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The properties of two molecular-based magnetic helices, composed of 3d metal Co and Mn ions bridged
by nitronyl nitroxide radicals, are investigated by density-functional calculations. Their peculiar and distinctive
magnetic behavior is here elucidated by a thorough description of their magnetic, electronic, and anisotropy
properties. Metal ions are antiferromagnetically coupled with the radicals, leading to a ferrimagnetically ordered
ground state. A strong metal-radical exchange coupling is found, about 44 and 48 meV for Co and Mn helices,
respectively. The latter have also relevant next-nearest-neighbor Mn-Mn antiferromagnetic interactions (of
~6 meV). Co sites are characterized by noncollinear uniaxial anisotropies, whereas Mn sites are rather isotropic.
A key result pertains to the Co helix: The microscopic picture resulting from density-functional calculations
allows us to propose a spin Hamiltonian of increased complexity with respect to the commonly employed Ising
Hamiltonian, suitable for the study of finite-temperature behavior, and that seems to clarify the puzzling scenario

of multiple characteristic energy scales observed in experiments.
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I. INTRODUCTION

Magnetic bistability at the molecular level has attracted
broad interest over the past decades in view of magnetic-
storage applications [1,2]. From a fundamental perspective,
molecules carrying a small number of interacting param-
agnetic centers but behaving like bulk magnets, otherwise
known as single-molecule magnets (SMMs), allowed the direct
observation of quantum tunneling of the magnetization [3], of
the Berry phase [4], and of magnetic chiral degrees of freedom
[5] (just to cite few remarkable phenomena), as well as the
manipulation of magnetization by light irradiation [6] or via
an applied voltage [7]. A large easy-axis magnetic anisotropy
is a key requirement to achieving bistability (namely, blocking
of the magnetization) in molecular magnets and is provided
by metal ions with unpaired electrons carrying a finite total
angular momentum. These anisotropic building blocks are co-
ordinated to organic ligands that are functionalized in order to
favor or shield the propagation of exchange interactions. This
synthetic strategy naturally leads to the formation of magnetic
systems with reduced dimensionality [8,9], in which exchange
paths may have finite connectivity (like in SMMs) or create
one-dimensional (1D) or two-dimensional (2D) networks.

During the 1970s and the 1980s, molecular 1D systems
became the object of intense investigation and helped test
the basic principles of equilibrium statistical physics on
realistic systems [10,11]. The natural evolution of this research
line led to the study of quantum-phase transitions, which
are still actively explored in 1D magnetic systems [12-14].
Starting from 2001, the observation of slow relaxation of the
magnetization in molecular spin chains promoted them to the
role of prototypical systems for the study of out-of-equilibrium
phenomena as well. By analogy with SMMs, slow-relaxing
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spin chains were called single-chain magnets (SCMs) [15].
However, the basic properties of SCMs are only partially
similar to SMMs, since in the first ones slow relaxation is
not exclusively determined by the total magnetic anisotropy.
In fact, in SCMs this phenomenon may be associated either
with the development of short-ranged spin-spin correlations
upon cooling or with the nucleation of a domain wall (DW) at
a defect site [16-19].

SCM behavior has been first observed in the com-
pound Co(hfac),(NITPhOMe), hereafter called CoPhOMe,
which is composed of Co(hfac), moieties bridged
by NITPhOMe radicals (where hfac = hexafluoroacety
lacetonate and NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-
tetramethylimidazoline — 1-oxyl-3-oxide) arranged in chiral
1D arrays [20]. Then slow relaxation of the magnetization and
hysteresis effects observed in CoPhOMe were rationalized in
terms of the kinetic Ising model proposed by Glauber [21]. In
the comparatively large literature on SCMs that followed, slow
relaxation has essentially always been interpreted in terms of
the Glauber model (or variations of it), which indeed makes it
possible to explain several remarkable features of CoPhOMe
[16-20,22-26]. Within the Ising model, both the correlation
length and the relaxation time are predicted to diverge at low
temperature according to an Arrhenius law and with the same
energy barrier. However, experimentally these two energy
scales turn out to be different in CoPhOMe [20], thus calling
for a deeper microscopic understanding of electronic and
thermodynamic properties of this compound. In the present
study, this issue is addressed showing that the mismatching
between the two energy scales mentioned above can be
justified, relaxing the hypothesis of large (virtually infinite)
uniaxial magnetic anisotropy, underlying the description in
terms of the Ising model.

According to the present understanding, the emergence of
SCM behavior in a given molecular compound requires that
(i) some anisotropy prevents the magnetization from
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reorienting easily, (ii) the exchange coupling mostly develops
along one dimension, and (iii) the relaxation time of the mag-
netization becomes macroscopic well above the temperature
at which residual 3D interactions trigger magnetic ordering.
Regarding the first requirement, high-spin d” cobalt(II) ions in
adistorted octahedral environment are the source of anisotropy
in CoPhOMe. The 1D character (ii) is guaranteed by the strong
metal-radical antiferromagnetic exchange along the chain
and by the absence of an exchange path between magnetic
centers belonging to different chains [20]. The (residual)
dipolar interaction indeed couples also spins belonging to
different chains of the crystal, but it is considered to be too
small and partially frustrated to induce 3D magnetic order
in CoPhOMe at relatively high temperatures. Interestingly,
its isostructural Mn-based compound, Mn(hfac), (NITPhOMe)
(MnPhOMe in the following), comprising isotropic high-spin
d’ ions, does not show slow relaxation of the magnetization
but exhibits a transition to a magnetically ordered phase at low
temperature (4.8 K) [27]. These isostructural molecular helices
have allowed a comparative investigation of the interplay
between structural chirality and magnetism, evidencing a
giant magnetochiral dichroism in the hard x-ray range for
the Co-based noncollinear spin chain, absent in the isotropic
manganese analog [28]. Moreover, visible light has been found
to promote fast relaxation in CoPhOMe through a kick-off
mechanism for the nucleation of DWs [26].

A comparative first-principles study of these archetypical
spin chains is therefore of great relevance and may evidence
which basic ingredients are needed to produce slow dynamics
avoiding—at the same time—3D magnetic ordering. As for
the last requirement (iii), from the microscopic point of view
a crucial issue is the relative strength of magnetic anisotropy
and characteristic exchange energy, the former being also a
key requirement for the observation of magnetochiral effects.
Here we address this issue by studying the electronic and
magnetic properties of both CoPhOMe and MnPhOMe via
density functional calculations. From these, an estimate for
the intrachain exchange coupling among different magnetic
centers is provided, as well as for the magnetic anisotropy
on the magnetic ions. The ab initio analysis, then, allows us
to propose an effective, albeit realistic, spin model suitable
for studying the thermodynamic properties, as well as slow
relaxation effects of CoPhOMe. Remarkably, our results
suggest that the exchange interactions in this SCM are larger
than previously believed and represent the largest energy
scale in the model, implying the emergence of broad DWs
and thus directly affecting the slow relaxation properties
of the SCMs; moreover, the increased complexity of our
proposed thermodynamic model can qualitatively explain the
observation of multiple energy scales in CoPhOMe.

The paper is structured as follows. In the first part (Sec. II),
the description of the microscopic properties of the systems
investigated by density-functional calculations is presented.
After a brief methodological section reporting the technical
details of the calculations (Sec. IT A), the structural properties
of the magnetic chains are reviewed, with particular attention
given to the magnetic building units (Sec. IIB). A detailed
analysis of the electronic properties is given in Sec. IIC,
followed by a discussion of the magnetic properties of the
two chains (Sec. IID). The study of the energetics of several
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higher-energy spin configurations made it possible to identify
and estimate the exchange interactions at play, whereas the
magnetic anisotropy has been quantified in related mononu-
clear Co and Mn complexes. In the second part (Sec. III), the
results obtained by density-functional calculations are used
as input for an atomistic spin Hamiltonian through which the
basic thermodynamics of CoPhOMe can be described. Finally,
the main results are summarized in Sec. IV.

