetric v vor-
tex. (a) OP configuration Cab(ρ) whose legends are identical to that in
Fig. 1(a). (b), (c) Real part of wave function uσ

ν,kz=0(ρ) and vσ
ν,kz=0(ρ)

for a state with Eν,kz=0 ≈ 0. (d) Eigenvalues for quasiparticles with
kz = 0. The eigenstate indicated by an arrow corresponds to the wave
function in (b) and (c). (e) kz dispersion of quasiparticles with l � 0
whose color denotes angular momentum l of quasiparticles.

The self-consistently obtained OP by the quasiclassical
theory is shown in Fig. 2(a). The A-phase component C0+
compensates the vortex core with larger amplitude than that of
the bulk components in the B phase. The β-phase component
C+0 also compensates the vortex core; however, the amplitude
is smaller than that of C0+ and the sign is opposite. Away from
the vortex core, C0+ and C+0 are identical to C0− and C−0,
respectively, in order that total angular momentum becomes
zero. A core radius ξc of the v vortex, which is characterized
by the healing length of the bulk components, is longer than
that of o vortex because a loss of the condensation energy at
the v vortex core is small. Other C++ and C−− components
are also induced slightly, which change the sign away from the
vortex core.

The discretized eigenvalues derived from the BdG equation
by using the self-consistent OP are shown in Figs. 2(d) and
2(e). In Fig. 2(d), the eigenvalues for kz = 0 are classified
into quantized orbital angular momentum l along the vortex
line. The quasiparticles with l = 0 and kz = 0 have the finite
energy by the π/2-phase shift owing to the A-phase component
compensating the vortex core (see Appendix C). Discretized
eigenvalues for kz = 0 may be situated on the zero energy
with finite ±l, accidentally, according to a core radius. The
wave function of an accidental zero-energy mode, indicated
by an arrow in Fig. 2(d), is shown in Figs. 2(b) and 2(c)
for ↑-spin and ↓-spin parts, respectively. The quasiparticle
wave function satisfies u

↑
ν,kz=0 = (v↑

ν,kz=0)∗ while u
↓
ν,kz=0 �=

(v↓
ν,kz=0)∗; therefore, the quasiparticle is not the Majorana

zero mode [32,35]. It is a natural consequence because the
particle-hole operation changes the sign of orbital angular
momentum.

The kz dispersion of the vortex bound state for l � 0 is
shown in Fig. 2(e). Eigenvalues for l′ = −l � 0 are given by
E′ = −E with k′

z = −kz owing to the particle-hole symmetry.
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The eigenvalues with l = 0 approach the zero energy at
kz = ±kF owing to an induced C−0 component around the
vortex, which is different from the result by Silaev [30] (see
Appendix C). Since momentum kz is a continuous quantity,
the eigenvalues with |l| � ξckF cross the zero energy at finite
kz. The zero-energy modes with finite kz are, however, also not
Majorana zero modes because signs of l and kz for the zero-
energy modes are changed by the particle-hole operation, that
is, the zero-energy modes are mapped to different zero-energy
modes by the particle-hole operation.

The trivial vortex bound state without Majorana zero
modes can be understood by the topological arguments in
Appendix B. The vortex bound states without any symmetry
protections are clearly shown as gaps of low-energy excitations
in nonaxisymmetric v vortex which breaks axial symmetry but
keeps P2 symmetry.

B. Nonaxisymmetric v vortex

The self-consistently obtained OP for nonaxisymmetric v

vortex is shown in Figs. 3(a) and 3(b). Far away from the
vortex core, nonaxisymmetric v vortex is also described by
the coefficients in Eq. (18); however, the original 4π -phase
singularity of C−0 and C0− is split into two singularities
with the 2π -phase winding as shown in Fig. 3(a). This
deformation breaks U(1)Q symmetry but keeps P2 symmetry.
In Fig. 3(b), we show the root-mean-square value of the gap
|�| =

√
〈Tr[�̂�̂†]〉k̄/2. Since four components C0+, C+0,

C−0, and C0− are finite at the vortex center, substantial gap
opens on the vortex center. In return for the gap on the vortex
center, finite minima of |�| appear on the phase singularity of
C−0 and C0−.

