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Antiferromagnets (AFMs), in contrast to ferromagnets, show a nontrivial magnetic structure with zero net
magnetization. However, they share a number of spintronic effects with ferromagnets, including spin pumping
and spin-transfer torques. Both phenomena stem from the coupled dynamics of free carriers and localized
magnetic moments. In the present paper I study the adiabatic dynamics of spin-polarized electrons in a metallic
AFM exhibiting a noncollinear 120◦ magnetic structure. I show that the slowly varying AFM spin texture produces
a non-Abelian gauge potential related to the time and space gradients of the Néel vectors. Corresponding emergent
electric and magnetic fields induce rotation of spin and influence the orbital dynamics of free electrons. I discuss
both the possibility of a topological spin Hall effect in the vicinity of topological AFM solitons with nonzero
curvature and rotation of the electron spin traveling through the AFM domain wall.
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I. INTRODUCTION

Metallic and semiconducting antiferromagnets (AFM) with
high ordering (Néel) temperature are promising candidates
for spintronic applications. Compared to their ferromagnetic
counterparts, AFM-based devices show reduced critical cur-
rents for magnetization switching [1] and can effectively
operate at higher frequencies [2]. According to theoretical
predictions, AFMs can also show current-induced phenomena
typical for ferromagnets, such as spin-transfer torques [3–5],
spin pumping [6], and domain wall motion [7,8], but with
much richer physics stemming from the nontrivial magnetic
structure.

However, the mechanisms responsible for the coupled
dynamics of free electrons and localized magnetic moments in
AFMs are still not clear and thus recently became a matter of
interest. For example, ferromagnets can work as spin polarizers
due to exchange coupling between the localized spins (that
contribute to macroscopic magnetization) and the spin of
the conduction electron. In contrast, the AFMs have zero or
vanishingly small magnetization. The symmetry properties of
the Néel vector (AFM order parameter) differ from those of
the spin vector and thus the polarization mechanism through
sd exchange is excluded. On the other hand, AFMs have a
nontrivial magnetic structure which removes degeneracy of
otherwise equivalent directions and/or planes and thus can
affect the spin dynamics of the free electron. The nontrivial
spintronic effects in AFMs are usually attributed to the sd

exchange and/or spin-orbit coupling. In homogeneous systems
the spin-orbit interaction can induce polarization of the electric
current which flows through the collinear AFM [9] or the
anomalous Hall effect in noncollinear planar AFM [10,11].
Exchange interaction itself can induce the topological Hall
effect in the structure with the nonzero chirality [12,13], e.g.,
in noncoplanar AFMs [14,15].

The sd exchange also plays an important role in the
magnetic textures which can produce Abelian [16] and non-
Abelian [17] gauge potentials for conduction electrons. Corre-
sponding fields contribute to adiabatic spin-transfer torque and
spin-pumping phenomena and thus could be experimentally
detected. In particular, a ferromagnetic texture produces an
effective spin-dependent U (1) gauge field for conduction

electrons. This gauge field gives rise to effective electrical and
magnetic fields proportional to the macroscopic magnetization
of the ferromagnet. An alternative point of view relates the
emergent fields with the Berry phase accumulated by a free
electron whose spin is aligned with the local macroscopic
magnetization [18]. An analogous influence of the collinear
antiferromagnetic texture on the dynamics of free carriers was
recently predicted in Ref. [17] from semiclassical analysis of
the Berry phase. The Berry phase also strongly affects the
semiclassical motion of electrons in chiral magnets with spin-
orbit interaction and can even induce formation of Skyrmions
in these materials (“the driving force for formation”), as was
recently demonstrated in Ref. [19].

The present paper focuses on the dynamics of spin-
polarized electrons in the gauge potentials produced by the
space-time varying magnetic moments of a noncollinear AFM.
The main idea is to demonstrate that the adiabatic dynamics of
free electrons is intimately related to the “dynamic” magneti-
zation of AFM (no matter how complicated the AFM structure)
and in this sense is similar to adiabatic dynamics of transport
electrons in ferromagnets. Correspondingly, the curvature of
a smooth distribution of AFM vectors generates effective
electric and magnetic fields that affect, via sd-exchange
coupling, the orbital motion of free electrons. I predict a
possibility of topological spin Hall effect in noncollinear AFM
textures that, in analogy with its ferromagnetic counterpart,
originates from the sd exchange. This effect can be used
to generate spin currents and probe the curvature of the
AFM distribution. I demonstrate that an inhomogeneous AFM
structure induces a rotation of the spin polarization (analog of
Faraday effect). This effect can be an efficient tool for probing
the AFM domain structure by electrical methods.

II. MODEL AND FORMALISM

As a prototype of a conductive antiferromagnet with
noncollinear magnetic structure, I consider the antiperovskite
Mn3XN (X = Ag, Zn, Ni, Ga) with cubic space group Pm3m

(see Fig. 1) and with the magnetic moments localized at Mn
atoms [20]. Although some authors [21–23] emphasize that
strong hybridization around the Fermi level points to the
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FIG. 1. (Color online) Unit cell (a) and �5g magnetic structure
(b) of antiperovskite Mn3XN. Magnetic moments S1, S2, and S3 are
localized at Mn atoms.

itinerant nature of antiferromagnetism in Mn-based antiper-
ovskites, these substances could be effectively described by
the Néel model of magnetic sublattices [24–26].

The Mn-based perovskites combine the nontrivial triangu-
lar magnetic structure with the peculiar transport properties.
The linear temperature dependence of the resistivity and
strong hybridization of Mn 3d and N 2p electrons around
the Fermi level [22] suggests a metallic character of conduc-
tivity. However, the conductivity and temperature coefficient
of resistivity are much smaller than those of a typical
metal [27,28]. Hence, these compounds could be considered as
bad metals with hopping character of conductivity. Resistivity
measurements [28] also indicate a strong coupling between the
magnetic structure and the transport properties. In addition,
suppressed sd scattering in the magnetic phase [28] enables
observation of the quantum phase effects. Thus Mn3XN
compounds are generic materials for analysis of the Berry-
phase effects in noncollinear AFMs.