II. MICROSCOPIC PROPERTIES BY FIRST PRINCIPLES
A. Methods

We performed ab initio calculations within spin-density
functional theory in the generalized gradient approximation
(GGA) [29], as implemented in the VASP materials modeling
package [30,31]; for Co and Mn, the 3d4s states were
treated as valence states, while for C, N, O, and F, the
2s2p were considered as valence states, within the projector-
augmented waves (PAW) method [32]. Magnetic calculations
were performed in both the collinear and the noncollinear
formalisms [33], including the spin-orbit interaction when
required. A plane-wave cutoff of 400 eV and a 2 x 2 x 1
k-point grid in the primitive cell’s Brillouin zone were adopted,
and energy convergence was ensured by a strict threshold of
10~% eV. To model molecular systems comprising transition
metals properly, an accurate treatment of electronic correlation
is crucial. We have addressed this aspect by performing
extensive calculations within the GGA + U approach in the
Liechtenstein formalism [34], in which a set of two effective
parameters (U,J) is employed to treat electron correlation,
where U describes the on-site Coulomb repulsion and J is the
on-site exchange correction; calculations were also performed
in the simplified Dudarev’s scheme [35]. For each system
investigated, a systematic study of the magnetic properties was
carried out, spanning U and J parameters over a large range of
values. In this way, we provided an overview of the dependence
of the magnetic properties on the correlation parameters,
and—most importantly—we ensured that our results were
robust and conclusions were not biased by an inappropriate
model description. Unless otherwise specified, results for three
sets of (U, J) values are presented in the following, denoted as
seta(Uy =5eV);setb (Uy = 6.5eV; Jy = 1.5eV),i.e., an
effective U as in set a but with the inclusion of a sizable J value,
which turned to be crucial to the aim of modeling the magnetic
anisotropy; and finally, set ¢ (Uy = 6.5 eV; Jy = 1.5 eV;
Uop = Un = 6 eV), which enhances the degree of localization
by inclusion of a Hubbard U also on p states of O and N atoms.

B. Structural properties

The crystal structures of the two chains, composed of
alternating M(hfac), moieties and NITPhOMe (denoted also
with the shortened term NIT, in the following) organic radicals
arranged in 1D arrays with helical structures generated by
a threefold screw axis, are shown in Fig. 1. Despite the
absence of chiral constituents the compounds form enan-
tiopure crystals, crystallizing in either the chiral P3; space
group or the chiral P3, space group. The experimental struc-
tures were used for the calculations, with lattice parameters
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FIG. 1. (Color online) Crystal structures of isostructural
CoPhOMe and MnPhOMe: (a) side view; (b) top view. The M (Co,
Mn) atoms are depicted as large blue spheres, and the O, N, and C
atoms are red, green, and brown spheres, respectively. For the sake
of clarity, F and H atoms are not shown. The hfac and NITPhOMe
molecules are highlighted in the side view; the trigonal symmetry of
the chains can be recognized from the top view.

a=b=11.29%4 A, ¢ =20.570 A for the Co chain and a =
b =11.281 A, ¢ = 20.846 A for the Mn chain.

We now discuss in closer detail the structural features of
the magnetic bricks of the chains, starting with CoPhOMe.
A view of the molecular cluster is shown in Fig. 2. The Co
ion is in a distorted octahedral environment, coordinated by
the O atoms to two hfac ligands (O3 and O4, and O5 and O6
for the two molecules; see Fig. 2), while the remaining sites
host the terminating O atoms of the NITPhOMe radicals in
cis position that connect two consecutive Co(hfac), moieties
in a chain. The Co-octahedral complex has low symmetry,
lacking a clear regular pattern. Nevertheless, as an attempt to

c

2.1=> b

FIG. 2. (Color online) Magnified view of the molecular cluster
of CoPhOMe, comprising the Co-octahedral complex and the
NITPhOMe radical bridging two Co atoms. A similar structure
characterizes also MnPhOMe.
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rationalize it, a main tetragonal compression of the octahedron
can be distinguished along the axis connecting the O atoms
of the two hfac molecules, the O3 and O6 sites denoted as
apical, whose distance is the shortest one (4.046 A). This
compression indeed corresponds to the maximum distortion
from the octahedral symmetry observed in the O3-Co-O6
angle, which is 166.62°, while the angle formed by the two
edging O atoms of the cis-coordinated NIT-radicals O1-Co-O2
(cf. Fig. 2) is 85.25°. Next, a secondary rhombiclike distortion
on the equatorial plane of the polyhedron can be revealed
by the different distances between the vertical O atoms,
namely 4.147 A for 02-O5 and 4.190 A for O1-O4. Focusing
on the bridging NITPhOMe radicals, in fact, two moieties
can be distinguished, as shown in Fig. 2, denoted as «
and B moieties. These are characterized by nonequivalent
structural patterns, whereby Co-O bonds are slightly larger in
@ (Co-O1 = 2.108 A) than g (Co-02 = 2.097 A) by ~0.5%,
and vice versa the O-N and N-C bonds are shorter in o with
respect to 8 moiety, by 1% and 2%, respectively.

Moving to MnPhOMe, the Mn-octahedral complex shows
a similar distortion pattern to the Co counterpart, characterized
by a main tetragonal axial compression, with apical O
atoms distances of 4.026 10\, and a smaller distortion on the
equatorial plane (frans O distances are 4.326 and 4.252 A).
The NITPhOMe features a structural pattern similar to the one
discussed above for the Co case, whereby the Mn-O bonds are
larger in the o (2.143 A) with respect to the 8 moiety (2.121 A)
by 1%, whereas the O-N and N-C bonds are shorter in the o
moiety by 2.5% and 0.1% compared to 8. Globally, the Co-O
bond lengths vary in the range (2.03-2.11 A), whereas Mn-O
ones are in the range (2.09-2.19 A), with Mn-O bonds longer
than Co-O ones by about 3%—4%.

C. Electronic properties

Experimentally, CoPhOMe is described by Co(Il) ions in
the high-spin 3/2 state, and NITPhOMe radicals carrying a
free electron (spin-%) that mediates the exchange interaction
between the Co ions. As already stated, Co ions are char-
acterized by a large easy-axis magnetic anisotropy [9,20].
Aiming at a systematic analysis of the dependence of magnetic
properties on the correlation parameters, we initially included
the Hubbard U parameter in the d-Co states and varied it in
the energy interval (0-5) eV, by searching for the magnetic
ground state. We found that the inclusion of Ug, values at
least of 3 eV is needed to correctly reproduce the high-spin
state of Co(II). As expected, the local magnetic moment on Co
enhances at higher U values; an optimal value of Uc, = 5 eV
was chosen. Let us briefly discuss the computed electronic
properties of the magnetic chains, and their implications for
the magnetic properties. In Fig. 3 the total density of electronic
states (DOS), together with the projected DOS of the magnetic
elements of the chains, the M ions, and the O and N sites
of the radicals, are shown. These calculations refer to the
(U,J) set a. For these U values, the chains are small gap
insulators, with a HOMO-LUMO gap (where HOMO stands
for highest occupied molecular orbital and LUMO stands for
lowest unoccupied molecular orbital) that amounts to 0.60 eV
in both Mn and Co cases. We, however, caution the reader that
the quantitative estimate of the gap value could be strongly
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FIG. 3. (Color online) Computed density of electronic states
(DOS) of CoPhOMe (top panel) and MnPhOMe (bottom panel). Total
DOS are shown (rescaled by a factor 0.1 for the sake of clearness)
together with the projected DOS relative to metal (Co, Mn) d states
and p states of selected O and N atoms of the NITs.

affected by the exchange-correlation functional, as the starting
GGA functional is known to severely underestimate the energy
position of the excited states. The HOMO and LUMO states
are mostly composed of the p states of O and N of the NITs
with equal weight, while the M states are pretty far from the
gap region. In CoPhOMe, the high-spin (S = 3/2) electronic
configuration is here visible in the d-resolved Co states: The
spin-up channel is fully occupied, the unoccupied states in
the spin-down channel are resolved as three peaked states:
a ty, state at 3 eV above the Fermi level (Ef) and two e,
states at higher energy (~4 eV above Ep). The occupied d
states strongly hybridize with the O-p states of the NITs in
the energy range between 3 and 1 eV below the Er. The DOS
of MnPhOMe presents similar features to the Co case, with
the characteristic composition of HOMO and LUMO states by
O and N atoms of the bridging radicals. The main difference
is found for the unoccupied down-spin states which appear at
higher energy, as they start at 4.5 eV above the Er, where two
major peaks can be distinguished, composing the 7,, states at
5 eV, followed by the e, states at 6 eV. Also in this case the
occupied Mn-d states are hybridized with the O-p states.

D. Magnetic properties
1. Magnetic moments

The converged magnetic ground state of CoPhOMe has a
ferrimagnetic (FiM) order, in which the neighboring Co atoms
and NITPhOMe molecules are coupled antiferromagnetically
(AF) and well reproduces the picture of a Co ion in high spin
state and a free electron delocalized on the bridging NITs. A
total magnetic moment of 6 u g/unit cell is found for this FiM
state, as expected since the cell can be seen as containing three
AF coupled (Co-NIT) magnetic dimers, each one featuring
an effective moment of 2 wpg. In Table I, the values of the
projected magnetic moments of the Co ions, as well as of the
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TABLE I. Projected magnetic moments on M (Co, Mn) and on
the O-N-C-N-O group of the NITPhOMe radicals corresponding to
the FiM magnetic ground state for CoPhOMe and MnPhOMe. The
atomic projections are performed within spheres of radius as follows:
Co (1.30 A), Mn (1.32 A), O (0.82 A), N (0.74 A), and C (0.86 A).
Values are in pp.