0

1(a)

-1

0

 1

-30 300 -1

0

 1

-1  0  1

(c) (d)

 1

 7

 0

 0.75

 1.05

 0.8

 1.0

(b)

FIG. 3. (Color online) Numerical results for nonaxisymmetric v

vortex. 2D profile for each OP component Cab(ρ) (a) and the
root-mean-square value of the gap |�| =

√
〈Tr[�̂�̂†]〉k̄/2 (b). (c)

Eigenvalues for quasiparticles with kz = 0. (d) kz dispersion of the
vortex bound state whose color denotes angular momentum l of
quasiparticles.

The discretized eigenvalues derived from the BdG equation
by using the self-consistent OP are shown in Figs. 3(c) and
3(d). In Fig. 3(c), the eigenvalues for kz = 0 are classified
into orbital angular momentum l along the vortex line. The kz

dispersion of the vortex bound state with values of l is shown
in Fig. 3(d). Note that l is not a quantum number but it is
calculated by

l = −i�

∫
dρ �u†

ν,kz
(ρ)∂φ �uν,kz

(ρ) (29)

for each eigenstate labeled ν and kz. The quasiparticle
excitations in the vortex bound state have a gap by the
hybridization of different l eigenstates as discussed below.
This is a consequence of the fact that P2 symmetry does not
protect zero-energy modes in a line defect. The amplitude of
the excitation gap is of the order of �/EF. Therefore, the
gap becomes larger when kz approach kF because the effective
Fermi energy E2D

F = (�2/2m)(k2
F − k2

z ) decreases.
Here, let us consider the hybridization of different l

eigenstates for nonaxisymmetric v vortex. For axisymmetric v

vortex, since angular momentum l is a well-defined quantum
number, different l eigenstates do not hybridize each other. The
reduction of axial symmetry to n-fold rotational symmetry,
however, gives hybridization between the states with angular
momentum l and l + nm, where m ∈ Z. Then, l and l + 2m

eigenstates for nonaxisymmetric v vortex, which has twofold
rotational symmetry, are hybridized. For the kz dispersion
of the original v vortex bound state, branches of l and
−l eigenstates are crossed on the zero energy, where l � 0
eigenstates are shown in Fig. 2(e) and l′ = −l eigenstates
have eigenvalues E′ = −E. Since the l and −l eigenstates are
hybridized for nonaxisymmetric v vortex, the quasiparticle
excitations have a gap.

VI. w VORTEX

The w vortex with the magnetic π -rotation symmetry P3 is
described by the coefficients Cab(ρ) in Eq. (18) as well as the v

vortex. However, the coefficients C+0, C0+, C0−, and C−0 are
pure imaginary numbers. Thus, the relative phase between the
compensate A-phase and β-phase components and the bulk
B-phase component is π/2, which is the difference of the OP
from v vortex.

We calculate the vortex bound state for w vortex by the BdG
theory with the v vortex OP shown in Fig. 2(a) after changing
the phases of C+0, C0+, C0−, and C−0 by π/2. The obtained
eigenvalues are shown in Figs. 4(c) and 4(d). In Fig. 4(c),
the eigenvalues for kz = 0 are classified into quantized orbital
angular momentum l along the vortex line. The vortex bound
state has degenerate two exact zero-energy modes at l = 0
indicated by an arrow. The kz dispersion of the vortex bound
state for various l’s is shown in Fig. 4(d). The quasiparticles
with l = 0 are degenerate in small kz and linearly cross the
zero energy at kz = 0. The l = 0 branches cross the zero energy
twice at kz = 0 and |kz| ∼ kF schematically shown in Fig. 4(e),
which is consistent with the value of the second Chern number
discussed in the following.

The wave functions of the degenerate zero-energy modes
indicated by the arrow in Fig. 4(c) are shown in Figs. 4(a) and
4(b). The quasiparticle wave functions for each mode satisfy

144504-6



SYMMETRY-PROTECTED VORTEX BOUND STATE IN . . . PHYSICAL REVIEW B 91, 144504 (2015)

FIG. 4. (Color online) Numerical results for w vortex. (a), (b)
Degenerate wave functions uσ

0 (ρ) and vσ
0 (ρ) with Eν,kz

= 0. (c)
Eigenvalues for quasiparticles with kz = 0. The degenerate eigen-
states indicated by an arrow correspond to the two wave functions
in (a) and (b). (d) kz dispersion of the vortex bound state whose
color denotes angular momentum l of quasiparticles. (e) Schematic
kz dispersion for l = 0 quasiparticles, which is precisely degenerate
near kz = 0.