A. Magnetic structure formed by localized moments

The localized magnetic moments (sublattice magnetiza-
tions) represented by three classical vectors Sj , j = 1,2,3
form a noncollinear coplanar structure classified,1 depending
on the material, as �5g or �4g [20]. Vectors Sj make a 120◦
angle with respect to each other. Thus the total magnetization
cancels within the plane. The ordering plane is defined by the
plane normal n. Well below the Néel temperature,

∣∣Sj

∣∣ = S.
Within the macroscopic approach a noncollinear AFM

structure can be conveniently described by two mutually
orthogonal AFM, or Néel, vectors L1 ⊥ L2 (|L1| = |L2| =√

3/2S) that could be considered as a multicomponent order
parameter

L1 = 1√
6

(2S1 − S2 − S3) , L2 = 1√
2

(S2 − S3) (1)

1Strictly speaking, the �4g structure realized in a certain temperature
range is consistent with weak ferromagnetic structure in which the
vectors Sj slightly deviate from the plane. We, however, neglect small
uncompensated magnetization for the sake of simplicity.

FIG. 2. (Color online) Local frame generated by AFM vectors
L1, L2, and vector n normal to the plane of spin ordering.

and the macroscopic magnetization vector

M = 1√
3

(S1 + S2 + S3) . (2)

From the symmetry point of view vectors (1) and (2) belong
to different irreducible representations of the permutation
group P3 (corresponding to the exchange symmetry of the
crystal) [24].

In the AFM ground state the macroscopic magnetization
M = 0. Three orthogonal vectors L1 ⊥ L2 ⊥ n generate a
natural local frame for free spin (see Fig. 2).

In equilibrium homogeneous state the corresponding vec-
tors are n(0)‖[111], L(0)

1 ‖[01̄1], and L(0)
2 ‖[21̄1̄]. In the tex-

ture (inhomogeneous state) the orientation of the sublattice
magnetizations can smoothly vary at the length scale much
greater than interatomic distances; thus all the magnetic
vectors Sj , L1, L2(t,r) are continuous functions of time and
space.

Strong exchange coupling locks the mutual orientation of
localized moments, even in the presence of relatively small
external fields. However, under the action of these fields the
whole structure can smoothly rotate with respect to some initial
configuration [labeled further with the subscript (0)]. In the
adiabatic approximation which we consider below, the large-
scale variation of localized moments is equivalent to solid-
like rotation of vectors Sj (and, correspondingly, L1,L2,n)
and can be conveniently parametrized [29,30] with the Gibbs’
vector ϕ (so-called Cayley-Gibbs-Rodrigues parametrization)
as follows:

Sj = �(ϕ)S(0)
j

≡ 1 − ϕ2

1 + ϕ2
S(0)

j + 2

1 + ϕ2

[
ϕ × S(0)

j + ϕ
(
ϕ · S(0)

j

)]
. (3)

Here �(ϕ) is the orthogonal rotation tensor, ϕ(t,r) ≡
tan(θ/2) N, where N(t,r) is the instant rotation axis, θ (t,r) is
the rotation angle, and we treat all the parameters as continuous
functions of space and time.

Rotation of AFM moments plays an important role in
the magnetic dynamics of localized spin. As it was pointed
out by Andreev and Marchenko [29], a solidlike rotation of
spins induces nonzero, “dynamic” magnetization of AFM,
Mdyn ∝ χ̂�t (χ̂ is a tensor of magnetic susceptibility), which
is proportional to the pseudovector �t of angular velocity,
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FIG. 3. (Color online) Solidlike rotation of the magnetic struc-
ture. Angular velocity � may result either from the time or space
rotation of the AFM structure, as described in the text.

frequently referred to as macroscopic spin (see Fig. 3):

�t = 2
∂tϕ + ϕ × ∂tϕ

1 + ϕ2
, ∂t�(ϕ) = �t×�(ϕ). (4)

However, a free electron moving with velocity ṙl (l =
x,y,z) in the slowly varying AFM texture should also “feel”
the effective magnetization produced by space rotations of the
AFM moments and described by the “space” angular velocity:

�l = 2
∂lϕ + ϕ×∂lϕ

1 + ϕ2
, ∂l�(ϕ) = �l×�(ϕ). (5)

Thus in the continuous medium the dynamic magnetization of
AFM seen by the conduction electron is proportional to the
angular velocity � = �t + �l ṙl .

In what follows we consider the functions ϕ(t,r),�(t,r) that
describe the AFM texture as given, putting aside the problem
of current-induced dynamics of localized spins.

B. Effective Hamiltonian and band structure

The transport properties of the system are described within
the nearest-neighbor tight-bonding approximation validated
by the low carrier density [27] and high resistivity [31] of
Mn-based antiperovskites. In our toy model we consider only
those electrons that hop between Mn sites, as they give the
main contribution to the transport properties [21,22,28]. Then
the local Hamiltonian for the conduction electrons takes a form

Ĥ (r,t) =
∑
jτ

ε0 (k) â
†
jτ âjτ +

∑
j,l,τ

γjl (k) â
†
jτ âlτ

− Jsd

∑
jτ,τ ′

Sj (t,r) â
†
jτ σ̂ ττ ′ âjτ ′ , (6)

where the first term in the right-hand side (rhs) describes the
kinetic energy related with the crystal translational symmetry.
Fermi operators âjτ and â

†
jτ describe annihilation/creation of

the electrons with the Bloch functions |uj 〉 (〈uk | uj 〉 = δkj )
and in the spin states |τ 〉 (τ = ↑,↓): â

†
jτ |0〉 = |uj 〉 |τ 〉 at

different sublattices j = 1,2,3. In what follows we neglect
the dispersion of ε0 (k) and set its value to zero. Coefficient
γjl(k) = −∑

δ tδe
ikδ is the hopping term between neighboring

sites (connected with δ) that belongs to different sublattices

FIG. 4. (Color online) Electron (e−) hopping between the mag-
netic sites. Different sites generate different quantization axes, due to
120◦ misalignment of local moments. Thus the hopping electron is
always in a superposition of spin-up and spin-down states.

j and l (see Fig. 4). Constant Jsd describes the exchange
coupling between localized and free electrons (so-called
sd exchange), it can be either positive or negative, and
without loss of generality we take Jsd > 0. σ̂ is the spin
operator.