M 0, N, C Ny Og
Co (2.72) —0.16 —0.18 0.05 —0.20 —0.17
Mn (4.59) —0.16 —0.18 0.05 —0.18 —0.16

NITs, are reported. The Co site has a local moment of 2.72 u g,
and the free electron in the bridging NITs is localized on the
O-N groups, with a slight unbalance of local magnetic moment
towards the O-N group in the 8 configuration (0.04 ppg) with
respect to the o one; the C atom is weakly AF coupled to the
two O-N groups.

Turning to the other chain, in which the Mn(Il) ions are
in 3d° electronic configuration, a FiM ground state was also
found, given by the AF coupling of the magnetic bricks Mn and
NITs, and a total magnetic moment amounting to 12 p g/unit
cell. More precisely, the projected magnetic moments are
4.59 p p for the Mn ions; the unbalance between local magnetic
moments « versus 8 on the O-N groups, as discussed above for
the Co counterpart, here is reduced, with moments of —0.16
and —0.18 g on the O and N atoms, respectively.

2. Spin density

A complementary detailed picture of the magnetic structure
of the CoPhOMe is provided by the spin-density isosurfaces
shown in Fig. 4, with positive spin density centered on Co sites,
whereas the negative spin density (the radical’s free electron) is
equally distributed on the p states of the O and N atoms of the
NITs [cf. Fig. 4(a)]. The MnPhOMe is characterized by a sim-
ilar spin-density distribution (not shown). The only difference
that can be discerned between the two chains pertains the shape
of the spin density localized on the M ions, which mirrors
their electronic structure. As a matter of fact, the Mn ions are
characterized by a perfectly spherical distribution of the spin
density, as shown in the 2D sections cuts [Fig. 4(d)] due to the
full (zero) occupancy of the spin-up (down) channel. On the
other hand, the spin density on the Co sites shows distinctive
features of partially occupied e, orbitals, whereby the lobes
directed towards the O’s of the octahedral complex can be
distinguished in Fig. 4(c). Moreover, the noncollinearity of
local anisotropies of the Co-octahedral complexes can be seen
in Fig. 4(b), each showing features which are rotated by 120°
with respect to the preceding Co sites by trigonal symmetry.

3. Exchange coupling constants

In order to estimate the magnetic interactions at play
in the chains, spin-polarized density-functional calculations
were performed for an extensive set of collinear magnetic
configurations. Such configurations, as shown schematically
in Fig. 5, include higher energy configurations besides the
FiM ground state. These configurations are obtained by spin
flipping of single magnetic units (M- and NIT spin flips), or
of dimer M-NIT units in the & and B bonding (i.e., frustrating
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FIG. 4. (Color online) Isosurface plots of the spin density of
CoPhOMe: a side view in (a), and top view in (b), the latter displaying
only the positive spin density for the sake of clearness. Positive
(negative) values of the spin density are depicted as yellow (cyan)
lobes. Two-dimensional section cuts of the spin density taken in a
plane parallel to ab and centered on M ions for CoPhOMe in (c) and
MnPhOMe in (d).

only interactions of the « or § type; see Fig. 5), and include
the FM magnetic configuration as well. Note that achieving the
convergence for these selected magnetic configurations is not
a trivial task, as the free electron on NITs tends to delocalize;
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FIG. 5. (Color online) Schematic view of the set of collinear
magnetic configurations modeled to calculate the exchange inter-
actions in MPhOMe chains, with M = Co, Mn. From left to right:
the FiM (ground state), the single M- and NIT-spin flips, the dimer
(M-NIT) spin flips at the ¢ and B bondings, and finally the FM
magnetic state. The M and NIT spins are depicted as large blue and
small red arrows, respectively.
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TABLE II. Computed relative energies of the collinear magnetic
configurations for CoPhOMe and MnPhOMe, comprising the FiM,
the M and NIT spin flips, the dimer (M-NIT)spin flips, and the FM.
Calculations performed with Uy, = 5 eV (set a); energy values are in
meV.

Magnetic configuration CoPhOMe MnPhOMe
FiM 0.0 0.0
M spin flip 184.1 216.0
NIT spin flip 184.5 216.6
(M-NIT),, spin flip 139.3 173.4
(M-NIT)g spin flip 2144 213.7
FM 572.2 727.7

hence, a fine tuning of proper magnetic moments initializations
and constraints was needed. The energetics of this set of
magnetic configurations for CoPhOMe and MnPhOMe is
reported in Table II. These results pertain to the set a of
(U,J) parameters, but consistent values have been obtained
also for sets b and ¢ (not shown). For CoPhOMe, the FM
state, with a magnetic moment of 12 ppg/cell, is 572 meV
higher in energy respect to the FiM magnetic ground state.
Consistently, the energy cost of single Co and NIT spin flips is
similar (184 meV). The most interesting result concerns the (o
or ) dimer spin flips: There is a remarkable energy difference
between the two configurations, with the «-bond spin flip
favored by 75 meV with respect to the 8 one. Moreover, the
(Co-NIT), spin flip turns out to be, by far, the most favorable
static magnetic excitation. Moving to the Mn chain, the FM
state has a magnetic moment of 18 ppg/cell and is 728 meV
higher than the FiM ground state. The energy cost of a Mn spin
flip is 216 meV, and similarly to the Co case, the (Mn-NIT),
spin flip is the favored magnetic excitation, while the 8 one is
higher in energy by 40 meV.

An energy-mapping analysis within the broken-symmetry
approach [36] was carried out to derive the exchange coupling
constants, whereby the total energies obtained by first-
principles calculations were then mapped onto a Heisen-
berg spin Hamiltonian: Hex = Hpnir + HNnn comprising
nearest-neighbor (M-NIT) and next-nearest-neighbor (NNN)
contributions,

HuynNr = — Z[Ja Sor - S2r41 + Jg Sor - S2r—1], (1a)

Hann = — E [Ivm S2r - Sor42 + INITENIT S2r—1 * S2r 411,

r

(1b)

with S, (even sites) indicating the spins of the metal ions and
So,+1 (odd sites) indicating those of NIT radicals, where spins
are assumed with unitary modulus in order to directly compare
the strength of the exchange couplings in the two chains.
The index r labels different metal-NIT pairs in each chain.
Equation (1a) describes the coupling between the M ion and
the NIT-radical sublattices, the o and 8 bondings contributing
with a different coupling constant, whereas Eq. (1b) takes into
account both the M-M and the NIT-NIT exchange interactions.
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TABLE III. Exchange-coupling constants in CoPhOMe and
MnPhOMe, as derived by Eq. (1) and with the convention of
normalized spins in magnitude, computed for the three sets of (U, J)
correlation parameters. Values are in meV.

CoPhOMe Jo Jg Jco-co JINreNiT
a —34.8 —-53.6 —1.7 —1.6
b -31.3 —45.9 —-1.3 —1.4
c —23.8 —34.7 —-0.8 —-0.4
MnPhOMe Jo Jg JIMn-Mn JINreNIT
a —43.3 —-53.4 —6.6 —6.5
b —43.7 —-53.9 —6.7 —6.4
c —36.5 —44.3 -5.0 —4.3

The estimated exchange interactions are shown in Table III.
Analyzing the CoPhOMe (set a), we first notice the large
difference in the Co-NIT exchange coupling for the two
bondings, 8 being stronger by about 19 meV. Note also the
presence of longer-range NNN interactions between Co and
NIT spins of AF type (of equivalent strength of about 1.6 meV).
Moreover, by including a finite J in the GGA + U Lichtenstein
approach on Co sites (set ) and by increasing further the
correlation on O and N atoms (set c), the exchange-coupling
constants are subject to a reduction, as expected. We note that
a uniform reduction for the nearest neighbor interactions is
found, expressed by a constant ratio J,/Jg ~0.7 for the three
(U, J) sets here considered. However, this is not the case for
the NNN interactions, whereby Jnrrnir 1S more significantly
reduced by the inclusion of U on the O and N atoms than
the Jco-.co. This can be understood when considering that
the exchange coupling Jnnir involves two NITs and an
intermediate Co atom, and it is therefore more affected by
an increased localization onto the NITs atoms. The value of
the Co-NIT exchange coupling constant here calculated is
larger than the experimental estimation obtained by magnetic
susceptibility measurements [20]. However, it is important to
emphasize that the experimental estimates of the exchange
couplings strongly depend on the spin Hamiltonian that is
assumed to compute the magnetic susceptibility. This is crucial
for CoPhOMe, for which the assumptions of a pure Ising
model turns out to be inadequate, as shown in Sec. III,
where the thermodynamic properties of the system are derived
by using a more sophisticated effective spin Hamiltonian
based on density-functional results. Note, moreover, that
these exchange energy values are consistent with ab initio
calculations within the quantum chemistry approach carried
out on a simplified cluster model composed of a radical
Co-NIT pair (in the o bonding) [26]. The authors obtained
a value J, ~ —163.5 cm™! (—20.3 meV), evaluated from the
energy gap between the two lower spin states, i.e., the triplet
(S =1) and the quintet (S = 2) spin-states corresponding to
the AF and FM coupling of the Co-NIT spin pairs, respectively.