Re(u↑
0 ) = Re(v↑

0 ) and Im(u↓
0 ) = −Im(v↓

0 ), namely, u↑
0 = (v↑

0 )∗

and u
↓
0 = (v↓

0 )∗. Therefore, the degenerate zero-energy modes
are the Majorana zero modes.

The existence of the Majorana zero modes can be un-
derstood by the topological arguments in Appendix B. The
additional magnetic π -rotation symmetry P3 in the Altland-
Zrinbauer symmetry class D gives a topological classification
Z ⊕ Z for the vortex bound state in three-dimensional space
[15].

One of the topological numbers Z is the second Chern
number. For the w vortex, the second Chern number is found to
be zero as well as the o vortex because the BdG Hamiltonian for
the w vortex is identical to that for the o vortex at infinity from
the vortex. The vanishing second Chern number is consistent
with the obtained kz dispersion of the vortex bound states in
Fig. 4(d): Some of vortex bound states cross the zero energy
in the kz direction, but the crossing always occurs twice, so
they can smoothly merge into the bulk state without closing

bulk gap. Therefore, the zero-energy states are topologically
unstable, except for the l = 0 bound state. The topological
stability of the l = 0 bound state is ensured by the other Z
topological invariant, namely, the index tr�̂. Since the chiral
symmetry �̂ = ĈP̂3 is also defined in the symmetric space
ky = kz = 0 and φ = 0 or π for w vortex, the one-dimensional
winding numbers wφ=0 and wφ=π are evaluated as the same
manner in Sec. IV. The difference of the winding numbers
(w0 − wπ )/2 = 2 provides the Z topological invariant and
guarantees the existence of two zero-energy states at kz = 0,
which are indeed realized as the two l = 0 zero modes in Fig. 4.

VII. SUMMARY

We have calculated the bound state in the o vortex, v

vortex, and w vortex by the full quantum BdG theory with the
self-consistent OP obtained by using the quasiclassical theory.
Moreover, we have discussed symmetry protection of zero-
energy excitations in the vortex bound states with additional
symmetry. Our results are summarized in the following and
in Table I. Characteristic features of the bound states in the u

vortex and uvw vortex are also listed in Table I.
The most symmetric o vortex has P1, P2, and P3 symmetries

in which induced components around the vortex core are fixed
for C++ and C−− in real numbers, and C+0, C0+, C−0, and
C0− as zero. The vortex bound state for the quasiparticles with
angular momentum l = 0 has spin degenerate Majorana zero
modes at kz = 0. The Majorana zero modes are protected by
P3 symmetry and characterized by a topological invariant Z
which is the chiral index (w0 − wπ )/2 = 2.

The v vortex has P2 symmetry in which all induced com-
ponents around the vortex core are real numbers. In the vortex
bound state, the quasiparticles with |l| � ξckF cross the zero
energy twice at finite ±kz. However, the zero-energy modes
are topologically trivial, that is, they are not protected by any
symmetry. Then, low-energy excitations in nonaxisymmetric
v vortex has a gap because the deformation breaking axial
symmetry lifts the zero-energy modes in spite of keeping P2

symmetry. If we observe the excitation gap accompanying the
vortex transition in the B phase, that will be a strong evidence
of the fact that the realized vortex has only P2 symmetry,
namely, v vortex. Although the order of the gap is �/EF, that
becomes large for quasiparticles with kz ∼ kF owing to the
small effective Fermi energy E2D

F = (�2/2m)(k2
F − k2

z ). The
excitation gap may have been observed as the difference of
critical velocity between V1 and V2 vortices [25,26].

TABLE I. Classified vortices by P1, P2, and P3 symmetries which fix the element of induced components Cab(ρ). For each vortex, we show
the presence or absence of zero-energy modes (ZEM) and Majorana zero modes, as well as topological invariant classifying the vortex bound
state if it is present. The candidates for the topological invariant are the chiral index N ≡ (w0 − wπ )/2 = 2 and the second Chern number
Ch2 = 0.