The local band structure obtained by diagonalization of
Hamiltonian (6) consists of six bands which, neglecting the sd

exchange, are pairwise (spin-up and spin-down) degenerate.
The exchange interaction gives rise to an additional splitting
and mixing of bands. As sublattice sites 1, 2, and 3 are
equivalent, γ12(k) = γ23(k) = γ31(k) = γ (k) < 0. In this case
the band structure splits into four bands (ε1 < ε2 < ε3 < ε4):

ε1(k) = 2γ − JsdS, ε2(k) = −γ −
√

J 2
sdS

2 + 9γ 2,

(7)

ε3(k) = 2γ + JsdS, ε4(k) = −γ +
√

J 2
sdS

2 + 9γ 2.

The states in the bands ε1,ε3 are nondegenerate, and those in
bands ε2,ε4 are double degenerate. Corresponding eigenvec-
tors (local spin quantization axis is parallel to L1) for the lower
bands ε1,ε2 are the following:

|
1〉 = 1√
3

|↑〉
[
|u1〉 + 1

2
(|u2〉 − |u3〉)

]

+ 1

2
|↓〉 (|u2〉 + |u3〉) ,

|
2a〉 = |η1〉 |↑〉 + |η2〉 |↓〉 , |
2b〉 = |η2〉 |↑〉 + |η3〉 |↓〉 ,

(8)

where we have introduced the following (non-normalized)
combinations of the mutually orthogonal Bloch functions (see
Appendix A for details):

|η1〉 =
√

2

3
cos ψ |u1〉

− 1

2
√

6
(cos ψ + 3 sin ψ) (|u2〉 − |u3〉) ,
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|η2〉 = 1

2
sin

(
ψ − π

4

)
(|u2〉 + |u3〉) ,

|η3〉 =
√

2

3
sin ψ |u1〉

− 1

2
√

6
(sin ψ + 3 cos ψ) (|u2〉 − |u3〉) ,

〈η1 | η1〉 = 〈η3 | η3〉 = 1

4
(3 + sin 2ψ) ,

〈η2 | η2〉 = 1

4
(1 − sin 2ψ) . (9)

The effective parameter ψ depends on the relation between
the sd exchange and the hopping integral as follows:

sin 2ψ = 3γ√
J 2

sdS
2 + 9γ 2

. (10)

It is determined by the band structure and, as in the case
of collinear AFM [17], plays a crucial role in the adiabatic
electron dynamics. It describes an overlap of the functions (9),

〈η1 | η3〉 = 1
4 (1 + 3 sin 2ψ) , (11)

and hence the spin tunneling between different sites.
Expressions for the eigenfunctions |
3〉, |
4a,b〉 corre-

sponding to the upper bands ε3,ε4 are analogous to those for
|
1〉,|
2a,b〉 with substitution ψ → −ψ , ↑↔↓.

A rather complicated (compared to the case of collinear
AFM) structure of the eigenfunctions |
j 〉 is due to non-
collinearity of neighboring localized moments. As a result,
a free electron polarized along, say, the S1 direction is, after
hopping, always in a superposition of spin states with respect
to the new host’s quantization axis (see Fig. 4). It is instructive
to analyze the energy spectrum with account of average spin
s ≡ 〈σ̂ 〉 of the corresponding eigenstate (hereafter we use
the convention � = 1 ). As it was already mentioned, in the
AFM ground state the magnetization of localized spins M = 0
and one can anticipate that the ground state of conduction
electrons is a spinless. It can be easily checked from (8) that the
lowest energy band (ε1) corresponds to the zero-spin “singlet”
state |
1〉. The next band in energy scale ε2 is formed by
degenerate states |
2a〉 and |
2b〉, which are spin polarized in
z direction parallel to the AFM vector L1 with opposite spin
values Sz = ±(1 + sin 2ψ)/2. In equilibrium (M = 0) both
states should be equally populated. The other states that form
the upper bands ε3 and ε4 have analogous properties: |
3〉 is
spinless, and |
4a〉, |
4b〉 are spin polarized.

Obviously, in the case of spin injection only the degenerate
states |
2a〉, |
2b〉 and |
4a〉, |
4b〉 could be populated and
thus can participate in spin transport. Moreover, in the system
under consideration the Berry connection of nondegenerate
states is proportional to the average spin (see Appendix B) and
thus vanishes for |
1〉 and |
3〉. If, in addition, s − d exchange
coupling is rather strong (Jsd � γ ), the lower bands ε1,ε2 are
well separated from the upper ones ε3,ε4, and the transport of
spin-polarized electrons is restricted mainly to the second ε2

band.
In what follows we assume that the Fermi level is situated

in the vicinity of the degenerate band ε2, and in the next section

we consider the adiabatic spin dynamics related with tunneling
between states |
2a〉 and |
2b〉 in the AFM texture.