Moving to MnPhOMe, the computed exchange interactions
are AF type, both Mn-NIT and NNN ones, and are consider-
ably stronger than those found in the Co chain. Particularly,
the o bondings are stronger than the corresponding Co ones
by about 10 meV. Importantly, the NNN interactions are here
sizable (about 6.5 meV). Similarly to CoPhOMe, the magnetic
exchange at the o bond is weaker than at the 8 one, with a
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consistentratio J, /Jg ~ 0.8 for all the considered sets. Exper-
imentally, among the Mn-NIT chain complexes, MnPhOMe
has been characterized as the compound with the largest value
of AF coupling constant [27]. By using a nearest-neighbor
Heisenberg model to reproduce the experimental suscepti-
bility, an exchange coupling constant Jyp N = —344 cm™!
(—42.6 meV) was estimated. Due to the negligible anisotropy
of Mn(II) ions, the g factor of both Mn and NIT spins was fixed
to a 2.0 value for the fitting. Our results are in good agreement
with this experimental value and fully justify the choice of an
isotropic Heisenberg model (see below).

Some considerations about the calculated exchange cou-
pling constants are here given. (i) The magnetic building
units in both compounds are chemically rather similar, i.e.,
Co or Mn ions coupled via direct-type magnetic exchange to
nitronyl-nitroxide radicals; the main difference consisting in
an enhanced exchange pathway for the Mn compound, due to
the half-filled d-shell electronic configuration. Therefore, our
results of exchange coupling constants of strength of the same
order of magnitude for both complexes, yet with a stronger
coupling for the MnPhOMe, are fully consistent based on
these qualitative arguments. (ii) The strength of the exchange
coupling strongly depends on the structural parameters of
the magnetic constituents. As a matter of fact, a change in
structural parameters such as bond lengths and angles will
modify the degree of overlap of the local magnetic orbitals
contributing to the exchange pathways, and this will impact
on the resulting strength of the exchange coupling. Recently,
the magnetostructural correlations between Mn(II) ion and
NITs in trans- and cis-coordinated model complexes were
investigated by broken-symmetry DFT approach [37]. The
authors found that the exchange coupling constant Jyp, it
increases linearly by decreasing the bond distance Mn-O (O
of the NIT) in these complexes. If we consider solely the
effect of the Mn-O bond length variation going from the «
bond (2.14 A) to the B one (2.12 A) in MnPhOMe, from
their results we can roughly estimate an increase A Jym-NiT
of ~6%. Other structural parameters are involved as well,
and that may account for the variation of ~20% for the two
bondings in MnPhOMe, as indicated by our calculations. In
this regard, bond-angle variations are even more important, as
they can induce variations in the exchange coupling constants
up to 40%—-50% [37]. (iii) Finally, it is worth emphasizing that
the method adopted—by considering the whole experimental
structure within a periodic boundary approach and examining
various magnetic configurations—allowed us to enrich the
picture of the magnetic interactions at play: quantities which
are difficult to access experimentally and neglected within a
cluster-model approach. Notably, although metal ions are far
apart (the intrachain Co-Co and Mn-Mn distances are 7.815
and 7.878 A, respectively), we do appreciate non-negligible
NNN-exchange interactions, which overall may be particularly
relevant for the specific case of MnPhOMe. Interestingly, in
analogous chains comprising lanthanide ions and NIT radicals
NNN interactions are dominating [38].

4. Magnetic anisotropy

The anisotropy of the Co compound is ultimately of mag-
netocrystalline type, namely, single-ion anisotropy deriving
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from the d” electronic configuration in the octahedral field,
with a hole in the #,, orbitals. This electronic structure yields a
sizable orbital magnetic moment on the Cossites, in turn leading
to strong anisotropy due to the large first-order spin-orbit cou-
pling. The Co®" ion is therefore susceptible to the anisotropy
of the chemical environment, at variance with the case of
the Mn>*, which is in d° configuration and with negligible
orbital angular momentum. This leads to the different magnetic
behavior of the two systems. Due to the low symmetry of the
metal sites local chemical environment and related distortions
from octahedral symmetry, a direct ab initio calculation of
the anisotropy for the real chemical systems is needed. The
characterization of the local magnetic anisotropy of the M sites
in the chains turns out to be unfeasible due to the impossibility
to single out the single-ion anisotropy from the exchange
interactions with the confining radicals. To this purpose, we
have hence resorted to the molecular compound Co(hfac),-
(NITPhOMe),, hereafter called CoNIT,, which is essentially
the mononuclear variant of the chain, containing the octahe-
drally coordinated Co(II) ions with two hfac molecules and
two NITPhOMe ligands. The latter are coordinated in cis con-
figuration to the central Co ion through a single ON group [39].

Since the metal ion has essentially the same local co-
ordination environment in the mononuclear compound and
in the chain, the two complexes are expected to be char-
acterized by the same local anisotropy properties. The Co
single-ion anisotropy in the compound CoNIT, was evaluated
by performing magnetic calculations (in the noncollinear
formalism and inclusive of SOC) for the spin-trimer magnetic
structure, i.e., with the spins of the NITs collinear among
them and AF coupled to the spin of the intermediate Co
atom. In this way, the two Co-NIT exchange interactions are
fully satisfied and the energy variations obtained by rotating
the orientation of the (total) spin-trimer axis can be safely
attributed entirely to the Co single-ion anisotropy, since the
spins of the attached radicals are isotropic. The experimental
structure of the CoNIT,, which crystallizes in the triclinic
P1 space group [39], was considered for the calculations.
The magnetic anisotropy energy (MAE) was characterized by
total energy calculations with the axis of the total spin trimer
spanning the three planes of a Cartesian system XY Z (in steps
of 15°).

Regarding the Mn compound, the experimental structure is
not available in the literature. Therefore, we used the structure
of the CoNIT, and replaced the central Co atom with Mn.
The Mn-O bond lengths in the octahedral complex are shorter
in this model system compared to the experimental structure
of the MnNIT, compound, and this is expected to slightly
overestimate the magnetic exchange between the Mn ion and
radicals. However, being aware of this limitation of the model,
we resort here to the molecular cluster solely to inspect the
single-ion anisotropy, and we believe this should not affect
significantly the results for this specific purpose.

As an additional methodological remark, we found that the
magnetic anisotropy critically depends on the parameter J
in the GGA + U formalism, while the role of the parameter
U is negligible. Specifically, whereas the anisotropy profile
is overall consistent, with location of minima and maxima
in the energy landscape being unaltered, the strength of the
anisotropy enhances with increasing J values. Based on that,
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FIG. 6. (Color online) Magnetic anisotropy energy profiles for
Co- and Mn-based molecular compounds CoNIT, and MnNIT,, as
the orientation of the total spin is varied along three planes of a
Cartesian system XY Z. The axes (X, Y, Z) of the reference Cartesian
system are related to the crystallographic directions (a,b,c) of the
triclinic lattice as follows: a = X; b lies on the XY plane at 64.51°
with respect to X axis, the ¢ axis is tilted by 11.97° with respect to
the Z axis and with projection on the XY plane lying on the first
quadrant. Energies are relative to the value on the X-axis direction.

the results here presented are relative to set ¢, with M ions
subject to a sizable J value of 1.5 eV. As a matter of fact,
calculations with J = 0, i.e., set a, show a reduced anisotropy
profile. It is worth noting that noncollinear calculations
were performed by achieving full self-consistency after the
inclusion of a SOC term with a more accurate energy threshold,
as we realized that standard magnetic calculations with non-
self-consistent SOC cycles yield anisotropy properties largely
quenched. The noncollinear magnetic configurations were
generated by adopting the constraining technique of the local
magnetic moments orientation, as implemented in the VASP
code. This approach is essentially based on the inclusion of
an energy penalty term to the total energy that drives the
local moments to the desired directions. We set the energy
threshold to 1077 eV and, after proper initialization of the
magnetic moments along defined spatial directions of the
total spin, increased stepwise the weight of the penalty term,
until convergence of the desired noncollinear state within
constrained SOC approach was achieved.