C+0, C0+,
Vortex Symmetry C++, C−− C−0, C0− ZEM Majorana Top. inv.

o vortex P1, P2, P3 Real � � N

Axisym. v vortex P2 Real Real �
Nonaxisym. v vortex P2 Real Real
w vortex P3 Real Imaginary � � N ⊕ Ch2

uvw vortex – Complex Complex � Ch2

u vortex P1 Complex �

144504-7



TSUTSUMI, KAWAKAMI, SHIOZAKI, SATO, AND MACHIDA PHYSICAL REVIEW B 91, 144504 (2015)

The w vortex has P3 symmetry. The difference between the
w vortex and v vortex is only phases of induced components
C+0, C0+, C−0, and C0− concerning the OP. However, the
vortex bound state in superfluids belonging to the symmetry
class D with additional symmetry P3 is characterized by the
topological invariants Z ⊕ Z, the second Chern number, and
the chiral index. For the w vortex, the second Chern number
Ch2 = 0, but the chiral index (w0 − wπ )/2 = 2 indicating
difference between the numbers of the zero-energy mode with
opposite chirality. Thus, the twofold-degenerate Majorana zero
modes at the symmetric point kz = 0 and l = 0 are protected
by P3 symmetry.

The uvw vortex without any P1, P2, and P3 symmetries
has many zero-energy modes, as calculated by Silaev [30].
However, the zero-energy modes are topologically unstable
because the vortex bound state in superfluids belonging to
the class D without additional symmetry is characterized by
the second Chern number, which is zero for the vortex bound
state in the superfluid 3He-B phase. The u vortex with P1

symmetry is achieved by adding imaginary parts to real C++
and C−− components in the o vortex. The imaginary parts lift
the Majorana zero modes at the symmetric point kz = 0 and
l = 0 by breaking P3 symmetry. Other accidental zero modes
will be left but they are not characterized by the second Chern
number which generally vanishes under P1 symmetry.

In conclusion, Majorana zero modes protected by P3

symmetry are bound in the o vortex and w vortex which are not
stable in the bulk B phase. The v vortex is more stable than
the o vortex owing to the condensation energy by A-phase
and β-phase components which compensates the vortex core.
Then, when we confine the B phase in a thin slab with height
along the vortex line to suppress the β-phase component and
simultaneously apply a magnetic field along the vortex line
to suppress the A-phase component, o vortex with Majorana
zero modes will be achieved. Note that the confinement and
the magnetic field do not break any P1, P2, and P3 symmetries.
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APPENDIX A: LINEAR kz DISPERSION OF o
VORTEX BOUND STATE

We show the linear kz dispersion of the vortex bound state
in the o vortex on the basis of perturbation theory [32]. The
gap function in Eq. (8) for the o vortex is described by

�̂kz
(ρ1,ρ2)

=
∫

dk2D

(2π )2
eik2D·ρ ′ �0(ρ)eiφ

kF

(−kx +iky kz

kz kx +iky

)
, (A1)

which are simplified as C+− = C00 = C−+ = �0(ρ)eiφ ,
C++ = C−− = 0, and �(k) = 1. For kz =0, the BdG Hamilto-
nian in Eq. (6) is separated into ↑-spin and ↓-spin sectors and
each sector has a Majorana zero mode. The wave functions of
the Majorana zero modes are described by

�u↑
0 (ρ) = (u↑

0 (ρ), 0, [u↑
0 (ρ)]∗, 0)T , (A2)

�u↓
0 (ρ) = (0, u

↓
0 (ρ)eiφ, 0, [u↓

0 (ρ)]∗e−iφ)T , (A3)

where u
↑
0 (ρ) = N↑J0(kFρ) exp(−ρ/ξ−iπ/4) and u

↓
0 (ρ) =

N↓J1(kFρ) exp(−ρ/ξ + iπ/4) with normalization factors Nσ

and the nth-order Bessel function Jn [39,40]. The wave
function of the Majorana zero mode in each spin sector differs
in the phase winding and the order of the Bessel function since
the Hamiltonian for the ↑-spin (↓-spin) sector corresponds
to the Hamiltonian for the chiral p-wave superfluid with the
chirality antiparallel (parallel) to the vorticity.

Here, we consider the kz dispersion with small kz 	 kF by
perturbation theory. The perturbation Hamiltonian is described
by

Ĥp(ρ)= kz

kF
�0(ρ)

⎛⎜⎜⎝
0 0 0 eiφ

0 0 eiφ 0
0 e−iφ 0 0

e−iφ 0 0 0

⎞⎟⎟⎠, (A4)

where projections of Ĥp onto �u↑
0 and �u↓

0 give(
[�u↑

0 (ρ)]†Ĥp(ρ)�u↑
0 (ρ) [�u↑

0 (ρ)]†Ĥp(ρ)�u↓
0 (ρ)

[�u↓
0 (ρ)]†Ĥp(ρ)�u↑

0 (ρ) [�u↓
0 (ρ)]†Ĥp(ρ)�u↓

0 (ρ)

)

= 2N↑N↓
kz

kF
�0(ρ)J0(kFρ)J1(kFρ)e−2ρ/ξ σ̂x . (A5)

Then, the kz dispersion

E± = ±4πN↑N↓
kz

kF

∫
dρ �0(ρ)J0(kFρ)J1(kFρ)e−2ρ/ξ

(A6)

is linear to kz. The zeroth-order perturbed wave functions are

�u±
0 (ρ) = 1√

2
[�u↑

0 (ρ) ± �u↓
0 (ρ)]. (A7)

These wave functions �u±
0 (ρ) also indicate self-conjugate

Majorana quasiparticles.