C. Pseudospin and dynamic equations

We follow the semiclassical approach [17,32–34] to de-
scribe the effective electron dynamics in the degenerate band
ε2. An individual electron is seen as a wave packet,

|W 〉 =
∫

dkp(k − kc) [ca |
2a〉 + cb |
2b〉] , (12)

where
∫

dk |p(k − kc)|2 = kc is the center of mass momen-
tum, and 〈W | r |W 〉 = rc is the center of mass position,
|ca|2 + |cb|2 = 1. We assume that the wave packet (12) spread
is small compared to the length scale of AFM inhomogeneity.

Coherent dynamics between the two subbands introduces
an internal degree of freedom which we describe by the spinor
(cacb) or, equivalently, by the isospin vector

C = {2Re(cac
∗
b),−2Im(cac

∗
b), |ca|2 − |cb|2}. (13)

It is worth mentioning that both the spinor and the normalized
isospin vector C represent the SU(2) group in two-dimensional
Hilbert space formed by the state vectors |
2a〉 and |
2b〉.

The space-time dependence of the state vectors |
2a〉
and |
2b〉 stems exclusively from the rotation of the local
spin quantization axis induced by variation of the AFM
moments [Sj (t,rc) or, equivalently, L1(t,rc),L2(t,rc),n(t,rc)].
It should be noted that the space dependence of Bloch functions
|uj 〉 is substantial only at the length scale of interatomic
distances and thus is unimportant at the large-scale variations
of the AFM order parameters. Since, in addition, we neglect
spin-orbit interactions, rotation of the magnetic moments is
decoupled from variation of the crystallographic axes and,
correspondingly, spin- and space-dependent states of the
carriers are disentangled.

As the local orientation of the AFM moments is unambigu-
ously defined by the rotation matrix �(ϕ) [see Eq. (3)], the state
vector |
2a,b(rμ)〉 at a given point rμ = (t,rc) can be defined
by an SU(2) gauge unitary transformation corresponding to
O(3) rotation:

Û = cos
θ

2
1̂ − i sin

θ

2
Nσ̂ = 1√

1 + ϕ2
(1̂ − iϕσ̂ ). (14)

Thus

|
2(rμ)〉 = Û
∣∣
2

(
r0
μ

)〉
, (15)

where the reference state vectors |
2(r0
μ)〉 and reference AFM

vectors L(0)
1 ,L(0)

2 are taken in the same fixed point r0
μ. The

gauge is fixed by the choice of spin eigenstates at this point.2

The vectors |
2a〉 and |
2b〉 also depend indirectly on quasi
wave vector kμ = (0,kc) through the coefficient ψ [γ (kc)].

2The gauge fields in non-Abelian theory are gauge covariant, not
gauge invariant. However, as it was explained in detail in Ref. [17],
the ultimate quasiclassical equations (17) and (18) include only the
isospin scalars CRμν , which respect the gauge invariance. Thus, for
the sake of definiteness we can fix the gauge in a similar way as in
Ref. [17] without loss of generality.
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According to the general theory [33], the set of equations of
motion for the dynamic variables rc, kc, and C can be written
as follows (see Ref. [17] for the detailed derivation):

Ċ = 2C×(
Ar

μṙμ + Ak
μk̇μ

)
, (16)

k̇μ = −∂r
με2 + C

(
Rrr

μν ṙν + Rrk
μν k̇ν

)
, (17)

ṙμ = ∂k
με2 − C

(
Rkr

μν ṙν + Rkk
μν k̇ν

)
, (18)

where the gauge potentials {Ar
μ,Ak

μ}, Berry connection Âα
μ ≡

Aα
μσ̂ , and Berry curvatures Rαβ

μν (α,β = r,k) are introduced in
a standard way as

Âα
μ = i

(〈

2a

∣∣∂α
μ
2a

〉 〈

2a

∣∣∂α
μ
2b

〉
〈

2b

∣∣∂α
μ
2a

〉 〈

2b

∣∣∂α
μ
2b

〉
)

, (19)

Rαβ
μν = ∂α

μAβ
ν − ∂β

ν Aα
μ + 2Aα

μ × Aβ
ν . (20)

Starting from Eq. (16), we drop the subscript c on rc and kc.

III. ADIABATIC DYNAMICS

A. Berry curvature and topology of AFM texture

Before considering the possible dynamics of free electrons
it is instructive to analyze the explicit expressions for the Berry
connection and the Berry curvature in AFM texture. Calcula-
tions based on definitions (19) and (20) (see Appendix B) show
that the gauge potential

Ar
μ = 1

4�−1(ϕ)[(1 + sin 2ψ)�μ − (1 − sin 2ψ)n(�μn)],
(21)

and Ak
μ = 0 in the absence of spin-orbit interactions [17].

Correspondingly, nontrivial components of the Berry curvature
are the following:

Rrr
μν = 1

8 (1 − sin 2ψ) �−1 (ϕ) [2 (1 + sin 2ψ) �ν × �μ

− (3 + sin 2ψ) n
(
n · �ν × �μ

)
],

Rrk
μν = −Rkr

νμ = 1
4∂k

ν sin 2ψ�−1 (ϕ) [�μ + n
(
�μn

)
]. (22)

The multiplier �−1 (ϕ) (inverse rotation matrix) in Eqs. (21)
and (22) results from the gauge covariance of the non-Abelian
gauge fields. As we will see later, the same rotation relates the
isospin to the real spin.

Analysis of the relations (21) and (22) shows that the
gauge potentials produced by the AFM texture depend on
the orientation of AFM vectors through the rotation vector �μ

which, in turn, is related to the dynamic magnetization Mdyn.
The Berry curvature Rrr

μν for free electrons is proportional to
the curvature Kμν ≡ �μ × �ν = ∂r

μ�ν − ∂r
ν�μ of the AFM

texture.3 In other words, the Berry curvature is intimately
related with topological properties of the space distribution of
the localized moments. To give a sample distribution with the
nontrivial curvature, we note that in elasticity theory Kμν �= 0

3Note that we discuss only the rotations in spin state; the lattice itself
is supposed to be unchanged. However, the theory can be generalized
to include space rotations of the lattice, as it will be discussed below.
See also Ref. [32] for a description of the gauge fields in deformed
crystals.