MAE profiles for both compounds are shown in Fig. 6. It is
evident that, while the Mn compound is nearly isotropic, with
the largest energy variation of about 0.15 meV, the CoNIT,
shows a sizable magnetic anisotropy with the largest energy
barrier ~3.85 meV (46 K). Additionally, upon closer inspec-
tion, the anisotropy on each Co ion turns out to be uniaxial.
This is evidenced by the markedly deeper energy barrier for
magnetization reversal experienced by the spin trimer in the
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XY plane compared to the shallower barriers (saddle points)
along the other two sampled planes. These results are in
good agreement with the experimental characterization of the
MnPhOMe as an isotropic Heisenberg-like FiM spin chain, as
well as with the description of the CoPhOMe as a noncollinear
FiM spin helix, deriving from the uniaxial character of Co-
octahedral complexes. In this second spin chain, the easy
axis of each Co is not collinear with respect to the ones of
neighboring Co atoms but follows the threefold periodicity of
the crystal. By mapping the estimated local easy axis of the Co
ion in the molecular compound onto the crystal frame of the
chain, the tilt angle formed by the Co spins relative to the chain
axis ¢ (polar angle ) can be estimated, yielding 6 = 50°—55°.
This value is in reasonable agreement with the experimental
estimate given in Ref. [40] (see below). However, a direct
comparison of the MAE obtained by DFT calculations with the
EPR characterization of the anisotropy [39] in the compound
CoNIT, shows some inconsistencies regarding the absolute
orientation of the anisotropy easy axis. This aspect requires
further investigation and will be the subject of future work.
Notwithstanding, it is worth emphasizing that this discrepancy
between theory and experiments about the absolute easy-axis
direction in the mononuclear compound will impact—once
mapped onto the chain crystal frame—only on the azimuthal
angle ¢ (i.e., the orientation on the ab plane), which is overall
not relevant due to the chain trigonal symmetry, while the polar
angle 6 is well reproduced.

Additionally, the anisotropy was assessed directly in the
crystal frame of the chain compound. A model system was
used for this purpose in which two Co atoms were replaced
by Zn’s in the unit cell of CoPhOMe. In this way, the
diamagnetic Zn(Il) ions turn off the magnetic interactions
with the neighboring radicals, and the magnetic complex is
hence simplified to a spin trimer comprising the Co site AF
coupled to two lateral NITs, though in the helical structure.
By rotating the axis of the total spin of the complex along
defined directions, the anisotropy of the local Co-octahedral
environment was probed. The set of directions included the
Co-O axes and bisectors of the octahedral local frame. Due to
the demanding computational task required, the SOC term was
included in a non-self-consistent way. Although the compari-
son remains qualitative since non-self-consistent calculations
do not account for the whole anisotropy strength, the results are
in accord with those performed on the mononuclear complex,
namely, easy axis as well as energy valleys/rises of the MAE
profile in the two local frames coincide.

Static measurements of the magnetization in CoPhOMe
show that the magnetization relaxes slowly below a tem-
perature of 6 K when an external magnetic field is applied
parallel to the trigonal axis, while no (dynamic) hysteresis is
observed for magnetic fields applied on the trigonal plane [20].
This observation can be ascribed to noncollinearity among
anisotropy axes, as discussed in Sec. III B.

III. FINITE-TEMPERATURE PROPERTIES

The thermodynamics of spin chains is dictated by the tem-
perature dependence of the correlation length &, i.e., the char-
acteristic scale of decay of pair-spin correlations. For infinite
chains, this intrinsic length scale is proportional to the product
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of the static susceptibility (x) measured in zero magnetic
field and temperature: x T ~ &. The last relation is usually
employed to extract information about the spin-Hamiltonian
parameters directly from experimental susceptibility data. In
the absence of anisotropy (as in the case of MnPhOMe) the
correlation length is expected to diverge like Jo /T with
decreasing temperature (Jex being some effective exchange
constant describing the coupling between nearest neighbors).
In spin chains with uniaxial anisotropy, one expects & ~ e®¢/T
where the characteristic energy scale A; may have a residual
dependence on T arising from renormalization due to spin
waves [41] (kg = 1is assumed henceforth). Such a mechanism
is not effective when elementary excitations are sharp (Ising)
DWs [42], which happens when the uniaxial anisotropy is
comparable to the exchange interaction or larger. In this
case, Ay = 2J throughout the whole range of temperatures,
where £ exceeds some lattice units (assuming a unitary spin
modulus). When the exchange energy is larger than the
anisotropy energy, elementary excitations are broad DWs and
the relationship between Az—accessible in experiments—and
spin-Hamiltonian parameters is not straightforward anymore.
The anisotropy energy computed for the CoNIT, and the
estimates of J, and Jg obtained for CoPhOMe suggest that
in this spin chain elementary excitations should actually
consist of broad DWs. The scenario is further complicated
in CoPhOMe by the noncollinearity among local anisotropy
axes. In the following, the question of how the energy barrier
A¢ is affected by the degree of noncollinearity is addressed.

A. Model and results

To model the thermodynamics of CoPhOMe, we propose
the Hamiltonian

H=-— Z[Jex Sp.2r . (6p.2r+1 + 6p,2r71) + Sp,erZrSp,Zr
p.r

+ /“LB(gB : 6p,2r+1 + GB : Sp,Zr)]v (2)

where Co spin operators are replaced with classical vectors
[Sp2-] =1 and 6 241 are Pauli quantum operators, repre-
senting NIT spins. A uniaxial anisotropy was assumed for each
Co in the corresponding local frame, namely, D, = D, =0
and D, = 46 K (obtained from DFT calculations on CoNIT)).
Each of these anisotropy tensors is reported to the crystal
frame by a different rotation parametrized by a standard
matrix R(g,0,v%), where ¢,0,1 are Euler angles. More ex-
plicitly, D>, = R(¢,0,%) diag(Dx,Dy,DZ)RT((p,Q,Ip), where
diag(Dy,Dy,D;) indicates the 3 x 3 diagonal matrix with
eigenvalues Dy, D,, and D,. The crystal symmetry imposes
¢ =2mr/3, with r = 1,2,3, so that the index r labels the
atoms inside the cell. p is the cell index and ideally extends
to infinity. Due to our choice of vanishing D, and D,, the
tensor 52, is independent of the i angle. Therefore, the
degree of noncollinearity is uniquely parameterized by 6: For
6 = 0° anisotropies are collinear and point along the chain
axis ¢, while for 6 = 90° local anisotropy axes lie on the
ab plane, with neighboring axes forming an angle of 120°.
The coupling between Co ions and the magnetic field should
properly be described by a Landé tensor. However, since the
Zeeman term does not affect the energy barrier Ag, a scalar
Landé factor was assumed for both Co atoms and NITs, with
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FIG. 7. (Color online) Susceptibility along the chain axis x; =
oM, /9B computed in B = 0 for § = 0° (dots), 40° (crosses), 50°
(stars), 52° (open squares), 54° (solid squares). The arrow indicates
the direction of increasing 6. Solid lines represent the linear fittings
of low- and high-temperature barriers: AIE"W (black line) and Ag'gh
(red line).

G=2x3/2=3and g =2 x 1/2 =1 (including the spin
modulus). Moreover, only the exchange coupling between
each Co and the neighboring radicals was considered and set
to Jex = —500 K. This value is intermediate between J, =
—404 K and Jg = —622 K, obtained from the set a of DFT
calculations. In Appendix A it is shown that distinguishing
between J,, and Jg does not alter the thermodynamic properties
of this model in the temperature range of interest and for
this choice of parameters. The mapping of the model with
Jo # Jg into a model with a unique exchange coupling Jex
relies on assuming broad DWs. Therefore, for values of D,
consistent with the formation of sharp DWs this equivalence
is not guaranteed.

Equilibrium properties at finite temperature can be deduced
from the knowledge of the partition function Z, which is
related to the free energy F by the fundamental equation
F = —T In(Z). The magnetization and the susceptibility are
given by the first and the second derivatives of F with respect
to the applied field. These quantities have been computed
for the infinite chain, i.e., N, — oo, with the transfer-matrix
technique. Details about this method, including the treatment
of quantum operators 6 ,, 5,1, are given in Appendix B.