APPENDIX B: TOPOLOGICAL CLASSIFICATION OF
VORTEX BOUND STATES BY CLIFFORD ALGEBRAS

In this Appendix, we discuss topological classification of
vortex bound states in the B phase. Consider a vortex along
the z axis, and a circle surrounding the vortex, which is
parametrized by the angle φ evaluated from the x axis. The
semiclassical BdG Hamiltonian on the circle is given by

ĤBdG(k,φ) =
(

ĥ(k) �̂(k,φ)
�̂†(k,φ) −ĥT(−k)

)
, (B1)

144504-8



SYMMETRY-PROTECTED VORTEX BOUND STATE IN . . . PHYSICAL REVIEW B 91, 144504 (2015)

where ĥ(k) = (�2/2m)(k2 − k2
F)1̂ is the Hamiltonian in the

normal state, and �̂ is OP which approaches

�̂(k,φ) = �B

kF

(−kx + iky kz

kz kx + iky

)
eiφ, (B2)

far away from the vortex core. The BdG Hamiltonian
has particle-hole symmetry defined by ĈĤBdG(k,φ)Ĉ−1 =
−ĤBdG(−k,φ) with Ĉ = τ̂xK and Ĉ2 = 1̂, where K is the
complex-conjugation operator.

The axisymmetric vortices in the 3He-B phase may have
three types of discrete symmetries: P1, P2, and P3 [19]. The
inversion symmetry P1 implies ĤBdG(k,φ) = ĤBdG(−k,φ +
π ). P2 is magnetic reflection symmetry that obtained by
as a combination of time reversal and mirror reflection
with respect to a plane including the vortex line: If we
take the xz plane as the reflection plane, P2 reads as
ĤBdG(k,φ) = P̂2ĤBdG(−kx,ky, − kz, − φ)P̂−1

2 , where P̂2 =
σ̂y τ̂zT̂ = iτ̂zK with the time-reversal operator T̂ = iσ̂yK. P3

is magnetic π -rotation symmetry around an axis perpendicular
to the vortex line, say, the x axis. P3 means ĤBdG(k,φ) =
P̂3ĤBdG(−kx,ky,kz, − φ)P̂−1

3 , where P̂3 = iσ̂zτ̂zK. Among
these discrete symmetries, we respect P2 and/or P3 in the
following since P1 does not provide symmetry-protected
defect zero modes in general. Following, we identify all
topological invariants relevant to existing vortex zero modes
in the B phase.

First note that the BdG Hamiltonian far away from the
vortex core can be written in terms of the gamma matrices
γμ = (−σzτx, − τy,σxτx, − τz) as

ĤBdG(k,φ) = ei(φ/2)γ4dμγμe−i(φ/2)γ4 − �
2k2

2m
γ4, (B3)

with dμ = (�Bkx/kF,�Bky/kF,�Bkz/kF,�
2k2

F/2m). The
gamma matrices γμ obey the Clifford algebra {γμ,γν} = 2δμν .
Whereas the BdG Hamiltonian near the core is different from
Eq. (B3), it is smoothly interpolated from this, with keeping
symmetry of the vortex. Therefore, the topological structure
of a vortex can be evaluated from the asymptotic Hamiltonian
(B3), subject to a set of symmetries of the vortex.