FIG. 5. (Color online) Orbital dynamics of an electron in the
AFM texture with nonzero curvature. The blue (shadowed) torus
shows the area with twisted (vector ϕ1) and bended (vector ϕ2) AFM
vectors (three bounded arrows). Free spin-polarized (spin s) electron
moving in this area with the group velocity v feels the effective force
F (see text for details).

is called the bend-twist tensor. So, one can imagine that in
some toroidal area (see Figs. 5 and 8) the orientation of AFM
vectors is obtained by two rotations—one around the in-plane
axis tangent to the torus (twist with the rotation vector ϕ1)
and another around the vertical torus axis z (bend with the
rotation vector ϕ2). The curvature vector Kxy = �x × �y in
each point of the structure is directed along the radius. This
structure, through sd exchange, forms a potential with a Berry
curvature Rrr

xy ∝ Kxy and produces a “Lorentz-like” effective
force for free spin-polarized electrons, as will be explained
below.

It is instructive to compare expression (21) describing a
gauge potential in AFM with the analogous expression [35] for
a ferromagnetic (FM) material with the magnetization vector
m:

AFM
μ = −m × ∂r

μm = − (1 − m ⊗ m) �μ. (23)

Although in ferromagnets the gauge transformation is applied
to the real spin (not to isospin), and the gauge potential
is Abelian, comparison of expressions (23) and (21) shows
that up to the details related with peculiarities of electron
hopping, geometric effects in FM and AFM are related with
the “dynamic” magnetization proportional to the angular
velocity �μ.

It is also worth noting the relation between the curvature
Kμν and the topological properties of localized nonlinear
magnetic structures: Skyrmions, solitons, vortices. For exam-
ple, the topological charge of a two-dimensional (in the real
space) Skyrmion, that counts how many times the vector order
parameter m(t,r) wraps around the unit sphere, is defined
as [36]

Q = 1

8π

∫
m · (∂μm × ∂νm−∂νm × ∂μm)dxμdxν. (24)

With the use of relations (3)–(5) it can be easily shown that Q

is proportional to the projection of the curvature vector Kμν

onto the order parameter m averaged over space:

Q = 1

4π

∫
(m · �μ × �ν)dxμdxν. (25)
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The relation (25) is applicable to any magnetic system with
the vector order parameter: a ferromagnet, with m playing
the role of magnetization vector, a collinear AFM, where m
corresponds to the Néel vector.

Topological charges of the three-dimensional structures
with the vector order parameter are characterized with the
Hopf’s invariant [37,38], which describes the S3 to S2 map:

H = 1

16π2

∫
dx3εμνγ εjklmνj

∂νk

∂xμ

∂νl

∂xν

∂νm

∂xγ

, (26)

where the four-component vector (ν,ν4) is related with the
Gibb’s vector ϕ = ν/ν4, ν4 = cos θ/2, and εμνγ and εjklm are
fully antisymmetric tensors.

For the case of noncollinear AFMs an appropriate topolog-
ical invariant is given by the expressions [39]

Q = − 1

24π2

∫
dx3εμνγ

× Tr

[
�−1(ϕ)

∂

∂xμ

�(ϕ)�−1 ∂

∂xν

�(ϕ)�−1 ∂

∂xγ

�(ϕ)

]
,

(27)

which corresponds to an S3 to S3 map. The three-dimensional
AFM order parameter (formed by mutually orthogonal L1 and
L2 vectors) is parametrized with the rotational tensor �(ϕ).
With the use of expression (4) the topological invariant (27)
can be expressed in terms of the rotation vectors �μ as follows:

Q = − 1

24π2

∫
dx3εμνγ (�μ · �ν × �γ ). (28)

It can be easily seen that, in analogy with ferromagnets,
the topological charge (28) is proportional to the projection
of the curvature vector Kνγ onto the direction of dynamics
magnetization �μ seen by the free electron moving in the xμ

direction.
Note that the model “twist-bend” structure shown in Figs. 5

and 8 can, in principle, have nonzero topological charge if the
the AFM ordering outside the toroidal area is homogeneous.
In this case the structure is characterized with three nontrivial
noncollinear rotational vectors: �1 and �2 for twisting and
bending, and �3, which describes smooth rotation of AFM
vectors in the intermediate area between the torus and infinity.

B. Free spin dynamics and gauge potential

Let us consider a typical spintronic problem in which a
nonequilibrium spin-polarized carrier is injected into an AFM.
The question is, “Does the AFM medium affect the state of an
electron? If it does, how could this effect be observed?”

To begin with, we find the relation between the isospin
vector C (which itself is not gauge invariant and depends
upon the choice of the eigenfunctions |
2a〉, |
2b〉) and the
observable (and fully gauge invariant) spin s ≡〈W | σ̂ |W 〉.
Direct calculations based on the states (8) and (15) give rise to
the following expression for the spin vector:

s(t,r) = 1
2 (1 + sin 2ψ) [� (ϕ) C]

− 1
2 (1 − sin 2ψ) [� (ϕ) C · n] n. (29)

FIG. 6. (Color online) Isospin C (sphere) and real spin s
(spheroid) in the local frame.

Using normalization of the isospin, |C|2 = 1, we arrive at a
relation between the spin of the free carrier and the orientation
of the plane formed by the localized spins and represented by
the vector n(t,r) (see Fig. 6):

(ns)2

sin2 2ψ
+ 4 (n × s)2

(1 + sin 2ψ)2 = 1. (30)

Analysis of expression (30) shows that, like in the case of a
collinear AFM [17] [see also Eq. (38)], spin polarization of the
conduction electron depends upon the orientation of the AFM
vectors. In a noncollinear AFM the vector s varies on an oblate
spheroid (on a prolate in the collinear AFM), the short axis of
which coincides with the plane normal. Like in the collinear
case s2 � 1, which means that an electron is in a mixed spin
state due to entanglement between the space and spin degrees
of freedom.