We focused on the susceptibility x; = 0M) /9By along the
chain axis ¢ computed in zero field for different values of
the angle 6. In Fig. 7 these results are plotted as x; T versus
1/T in a log-linear scale in order to highlight the exponential
divergence of the correlation length ~e®¢/” and possible
deviations from it. For each value of 6, two “linear regimes”—
corresponding to two values of Az—can be identified at
low and intermediate 7. For a given 6, the value of A; is
systematically larger at low T than at high 7. Black and red
lines are drawn on top of the x| T curve computed for 6 = 54°
to exemplify the two linear fittings. Enlarging the horizontal
scale two distinct slopes can be highlighted for smaller 6
angles as well. The two energy barriers corresponding to
each 0 are plotted with symbols in Fig. 8: blue stars for the
low-temperature Alg’w and red crosses for the high-temperature
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FIG. 8. (Color online) Energy barriers A!;W (blue stars) and Agigh
(red crosses) extracted from the susceptibility curves at low and
intermediate temperatures, as described in the text, are plotted with
symbols as a function of 0. Error bars are determined by the
uncertainty on the fitted slopes. The upper, black line represents
the DW energy &4y (0); the dashed blue and the red lines represent
the same quantity rescaled to the value of A obtained for § = 0 at
low and high temperature, respectively [see Eq. (4)].

high . . . .
Ag € As noncollinearity among anisotropy axes is increased,

by increasing 6, both high- and low-temperature values of A
decrease: The former passes from 210.4 K in the collinear
case (0 = 0°) to 30.9 K for 6 = 54°; the latter ranges from
280.2 K to 50.9 K when 8 is varied in the same interval.
The existence of two energy barriers AIEOW and Aglgh is not
due to noncollinearity. In fact, this phenomenon occurs also
in ferromagnetic Heisenberg chains with collinear anisotropy
axes for ratios of D, to the exchange energy compatible with
the formation of broad DWs [9,41,42]. As anticipated, this
is in contrast to what happens in the limit of sharp DWs,
where Ag takes a single value, right equal to the DW energy.
Moreover, in Heisenberg chains with broad DWs and collinear
anisotropy Ag is always smaller than the DW energy. At low
temperature this is due to the interplay between DW excitations
and spin waves. More precisely, for each DW that is added to
the system,' two Goldstone modes appear in the spin-wave
spectrum [43] that are associated with translational invariance
of the DW center and with the degeneracy with respect to
the azimuthal angle (e.g., Bloch and Néel DW have the same
energy if D, = D,) [41]. Besides this, the presence of DWs
also modifies the density of states of spin waves with respect to
the case in which the last ones are superimposed to a uniform
spin profile. All this results in an entropic contribution that
affects the correlation length and makes the low-temperature
Aé"w smaller than the DW energy [44,45]. Still in collinear
chains, the further suppression of A¢ occurring at intermediate
temperatures has been justified in the framework of Polyakov
renormalization of spin Hamiltonian parameters [41,42].

!"This description holds as long as DW excitations are sufficiently
dilute, namely, at sufficiently low temperature.
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By analogy with the collinear case, we may infer that the
suppression of A; with increasing temperature observed in
our noncollinear model—at fixed 6—also emerges from the
interplay between spin-wave and DW excitations. In fact,
with some additional hypotheses based on Jex > D, (see
Appendix A) and setting B = 0, Hamiltonian (2) can be
mapped into the following functional:

H= / ['Jf (2.8 — %DZ (3cos?6 — 1) (Sf)z] dz. (3)
This functional is formally the same as the continuum version
of the Heisenberg Hamiltonian with collinear anisotropy
axes discussed before. Note that the penalization due to the
misalignment of neighboring spins is halved with respect to
the ferromagnetic Heisenberg chain (| Jex | /4 instead of Jex/2),
because the coupling between two consecutive classical (Co)
spins is mediated by the quantum spin of the interposed NIT,
and the uniaxial anisotropy is replaced by the 6-dependent
term D (3 cos?§ — 1)/2. Thanks to this mapping, the analytic
expression giving the cost to create a DW in the Heisenberg
chain with collinear anisotropies [46] can be used to get
Eaw(0) = \/ 2|Jex| D,(3 cos? O — 1). Remarkably, the effective
anisotropy [and &gy (f) with that] vanishes at the magic
angle 6 = 54.7°, above which both the magnetization and
the susceptibility become larger on the ab plane than along
the ¢ axis (parallel to z). £ (0) is plotted as a solid black line
in Fig. 8. In collinear chains both high- and low-temperature
A¢ are smaller than &y, but proportional to it [42]. According
to Fig. 8, this trend seems to be maintained in CoPhOMe, in
spite of its noncollinear structure. To better verify this trend we
rescaled E4y(0) to the high- and low-temperature values taken
by A¢ in the collinear case (6 = 0°). The corresponding curves
are plotted with lines of the same colors as the fitted barriers
Ag (symbols). The agreement is quantitative within 5% up to
6 = 45°, while larger deviations appear when 6 approaches
the magic angle. For 6 < 45° we can, therefore, express A; in
terms of the spin-Hamiltonian parameters and the 6 angle as

AT 2 0.69 Eg(8) = 0.69/2|Jex| D, (3 c0s2 6 — 1),
)

ALY > 0.92 E44(8) = 0.92y/2]Jex| D, (3 c0s? 6 — 1),

where the superscripts stand for high and low T, respectively.

For the sake of completeness, we mention that Hamiltonian
(2) is suitable to model MnPhOMe as well, provided that the
anisotropy term is removed. In zero applied field the relevant
observables can be computed analytically [47].

B. Comparison with experiments

The angle that anisotropy axes form with the ¢ axis in
CoPhOMe is estimated to be 6 ~ 50° or larger by DFT
calculations. A similar estimate was already reported in the
early works on this compound based on the (small) difference
between the saturation magnetization measured along the
chain axis and on the ab plane [40,48]. For this value of
6 and the computed parameters (set a) the DW energy
is &w(50°) =105 K. In the following we focus on the
high-temperature Aglgh, which is the only barrier accessible
experimentally. In fact, finite-size effects—induced by the
presence of naturally occurring defects [17,19]—and slow
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dynamics prevent the correlation length, and x consequently,
from diverging indefinitely as temperature is lowered. The
numerical transfer-matrix calculation yields Ag'gh =176 K,
which falls in the correct range, even if a more quantitative
comparison of this thermodynamic model with experiments
would require a direct fitting of the susceptibility data. At
present, it is important to stress that the observation of Ag of
the order of 100 K does not necessarily imply that | J.x| be of
the order of 50 K, as the Ising model would prescribe: With
the more realistic model Hamiltonian in Eq. (2) an estimate
of Jox = —500 K obtained from ab initio calculations can be
absolutely consistent with a much smaller Ag.

When it was first synthesized, the novelty of CoPhOMe
consisted of displaying slow relaxation of the magnetization.
The relaxation time was observed to obey an Arrhenius
law 7 = 19e®/T over ten decades, which was explained in
the framework of the Glauber model [18,19,23-25]. Strictly
speaking, the Glauber model is a kinetic version of the
Ising model, which assumes a very large (ideally infinite)
anisotropy. Even if in realistic SCMs the anisotropy is finite,
this description has proven to be appropriate at the condition
that elementary excitations are sharp DWs. In particular, at
low temperature the relaxation process initiates by reversing
a spin lying at one of the two edges of each open chain (see
below), with an activation energy equal to the DW energy
and, therefore, to Ag. The diffusion of a sharp DW requires
an additional activation energy (usually named A,4) at each
step [16,18]. Finally, in the large-anisotropy limit, one has
A, = Ag + Ay

The fact that DFT calculations yield |Je| >> D, calls for
a revision of the mechanism behind slow relaxation and
the relative energy scales, because if elementary excitations
are broad DWs, the Ising and the Glauber models are not
applicable. So far there is less quantitative agreement between
theory and experiments on SCMs with broad DWs and the
interpretation of available data is still controversial. However,
theoretical arguments suggest that the diffusion of a broad DW
does not proceed by thermal activation [42] (i.e., Ay = 0).
The energy cost to nucleate a DW from one edge of an open
spin chain is expected to be of the order of the DW energy
at zero temperature &gy, (6). A later experimental study on
CoPhOMe—in which the amount of nonmagnetic impurities
was varied in a controlled way—confirmed that the relaxation
process indeed initiates at one edge of a finite segment of
coupled spins [17,19]. Since in CoPhOMe 6 is certainly larger
than 45°, Eq. (4) does not hold exactly. However, this equation
can still help estimate the relation between Aglgh and A, the
latter being identified here with the DW energy: One expects
the measured A; to be roughly 70% of A.. From the value of
Jex used in Ref. [20] to fit the susceptibility data, we deduce that
Ag >~ 110K for that specific sample; in the same reference it is
reported that A; = 154 K, which yields a ratio between these
two energy barriers in fair agreement with our expectation.
In conclusion, this alternative paradigm based on broad DWs
seems plausible. Further details about how the diffusion of a
broad DW can be mapped into the Glauber model are given in
Appendix C.

The Glauber model successfully justifies the observation of
slow relaxation in CoPhOMe only for magnetic fields applied
along the chain axes. As already mentioned, this originates
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from noncollinearity among anisotropy axes [24,40]. By virtue
of Hamiltonian (3), the same phenomenon can be justified in
terms of the behavior expected for Heisenberg chains with
collinear anisotropy. As far as 6 is smaller than the magic
angle, the effective anisotropy D.(3 cos?6 — 1)/2 is positive
and the global easy axis points along c. The creation of a
DW by thermal activation is thus required to reverse the
magnetization along the ¢ axis (|| z). Conversely, rotating the
magnetization on the ab plane should not require any activation
energy. For larger 6, the spin chain becomes easy plane, but
still the magnetization reversal on the ab plane should not be
a thermally activated process because in this case the system
should behave similarly to the XY model.