To clarify the possible topological structure, we furthermore
deform Eq. (B3) into the form of a Dirac Hamiltonian. For this
purpose, we may add the following topologically trivial system
with the same discrete symmetries:

Ĥ ′
BdG(k,φ) = −e−i(φ/2)γ4dμγμei(φ/2)γ4 − �

2k2

2m
γ4. (B4)

In comparison with the original BdG Hamiltonian, Ĥ ′
BdG(k,φ)

has a negative chemical potential −�
2k2

F/2m, and thus it is
deformable to a topologically trivial insulator without gap clos-
ing, by taking the limit �B → 0. This means that Ĥ ′

BdG(k,φ)
is topologically trivial. Adding the topological trivial band
to the original one, we have the extended BdG Hamiltonian
ĤeBdG(k,φ) given by the direct product of ĤBdG(k,φ) and
Ĥ ′

BdG(k,φ):

ĤeBdG(k,φ) =
(

ĤBdG(k,φ) 0
0 Ĥ ′

BdG(k,φ)

)
, (B5)

which is again written in terms of the gamma matrices as

ĤeBdG(k,φ) = ei(φ/2)�4dμ�μe−i(φ/2)�4 − �
2k2

2m
γ4, (B6)

where the new gamma matrices �μ are given by �μ = γμμz

with the Pauli matrix μi in the band space. The particle-hole
and other discrete symmetries imply that

[C,�1] = [C,�2] = [C,�3] = {C,�4} = 0, (B7)

{P2,�1} = [P2,�2] = {P2,�3} = [P2,�4] = 0, (B8)

{P3,�1} = [P3,�2] = [P3,�3] = [P3,�4] = 0, (B9)

with

[C,P2] = [C,P3] = [P2,P3] = 0 (B10)

[γ4 obeys the same (anti)commutation relations as �4]. The
extended BdG Hamiltonian is stable equivalent to the original
one in the sense of the K theory.

For the extended BdG Hamiltonian, we can introduce �5 =
μy that satisfies

�2
5 = 1, {�5,�μ} = 0, (B11)

{C,�5} = {P2,�5} = {P3,�5} = 0. (B12)

Using �5, we perform the deformation of the Hamiltonian that
preserves all the discrete symmetries (as well as the particle-
hole symmetry) except for P1:

Ĥα(k,φ) = Uα(φ)dμ�μU−1
α (φ) − �

2k2

2m
γ4, (B13)

where Uα(φ) is given by

Uα(φ) = ei(φ/2)[cos α�4+i sin α�4�5]. (B14)

Through this equation, the extended BdG Hamiltonian at α =
0 is smoothly deformed into the following Dirac Hamiltonian
at α = π/2,

ĤD(k,φ) = kx�1 + ky�2 + kz�3 + cos φ�4 + sin φ�5,

(B15)

where we have placed �B/kF = 1 and d4 = 1 and omitted the
regularization term −(�2k2/2m)γ4 for simplicity. The Dirac
Hamiltonian has the same topological properties as the original
BdG Hamiltonian.

To elucidate the topological structure of the Dirac Hamilto-
nian, we consider a family of Dirac Hamiltonians which have
the same form and the same symmetries as Eq. (B15). Even
for these Dirac Hamiltonians, �μ, �5, C, P2, and P3 should
satisfy the same commutation or anticommutation relations
as Eqs. (B7)–(B10), but their matrix representation is not
specified anymore. For the family of Dirac Hamiltonians,
�4 transforms like a mass term under the symmetries, so we
can clarify the topological structure by counting topologically
distinct �4 matrices consistent with the symmetries [14,45].

To count topologically distinct �4 matrices, we use the
fact that the symmetry operators and gamma matrices form
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a real Clifford algebra Clp,q that has p + q generators
{e1, . . . ,ep; ep+1, . . . ,ep+q} satisfying

{ei,ej } = 0 (i �= j ),

e2
i =

{−1, 1 � i � p

+1, p + 1 � i � p + q.
(B16)

For instance, consider the uvw vortex that only has the particle-
hole symmetry. The particle-hole symmetry C and the gamma
matrices other than �4 form Cl3,3 as

{�1J ,�2J ,�3J ; C,CJ ,�5}, (B17)

with

(�iJ )2 = −1, C2 = 1, (CJ )2 = 1, �2
5 = 1. (B18)

Here, we have introduced J representing the imaginary unit
“i” so that we can treat complex structure originated from the
antiunitary operator C. If we take into account �4 as well, the
Clifford algebra is extended to Cl3,4:

{�1J ,�2J ,�3J ; C,CJ ,�5,�4}. (B19)

Therefore, having a �4 matrix consistent with the particle-hole
symmetry provides an extension of the Clifford algebra from
Cl3,3 to Cl3,4, and vice versa. A set of the latter extensions
defines the classifying space R0, so topologically distinct �4

matrices can be counted as the number of the disconnected
parts of the classifying space, i.e., π0(R0) = Z. Correspond-
ingly, we can introduce the second Chern number defined in
Eq. (27) [43,44]. For a vortex in the 3He-B phase, however,
the second Chern number becomes zero since its asymptotic
Hamiltonian (B3) has an additional inversion symmetry. (See
also discussions in Sec. IV.)