The equation for spin dynamics obtained from Eq. (29) with
account of Eqs. (16) and (21) (see Appendix B for hints of the
derivation) is similar to Euler’s equation for rotation of a rigid
body:

ṡ − � × s = − sin 2ψ� × ĝs, (31)

where we introduced the tensor

ĝ = 1̂+
[(

1 + sin 2ψ

2 sin 2ψ

)2

− 1

]
n ⊗ n, (32)

and, as it was already noted, � = �t + �l ṙl . The second term
on the left-hand side of Eq. (31) originates from the rotation
of the local frame associated with vectors L1, L2, n (for the
constant isospin C). In analogy with Ref. [32], it could be
called a “tracking” term because it reflects the tendency of the
AFM lattice to drag the electron spin along with the time and
space AFM motion.

The rhs describes the spin evolution in the local frame due
to accumulation of a SU(2) non-Abelian Berry phase, namely,
the spin vector rotates around the angular velocity �, being
simultaneously bound to the spheroid (30). Thus Eq. (31)
is the Bloch equation for spin precession in the effective
magnetic field Heff = − sin 2ψĝ�. As � is proportional to
the dynamic magnetization Mdyn of the AFM layer, the origin
of the effective magnetic field Heff acting on free spins has the
same nature as in ferromagnets [40].

It should be stressed that spin dynamics substantially
depends upon the strength of sd-exchange coupling. In the
limit Jsd → 0 (which means that sin 2ψ → 1), the electron
spin coincides with the pseudospin C up to rotation �(ϕ) and
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ṡ = 0. In the opposite case of extremely strong Jsd → ∞ (or,
equivalently, sin 2ψ → 0), the rhs term in Eq. (31) vanishes.
So, in the case of strong coupling between free and localized
spins, the free spin simply tracks orientation of the local frame
in each point.

Orbital dynamics of the wave packet (12) is described by
semiclassical equations obtained from Eqs. (17) and (18), with
account of Eq. (31) as follows:

ṙμ = ∂k
με2 + 1

2
∂k
μ ln(1 + sin 2ψ)

×
[

s · � + 1

sin 2ψ
(n · s) (n · �)

]
, (33)

k̇μ = −∂r
με2 − 1

2
ṡ · �μ. (34)

The spin-dependent addition to the group velocity in
Eq. (33) is proportional to ∂k

με2, because ∂k
μ sin 2ψ ∼ ∂k

μγ ∼
∂k
με2. So, coupling between the free and the localized spins

in the rotated AFM texture results in “renormalization” of
the effective electron mass. An analogous term, omitted in
Eq. (34) for the sake of simplicity, appears also in the equation
for acceleration [see Appendix B, Eq. (B7)].

The nontrivial, spin-dependent term on the rhs of Eq. (34)
is intimately related to the spin dynamics. It can also be
represented in the form of a fictitious Lorentz force with the
effective electriclike Eμ and magneticlike Bξ components:

k̇μ = −∂r
με2 + q(Eμ + εμνξ ṙνBξ ), (35)

qEμ = 1
2 [s · �t×�μ+ sin 2ψĝs · �t×�μ], (36)

qBξ = 1
2εξμν[s · �ν × �μ+ sin 2ψĝs · �ν × �μ], (37)

where, as above, εξμν is the antisymmetric Levi-Civita tensor.
The corresponding effective “charge” q (field “source”) is
proportional to the spin.4

Equations (35)–(37) are similar to equations that describe
an orbital motion of individual electrons in a collinear
AFM [17]. In both cases the gauge charge q depends upon
the spin which, according to Eq. (31), shows its own dynamics
and thus can vary in time. In both cases the gauge charge
depends upon the sd-exchange constant (in our case, through
the multiplier sin 2ψ) and vanishes when Jsd → 0.

The feature demonstrated in this paper is a certain univer-
sality of spin-dependent orbital dynamics in AFMs. Really, the
dynamic equations of a collinear AFM (Eq. (8) of Ref. [17])
have practically the same form as Eqs. (31), (33), and (34) of
the present paper when written in terms of angular velocity
L̇ = � × L:

ṡ − � × s = −� × ĝs, ĝ = 1̂ + (ξ 2 − 1)L ⊗ L, (38)

ṙμ = −∂k
με2 + 1

2∂k
μ ln ξ [s · �− (L · s) (L · �)] , (39)

k̇μ = − 1
2�μ·ṡ, (40)

4Strictly speaking, an effective charge should be introduced as
a vector quantity, so, for the sake of simplicity we introduce a
combination of charge and fields. However, Faraday’s relation for
fields εξμν∂μEν + ∂tBξ = 0 is satisfied.

where ξ , in the original notations, is the overlap of the
wave functions analogous to sin 2ψ of the present paper [see
Eq. (10)], and the notation L is used for the Néel vector of
collinear AFM.

Thus, in AFMs with strong exchange coupling between
the magnetic sublattices the emergent Lorentz force (35) is
defined mainly by the angular velocity �t (and hence the
dynamic magnetization) and the AFM curvature �ν × �μ, and
has similar form for the different AFM structures. However,
dependence on peculiarities of the ground state (number of
sublattices and their mutual orientation, type of magnetic
anisotropy etc) is included in a cumbersome presentation of
the gauge charge, tensor ĝ, and spin ellipsoid. In particular, in
a collinear AFM the anisotropy of these parameters is dictated
by the easy-axis parallel to a single AFM vector, in the present
case, by the easy plane formed by two orthogonal Néel vectors.