IV. CONCLUSIONS AND PERSPECTIVES

In this work, we have addressed—by means of density-
functional calculations—the study of two archetypical organic
magnetic chains, composed of M (hfac), moieties bridged by
NITPhOMe radicals, with M = Co, Mn. They are structurally
very similar, but their magnetic behavior is remarkably
different. CoPhOMe chain is characterized by SCM behavior,
whereas MnPhOMe is described as an isotropic spin chain.
A detailed investigation of the magnetic, electronic, and
anisotropy properties has been performed, enriching the
understanding of these systems, with particular emphasis on
the description at the atomic scale.

Consistently with experiments, we find that both chains
have a FiM ground state, as a result of the local AF
coupling between the metal ion and the radical. The exchange
interaction M-NIT is rather strong, of the order of 30—50 meV
for CoPhOMe, and even of greater strength for MnPhOMe.
The latter is characterized also by sizable NNN exchange
interactions (between Mn-Mn and NIT-NIT couples) of AF
type. Importantly, we find that there are two types of M-NIT
exchange couplings, of considerably different strength. This
finds a correspondence in their structural features, whereby
the bridging NITs are characterized by two nonequivalent
bondings with the confining metal ions. The difference in
CoPhOMe is about 19 meV, while in MnPhOMe it is ~10 meV.

The electronic properties are pretty similar in the two
chains, both systems behaving as small gap semiconductors.
The HOMO and LUMO states are essentially composed of the
p states of the spin-polarized O and N atoms of the NITs, while
the occupied d states of the transition metals are quite far from
the gap, strongly hybridizing with the O states. The magnetic
anisotropy has been characterized in the mononuclear variant
of the chains, the M-NIT, compound, which is a magnetic
spin trimer. We find that the Mn compound is almost isotropic,
while the Co compound is characterized by a local uniaxial
anisotropy with an estimated energy barrier of the order of
4 meV. This scenario is consistent with the phenomenological
description of CoPhOMe as a noncollinear spin spiral, with
local anisotropy easy axes tilted with respect to the helix axis.

We have proposed a spin Hamiltonian, Eq. (2), that enables
the comparison of magnetic properties determined by ab initio
calculations with experiments in a very efficient way, still keep-
ing the rich complexity of CoPhOMe (the same Hamiltonian
without the anisotropy term describes also the thermodynamics
of MnPhOMe). We have focused on the dependence of a
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characteristic energy scale Ag on the structural properties of
CoPhOMe, parameterized by the angle 6 formed by the local
anisotropy axes of Co ions with the ¢ axis. We derived an
analytic formula that describes the nontrivial dependence of
Ag on the MAE, on the Co-NIT exchange coupling and on 6.
This proves the increased complexity of our thermodynamic
model with respect to the Ising model-—commonly employed
to rationalize SCMs—in which it is trivially Az = 2Jc.

The relative strength of the Co-NIT exchange coupling with
respect to the MAE is consistent with the formation of broad
DWs as elementary excitations. In this sense, DFT results
provide a new framework to describe the static and dynamic
properties of CoPhOMe and solve the apparent contradiction
of A¢ being significantly different from A, (barrier of the
relaxation time): The latter is expected to be of the order of
the DW energy gy (0) and the former roughly 70% of it.

From a methodological perspective, the present study
shows how the molecular approach spontaneously leads to
isolate, from an extended system, individual building blocks
that can be studied with deeper accuracy, both theoretically
and experimentally. The crucial information extracted from
those building blocks and from their arrangement in the
extended system is retained at a coarse-grained level, in
a spin Hamiltonian through which equilibrium and out-of-
equilibrium thermodynamics can, in principle, be modeled.

From a more applicative point of view, CoPhOMe could
serve as a playground to better understand how thermal
fluctuations affect broad DWs, typically hosted in ferro-
magnetic nanowires and described through a Hamiltonian
[49-51] equivalent to Eq. (3). Domain walls in nanowires
have been proposed as magnetic-memory elements to be
manipulated by electric current [52-55] or injected spin
waves [43,56]. Moreover, a detailed characterization of the
electronic properties of these magnetic molecular helices is
also relevant to further understand the interplay between
structural chirality and magnetism in these materials. For
instance, this interplay may give rise to inverse magnetochiral
effect [57], i.e., magnetization induced by nonpolarized light,
or chiral-induced spin selectivity effects [58,59], both of
relevance for spintronics applications.
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APPENDIX A: CONTINUUM LIMIT

Let us start considering the continuum limit for the M-NIT
exchange interaction. Hamiltonian (1a) is treated at the same
level of approximation as Eq. (2); namely, Co spin operators
are replaced with classical vectors |S,,| = 1 and NIT spins
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with Pauli operators 6 ,41:

My = = ) o Sor 6ot + Jp o - G2 (AD

For a given configuration of the two classical spins (repre-
senting metal ions) Sy, and Sj,4,, the interlaying NIT spin
experiences an exchange field h$} = JoSor + JgSor42. The
corresponding eigenvalues &|h5; ;| depend parametrically on
the orientation of both S,, and S,, . Let us first compute the
squared modulus of the local exchange field,

2
|h§)r(+1| = (JaS2r + ]ﬁs2r+2)2
= J2+ I} +2JadsSo - Saria
= I+ T3+ 2Judp — Juds Sor — Spy42)?

~ 7+ J5 4 20uds — JuJs (0.S) (A2)

where we used the fact that classical spins have unitary
modulus and substituted the difference between successive
classical spins by the spatial derivative. This approximation is
essential to the continuum limit and relies on the assumption
that large misalignment between S, and S,,,, is highly
unlikely because energetically not favorable. Consistently, a
Taylor expansion with respect to this derivative can also be
performed to obtain

S| = 1o + Jsly/ 1 — p (3,S)°

1
SEP AR A [1 - §p<azS>2} LAY

with p = J, Jg/(Jo + Jf;)2 always smaller than one. Small
deviations from the ground state of Hamiltonian (Al) are
described by the following functional of classical spins:

| Jo + Jgl
Heszﬂ

Note that for J, = Jg = Jex itis p = 1/4 and the exchange
contribution given in Hamiltonian (3) is obtained. Moreover,
as long as the continuum approximation is legitimate, one
expects to obtain the same results using either J, # Jg or an
effective unique coupling Jeiy = 2J,Jg/(Jo + Jp). We have
seen that the set a of DFT calculations yields J, = —404 K
and Jg = —622K and that both are significantly larger than
the estimate obtained for D,. Therefore, the continuum limit
should be justified for the set of parameters considered
in this work [42]. If, in turn, all the excitations that are
relevant for thermodynamics are contained in Hamiltonian
(3), it should be equivalent to compute, e.g., the susceptibility
using two different coupling J, = —404 K and Jg = —622
K or a unique effective coupling. This expectation is indeed
confirmed quantitatively by Fig. 9 where curves computed
using the two different values for J, and Jg given above or
Jeit = 2J0Jp/(Jo + Jg) =2 —490 K are shown. This justifies
why a single value of the exchange coupling, rounded to
Jex = —500 K, was used to study thermodynamic properties.

In the following we show that in the continuum limit
the anisotropy energy in Hamiltonian (2) transforms into the
uniaxial anisotropy term of the functional (3). Let us start

0 / (8,S)* dz + const. (A4)
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FIG. 9. (Color online) x; = dM,/d By along the chain axis com-
puted in B =0 for 6 =40°,52°. Line-plus-symbol curves are
obtained using the DFT values (set a) for J, # Jg; symbols
correspond to calculations performed with a single, effective value
of Jox = 2J,Jp/(Jo + Jp) (see the text).

rewriting the anisotropy energy as

Hani = —D; / Z(er : S)Z(S(Z —p—r)z
p.r

=-D, / Z{sin29[coszg0(S")2 + sin® p(S*)?]
p.r

+ cos? 0(S9)2}8(z — p — r)dz, (A5)
where e, = (sin cos (¢(r)), sin 0 sin (¢(r)), cos ) is the di-
rector of each local anisotropy axis (remember that ¢ = 27 r/3
imposed by the crystal symmetry) and 4(- - -) is the Dirac §
function, assuming unitary lattice units. As | Jox| is much larger
than D, it is reasonable to assume that the spin profile varies
smoothly in low-energy configurations. Then, similarly to
what is usually done for spin spirals [60], the cos? ¢ and sin” ¢
in Eq. (AS5) can be replaced by their spatial averages, namely,
(cos? @) = (sin? ) = 1/2 (this is equivalent to assuming a
priori that DW excitations extend over several lattice units).
The dependence on the site index (p + r) thus drops from
Eq. (A5) as well as the summation and the Dirac § function.
More explicitly,

Hani = —D, / {% sin® [(5%)* + (5*)*]
+ cos? 6(8%)? }a’z

1 =2 2
—Dz/{zsm 01— (597
+cos® 0(5%)*} dz

z sin 49 4
2

1
—D, / |:00529 - Esin29:| (59*dz,  (A6)
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where we have used the fact that (§¥)? + ($¥)? = 1 — (5%)%.
The second last line in Eq. (A6) gives a contribution that
does not depend on the orientation of the classical spins
S(z); however, this term will generally depend on the crystal
structure, through 6. The last line gives the anisotropy
contribution reported in Hamiltonian (3). The fact that the
effective anisotropy D.(3 cos? 6 — 1)/2 is smaller than D, for
any 6 # 0 and the agreement between the analytic model and
transfer-matrix results reported in Fig. 8 justify a posteriori
the validity of the approximations made to obtain Hamiltonian
(3) and the expression for the DW energy of CoPhOMe:
Eqw(0) = /2| Jex| D-(3 cos? 6 — 1).