For the o vortex, the corresponding Dirac Hamiltonian
should be subject to additional P2 and P3 symmetries. In the
presence of P2 and P3, symmetry operators and the gamma
matrices other than �4 form Cl4,4 as

{�1J ,�2J ,�3J ,C�2�5P2; C,CJ ,�5,J�3P2P3},
(B20)

then a �4 matrix extends this into Cl4,5 as

{�1J ,�2J ,�3J ,C�2�5P2; C,CJ ,�5,J�3P2P3,�4}.
(B21)

As the classifying space for the extension Cl4,4 → Cl4,5 is R0,
the BdG Hamiltonian with o vortex is classified as π0(R0) =
Z. The corresponding topological number is (w0 − wπ )/2
defined in Eq. (26) [15].

For the v vortex, the Dirac Hamiltonian has additional
P2 symmetry. Possible �4 matrices can be identified as the
extension of Clifford algebra Cl4,3 → Cl4,4:

{�1J ,�2J ,�3J ,C�2�5P2; C,CJ ,�5}
→ {�1J ,�2J ,�3J ,C�2�5P2; C,CJ ,�5,�4}. (B22)

The classifying space for the extension Cl4,3 → Cl4,4 is R−1 �
R7. Since π0(R7) = 0, the v vortex does not support a zero
mode protected by P2 symmetry.

Finally, consider the w vortex. In this case, the additional
symmetry is P3. Topologically distinct �4 matrices can be
identified by using the extension

{�1J ,�2J ,�zJ ; C,CJ ,�5} ⊗ {P ′
3}

→ {�1J ,�2J ,�zJ ; C,CJ ,�5,�4} ⊗ {P ′
3}, (B23)

withP ′
3 = CJ�2�3�5P3. This gives Cl3,3 ⊗ Cl0,1 → Cl3,4 ⊗

Cl0,1, which classifying space is given by R0 × R0. Therefore,
the topological classification of the BdG Hamiltonian with w

vortex is π0(R0 × R0) = Z ⊕ Z. The corresponding topolog-
ical invariants are the second Chern number in Eq. (27) and
the one-dimensional winding number defined in Eq. (26).

APPENDIX C: PHASE SHIFT ACROSS A VORTEX CORE

In this Appendix, we make a detailed explanation for the
excitation spectrum shown in Fig. 2(e) in terms of the OP
structure. When a vortex core is compensated by superfluid
components, the vortex bound state for quasiparticles across
the vortex core can be regarded as the Andreev bound state on
the junction with the compensated superfluid between the bulk
B phases. If the OPs of them are simultaneously diagonalizable
on a quasiparticle path, we can estimate the bound-state energy
from the phase shift on the vortex core.

The explicit OPs in the bulk B phase and for the induced
superfluid in the vicinity of an axisymmetric vortex are
described by

�̂B(k̄,ρ)=�B(ρ)eiφ

(− sin θke
−iφk cos θk

cos θk sin θke
iφk

)
(C1)

and

�̂core(k̄,ρ) =
(

C+0(ρ) cos θk+C++(ρ) sin θke
i(φk−φ) C0+(ρ) sin θke

iφk −C0−(ρ) sin θke
i(2φ−φk )

C0+(ρ) sin θke
iφk −C0−(ρ) sin θke

i(2φ−φk ) C−0(ρ) cos θke
2iφ − C−−(ρ) sin θke

i(3φk−φ)

)
, (C2)

where φk and θk denote the azimuthal and polar angles of the
quasiparticle momenta, respectively, and φ is an azimuthal
angle of the real-space coordinate. Since slightly induced
components C++ and C−− do not influence phase shifts of
the OP, we disregard them in the following discussion.