The effective electric field (36) plays a role of a spin-
dependent motive force (similar to that in FM, see Ref. [18]).
So, an oscillating (�t �= 0) inhomogeneous (�μ �= 0) AFM
structure can produce an electric current (or voltage) and thus
can be observed by standard electric measurements.

The effective magnetic field (37) is proportional to the
projection of curvature �ν × �μ of the AFM texture on the
free spin s. Direction of the latter correlates (and in the limit of
strong sd-exchange coupling, coincides) with the direction of
� and dynamic magnetization of the AFM. Thus the flux of the
emergent magnetic field is related with the topological charge
of the AFM distribution [see Eq. (28), where the curvature is
projected in the direction of dynamic magnetization seen by the
free electron). An analogous situation takes place in Skyrmions
where the flux of emergent magnetic field is associated with
Skyrmion number (i.e., topological charge) [36]. However,
gauge effects in Skyrmions and AFMs are principally different.
Namely, a Skyrmion can be treated as a ferromagnet with
a complicated distribution of localized moments, and in
adiabatic limit the spin of a conduction electron always tracks
the local orientation of magnetization. The gauge potential is
Abelian, and the topological charge of a Skyrmion is related
with chirality [15]. In contrast, the AFM which we consider
here has zero total static magnetization; a complicated slowly
varying magnetic texture is locally formed by a proper number
of AFM vectors attributed to same point; a conduction electron
feels the local frame induced by magnetic moments but not
the direction of magnetization itself. The nontrivial effect of
geometric phase in the absence of total magnetization is due to
the degeneracy of states and resulting non-Abelian character
of the gauge potential.

The emergent magnetic field in adiabatic motion is usually
associated with the topological Hall effect. On the other hand,
most AFM structures are usually invariant with respect to
time-reversal symmetry and this forces Hall conductivities to
vanish. Recently, it was demonstrated that noncollinear [10]
and frustrated [41] AFMs can show an anomalous Hall
effect that arises due to spin-orbit coupling. The origin of
nonzero Hall conductivity in these materials is the Berry
curvature in momentum space. In contrast, Eq. (35) (and
the analogous equation for collinear AFM from Ref. [17])
shows that the Hall effect can in principle be observed in
compensated AFMs with negligible spin-orbit coupling. In this
case the Hall conductivity originates from the Berry curvature
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FIG. 7. (Color online) Probing the domain wall with the spin-
polarized current. Two ferromagnetic electrodes, FM1 and FM2,
placed over the AFM film produce spin-polarized current in the
in-plane geometry (upper panel). Two AFM domains 1 and 2 (lower
panel) are related through the 90◦ rotation. The spin of the electron
e− traveling through the domain wall tracks the local AFM structure
and rotates (central panel). Misorientation between the free spin and
the FM2 magnetization contributes to magnetoresistance and can be
detected.

in real space and, what is also important, is related with
the curvature of the AFM texture. The required breaking of
time-reversal symmetry results from the inhomogeneity5 and
related dynamic magnetization Mdyn ∼ � of AFM structure
as was explained above. Following Ref. [12], this Hall effect
should be called topological.

Equations (31), (33), and (34) state the main results of
this paper. They describe electron dynamics in a noncollinear
AFM in terms of three observables (s,r,k). However, so far
our treatment was quite general and abstract. To make physical
meaning of the obtained results clearer, in the next section I
consider some special cases accessible for the experimental
implementation.

IV. EXAMPLES

A. Traveling between AFM domains

Let us start from the “canonical” example of an AFM
texture—a flat, one-dimensional domain wall separating two
domains with different orientations of spin-ordering plane (see
Fig. 7).

5Formally, it is the combination qB that has pseudovector character
due to the dependence on pseudovector s [see Eq. (37)]. So, in our
case time-inversion symmetry is broken rather by the effective charge
than by the effective field.

For definiteness I consider domains related by a rotation
around the cubic axis through 90◦ (corresponding rotation
matrix is �12). Let us suppose that the AFM film is connected to
two ferromagnetic electrodes that can produce a spin-polarized
current (with the spin vector s0) in the in-plane geometry. The
thickness of the AFM layer is smaller or comparable with the
spin-coherence length (to exclude spin scattering processes);
the thickness of the domain wall is much larger than the lattice
constant (to validate the adiabatic approximation). Electric
voltage applied to the system initiates an electron flow between
the ferromagnetic electrodes with an average constant velocity
v directed along the domain wall normal (denoted as the x

axis). As the curvature of the flat domain wall is zero, the AFM
texture affects only the spin evolution described by Eq. (31),
which can be rewritten in the following form:

ds
dx

= �x × (s − sin 2ψĝs) , (41)

where the rotation vector �x has a fixed direction. It follows
from Eq. (41) that after traveling through the domain wall
vector, s will change by the value �s, which consists of two
parts: rotation with the local AFM frame (due to the first term
in parentheses) and geometric phase rotation (the second term)
over a spheroid (30). In the case of strong exchange coupling
(sin 2ψ � 1), the first effect dominates. In this case

�s ≈ �12s0, (42)

and the spin polarization can evolve by 90◦, as shown in
Fig. 7. If, then, the magnetization M2 of the second FM2
electrode is varied by an external magnetic field (as, e.g.,
in experiments [42]), magnetoresistance between the FM
electrodes will also vary depending on (�s · M2).

Thus the AFM domain wall is a “spin-active” (in analogy
with optically active) medium. Spin rotation, the quantum
analog of the Faraday rotation in optics, results from the
competition of two coherent spin states and could be observed
by the electrical measurements.