APPENDIX B: TRANSFER-MATRIX METHOD

The thermodynamic properties of classical spin chains with
nearest-neighbor interactions can be computed very efficiently
with the (numerical) transfer-matrix technique [61,62]. This
method can be extended to models in which classical and
quantum spins alternate, like in our case [9]. Noting that
the quantum-spin operators are not directly coupled with
each other, one can integrate out their degrees of freedom
independently. Referring to Hamiltonian (2), we add the
Zeeman contribution due to B to the exchange field acting
on a generic quantum spin (introduced in Appendix A ),
which yields a total field hj, 541 = h;’fzrﬂ + wupgB. This
field depends parametrically on the orientation of the two
classical spins S, 5 and S, 5,4>. Note that the cell index p has
been reintroduced, in accordance with Hamiltonian (2). The
trace over the degrees of freedom of the quantum spin o, 5,41
just brings a contribution 2 cosh (B8]h,, 5+1]) into the partition
function (here itis 8 = 1/ T, not to be confused with the label
for the exchange coupling used in the rest of the paper). The
total partition function reads

Z :/Hp,rde,ZrK(Sl,Z»S1,4)’C(S1,4vsl,6)
x K(S1.6,822) K(S2.2,824) - -+ K(Sn,.6,512), (B1)
where elementary kernels [63] are defined as

IC(Sp,Zr ) Sp,2r+2)
= 2cosh(Blh,, 2, 11]) exp(BS,.2- D2,S, 2,)
x exp(BusGB - S, 2,). (B2)

Generally, the kernels K(S,2,S,4), K(Sp4,Sp6),
K(Si16,S22) are not equivalent, which mirrors the fact
that the three Co atoms in each cell are not equivalent from
the magnetic point of view. This is crucial to model reciprocal
noncollinearity of anisotropy axes. A kernel that involves only
equivalent spins can, however, be obtained by tracing over
the degrees of freedom of two Co spins in a generic cell, for
instance, those labeled with 4 and 6:

Krm(Sp2,Spi12) = /de,4/.IC(Sp,21Sp,4)

X K(Sp.4,85.6) K(Sp.6.Spi1,2) d2p 6.
(B3)
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Then, the calculation of the partition function in Eq. (B1)
reduces to the following eigenvalue problem

/ Krai(Sr S )Win(Si)dQus1 = A Wn(S).  (B4)

whose eigenvalues may typically be ordered from the largest
to the smallest one: Ay > A > Ay > ---. The integrals on
the solid angles were performed numerically by discretizing
the unitary sphere [64-66]. As a result, the eigenvalue
problem (B4) was converted into a linear-algebra problem [67].
The resulting matrix—to be diagonalized—is generally not
symmetric and its eigenvalues are pairs of complex conjugates.
In the thermodynamic limit N, — oo the partition function

equals the N,th power of the largest eigenvalue, Z = )»f)v !
(N, is the number of cells); therefore, Ag has to be real. For
each temperature, the number of points used to sample solid
angles was increased until the free energy F = —T In(2)
converged to a stable value [41]. From the free energy,
the magnetization per unit cell M, = —dF/(N,dB,) and
the susceptibility x, = 0M,/dB, were obtained (n = x,y,z
indicates the crystallographic axis along which B is applied).

APPENDIX C: GLAUBER MODEL AND DIFFUSION OF
BROAD DOMAIN WALLS

One of the reasons for the fortune of the Glauber model
in the SCM community certainly lies on the possibility of
deriving analytic results. On the contrary, the treatment of
stochastic dynamics in the framework of the Heisenberg model
is not as simple and even numerical simulations—involving
a physically meaningful time scale—are challenging. The
starting point is the stochastic Landau-Lifshitz-Gilbert equa-
tion, which can be integrated following the Langevin or the
equivalent time-quantified Monte Carlo approach [42,68].
Here we limit ourselves to proposing a mapping of the
elementary time scale of the Glauber model into the diffusion
coefficient associated with the motion of a broad DW. Within
the Glauber model the probability to flip a spin occupying the
site i of an Ising chain is given by [21]

w; = t [1 - goi (oig1 + Ui—l)] , (CDH

where o; ==+1 are Ising spin variables and y =
tanh (2Jex/T). When the ith spin is the front edge of a DW,
it is 041 + 0;_1 = 0; therefore, o/2 can be identified with
the probability to move a DW of one site per unit time.
Let us define P(z,t) as the probability to find a DW at the
coordinate z—being now a continuous variable—at time ¢.
This probability obeys the master equation

0;P(z,1) = % [P(z+6,t)+ P(z—6,t) —2P(z,t)], (C2)

where § is the elementary displacement of the stochastic
process. By expanding Eq. (C2) for small §, the standard 1D
diffusion equation is recovered,

0 P(.1) = 58°02P(z.0). (©3)

in which D = «82/2 plays the role of diffusion coefficient.
Assuming that a DW covers a distance of the order of the
correlation length within a lapse of time equal to the relaxation
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time, one gets to the equivalence £ ~ Dt. As already reported
in Ref. [16], for the Ising limit corresponding to § = 1, this
mapping yields the same asymptotic behavior obtained by
Glauber: 7o, = 2&2/a. The subscript indicates that this result
actually holds for the infinite chain. For a finite chain, still
in the framework of Glauber dynamics, it can be shown that
the low-temperature behavior of the relaxation time is 7 ~
Lef/T /(2a), L being the chain length [69]. Our goal is now
to estimate what effective o should be used to mimic the
diffusion of a broad DW with Glauber dynamics. The first
step is to identify § with the DW width w; for the Hamiltonian
(3), the latter reads w = \/|JeX|/[2DZ(3 cos? 0 — 1)]. Adapting
the numerical factors given in Refs. [9,42] to Eq. (C3), the
diffusion coefficient can be related to the spin-Hamiltonian
parameters,

2
T
D~034

_—, C4
74 Eaw(6) b

where 74 is the damping time tq >~ h/(2D.0g), oG is the
Gilbert damping [70], and D, is the anisotropy on each Co
[9,42]. For this special case the attempt frequency of the
Glauber model and the diffusion coefficient are related by
the equation o = 2D/w?. The low-temperature expansion
given above for the relaxation time of a finite Ising chain
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can tentatively be extended to a chain with broad DWs,

NLEK_L‘L'dKeKNL<‘L'd 6 >€1'06K; (CS)

T w2 2w0.68 2 \w0.68

in the last passage the approximation x e ~ 6 ¢ was made

based on the fact that the experimentally relevant range of
Kk = Eaw(0)/ T is 12 < k < 22.In Eq. (C5), the inverse of the
term in parentheses represents the effective Glauber attempt
frequency that should emulate the diffusion of a broad DW. For
our computation parameters and 50° < 6 < 54°, it is der ~
10" ag s~!. For the temperature range where slow relaxation is
observed in CoPhOMe, the order of magnitude of the Gilbert
damping can be roughly estimated from EPR spectra of the
CoNIT,, shown in Ref. [39]. In a trivial precessional model,
the half width at half maximum A H of the resonance peak
would be related to the Gilbert damping as y,AH ~ ag wr,
with wp, = y,Hy being the Larmor frequency, Hy the reso-
nance field and y, the gyromagnetic ratio. Then one obtains
ag ~ AH/Hy ~ 0.15, from which oy ~ 1.5 x 10 57!, To
simulate the data reported in Ref. [17] the Glauber model
with o = 2.6 x 10" s~! was used. Considering the crude
approximation made to estimate o and that the parameters
in Hamiltonian (2) have been deduced from DFT calculations
and not fitted, the present mapping sounds to be in reasonable
agreement with previously published results.
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