Let us focus our attention on the quasiparticle path across
the vortex core shown in Fig. 5(b). The azimuthal angles of the
quasiparticle momentum and the real space are φ=φk or φ=

φk + π , where the quasiparticle has the angular momentum
l=0. For the quasiparticles with l = 0, the OP of the vortex
core state in Eq. (C2) is simplified as

�̂l=0
core(k̄,ρ) = �A(θk,ρ)eiφk σ̂x + �β(θk,ρ)

1̂+σ̂z

2

+�−0(θk,ρ)eiφk e−iφk σ̂z , (C3)
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FIG. 5. (Color online) (a) OP components �A (dashed-dotted
line), �β (solid line), and �−0 (dashed line) in Eq. (C3) as a function
of the quasiparticle momentum θk and distance from a vortex core ρ.
(b) Thick arrow denotes a quasiparticle path defined by θk and φk .

where �A(θk,ρ) = (C0+ − C0−) sin θk , �β(θk,ρ) = (C+0 −
C−0) cos θk , and �−0(θk,ρ) = C−0 cos θk . Figure 5(a) shows
the θk and ρ dependence of the OP components �A(θk,ρ),
�β(θk,ρ), and �−0(θk,ρ), which are obtained from our
numerical results in Fig. 2(a).

As shown in Fig. 5(a), the A-phase component �A domi-
nates at the vortex core for θk =π/2. The quasiparticles with
momentum perpendicular to the vortex line can be regarded
as quasiparticles across the junction with the A phase between
the bulk B phase. The OPs of the bulk B phase in Eq. (C1)
and the A phase described by the �A term in Eq. (C3) are
simultaneously diagonalizable by using the unitary matrix

Û = exp[−i(π/4)(k̄ · σ̂ )]. (C4)

Then, they are transformed as

Û�̂B(φk,θk = π/2,ρ,φ = φk,φk + π )Û T

= ±�B(ρ)eiφk e−iφk σ̂z

(−1 0
0 1

)
, (C5)

where + (−) sign is taken for φ = φk (φ = φk + π ), and

Û�A(θk = π/2,ρ)eiφk σ̂xÛ
T

= −[C0+(ρ) − C0−(ρ)]eiφk e−iφk σ̂z

(
i 0
0 i

)
. (C6)

For the v vortex with real C0+ and C0−, comparison of
Eqs. (C5) and (C6) shows that the quasiparticles feel the
phase shift ϕ = ±π/2 for each spin sector. The eigenenergy
of the Andreev bound states on a junction with phase shift
ϕ is E ∝ ±| cos(ϕ/2)| [46,47]. Therefore, quasiparticles with
momentum θk = π/2 and angular momentum l=0 have an
energy gap in the vortex bound state. This gap corresponds to
the energy gap at kz = 0 and l=0 in Figs. 2(d) and 2(e).

On the other hand, Fig. 5(a) shows that the �−0 term
dominates around the vortex core for the quasiparticle with
momentum θk = 0. Note that �−0 and �β induced on the
vortex core have the same phase factor. We can simultaneously
diagonalize the OPs of the bulk B phase in Eq. (C1) and the
�−0 term in Eq. (C3) by using the unitary matrix

Û = exp

[
− i

2

(π

2
−θk

)
(ēφk

· σ )

]
, (C7)

where ēφk
= −x̄ sin φk + ȳ cos φk . After the unitary transfor-

mation at θk = 0, the OP of the �−0 term remains unchanged
and that of the bulk B phase transforms into the same form
in Eq. (C5). Therefore, quasiparticles with momentum k
almost parallel to the vortex line feel the phase shift ϕ = π .
This π -phase shift results in the l=0 excitation spectrum
approaching the zero energy at kz = ±kF as shown in Fig. 2(e).

In this sense, the �−0 term plays a crucial role in the
excitation spectrum. If we set only C+0 and C0+ components
to be nonzero near the vortex core as Ref. [30], we can
diagonalize the OP of the bulk B phase and compensated com-
ponents in the vortex core simultaneously by using the unitary
matrix in Eq. (C7) with θk =arccos[±√

2C0+/(2C0+ − C+0)],
where C0+ and C+0 have opposite signs. Since quasiparticles
with the momenta kz = ±kF| cos θk| feel the π -phase shift,
the l = 0 excitation spectrum should cross the zero energy
in 0 < |kz| < kF. However, we can obtain l = 0 excitation
spectrum crossing the zero energy at kz = ±kF because we
consider not only C+0 and C0+, but also the other induced
components.

The phase shift also explains the existence of the degenerate
Majorana zero modes in the w vortex. For the w vortex, since
C0+ and C0− in Eq. (C6) are pure imaginaries, quasiparticles
with kz = 0 and l = 0 feel the π -phase shift, which is
confirmed by comparison of Eqs. (C5) and (C6). The zero-
energy bound states at the particle-hole symmetric point owing
to the π -phase shift are exactly degenerate Majorana zero
modes.
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