B. Enveloping a soliton

Equations (31) and (34) predict nontrivial spin-induced
orbital dynamics in a curved AFM texture. As an example,
let us consider spin-polarized electrons traveling through a
region with the inhomogeneous distribution of AFM vectors
obtained in the following way. Suppose we start from the
one-dimensional distribution of AFM vectors described by
the Gibb’s vector ϕ1 = tan(θ1(ξ )/2) ey [a “wire” with twisted
AFM structure, Fig. 8(a)]. Next, the “wire” is bent to make a
ring; this corresponds to a rotation with the Gibb’s vector ϕ2 =
tan[θ2(x,y)/2] ez, where θ2(x,y) = tan−1 y/x [Fig. 8(b)]. The
resulting rotation ϕ = ϕ2 ◦ ϕ1 is a composition of twisting
and bending:

ϕ = ϕ2 ◦ ϕ1 = tan
θ1(ξ )

2
ey + tan

θ2(x,y)

2
ez

− tan
θ1(ξ )

2
tan

θ2(x,y)

2
ex. (43)

The effective coordinate of the first rotation, ξ = y cos θ2 −
x sin θ2, bends with the “wire.” Such a texture has a nonzero
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FIG. 8. (Color online) Electron traveling in the neighborhood of
an AFM soliton: (a) “twisting” of an AFM structure (one-dimensional
rotation with the Gibb’s vector ϕ1); (b) “bending” of the twisted
structure; and (c) spin-polarized electron moving with velocity v
feels like a Lorentz force at the points of maximal curvature Kxy

(arrows). A and B symbolize different domains.

curvature parallel to the radial component er :

Kxy ≡ �x × �y = −∂ξ θ1(ξ ) sin 2θ2
er

r
, (44)

where r is the radial coordinate.6

Let us further assume that the first, unbent distribution θ1(ξ )
corresponds to a kink or two “head-to-head” domain walls
separating domains A and B. In this case ∂ξ θ1(ξ ) �= 0 in the
vicinity of the domain wall localization. For definiteness we
assume that the domain walls are centered at θ2 = π/4 (domain
wall between A and B) and θ2 = 5π/4 [domain wall between
A and B, see Fig. 8(c)]. Obviously, ∂ξ θ1(ξ ) �= 0 has opposite
signs in these points. As a result, curvature Kxy �= 0 along the
line x = y and has the same direction at all points.

According to Eq. (37), AFM curvature produces fictitious
out-of plane magnetic fields:

qBz = 1

2r
∂ξ θ1(ξ ) sin 2θ2 [er · s+ sin 2ψer ·ĝs] . (45)

So, spin-polarized electrons with s ‖ Kxy traveling with
constant velocity v ⊥ Kxy through the texture are exerted by
the Lorentz force and deflect from the initial trajectory7 [see
Fig. 8(c)].

6The proposed model distribution of the AFM order parameter has
a peculiarity at r → 0 which can be avoided by placing a defect or a
hole in the center.

7The spin rotation which arises during the passage through the
domain wall can reduce the deflection. However, due to the 1/r

As the curvature direction is constant, all equally polarized
electrons will deflect in the same way, thus demonstrating a
topological spin Hall effect. So, such a texture can be probed
with spin-polarized current. On the other hand, electrons
with different spins are deflected in opposite directions, so
the texture can also work as a spin separator. It should be
stressed that the topological spin Hall effect can be modified
by spin-orbit interaction, neglected in the present calculations.

V. CONCLUSIONS

In the present paper I consider the adiabatic dynamics of
free electrons in AFM with triangular magnetic structure.
I show that, in analogy with the collinear AFM [17], the
dynamics of a real spin s is influenced by space-time
variation of antiferromagnetically coupled vectors Sj (r,t).
The main features of the electron behavior arising from
accumulation of non-Abelian SU(2) Berry phase—precession
of the electron spin around the dynamic AFM magnetization
and spin-dependent orbital dynamics—are similar in both
cases. The first effect is of pure geometric nature, as the
homogeneous AFM has no uncompensated magnetization and
produces no magnetic field. The second effect is related with
processes of spin pumping and spin-transfer torque and is thus
experimentally observable.

Similarity (up to the details) of free electron dynamics in the
collinear and triangular AFMs gives the grounds to anticipate
analogous effects in even more complicated AFM metals such
as FeMn, which shows 3q structure described in terms of four
magnetic sublattices.

The described toy model can be applied to antiperovskites
Mn3MN (M = Ni, Ag, Zn), which show a noncollinear 120◦
magnetic structure and semiconducting type of conductivity
(see, e.g., Ref. [43]). Although in this paper we appeal mainly
to the perovskites Mn3XN, the results obtained could be
applied to the metallic AFM IrMn3 with the same triangular
structure [44,45] which is widely used in spintronics due to its
high Néel temperature.

The influence of the spin-related curvature on the orbital
motion of free electrons is related with the topological features
of the system and thus is quite a general property. It can be
used for detection of inhomogeneous distribution of magnetic
systems such as topological solitons and/or Skyrmions recently
observed in AFMs [46]. Adiabatic spin transport is a possible
tool for study of AFM two- and three-dimensional textures
induced by mechanical tilting through the flexomagnetic
effect typical for triangular AFM structures [26]. A system
of triangular Ising spins realized with trapped ions [47] can
also be also used as a playground for quantum simulation of
non-Abelian SU(2) Berry-phase effects.
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dependency of the Lorentz force, the effect can still be pronounced
close to the center of the region.
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APPENDIX A: HAMILTONIAN DIAGONALIZATION

Hamiltonian (6) mixes all six wave functions |uj 〉|τ 〉,j =
1,2,3,τ = ↑,↓. However, symmetry considerations make it
possible to simplify the diagonalization procedure which we
describe in this section.

First, we notice that if the quantization axis is taken in
the local frame with the z′

j axis parallel to Sj , then the sd-
exchange term is diagonal in the spin space: Sj σ̂ ττ ′ = Sσ̂jz′ .
As the vectors Sj (and correspondingly, local quantization
axes) could be generated from the lab axis by rotations
around the plane normal n, it is convenient to introduce new
creation/annihilation operators,(

b̂j↑
b̂j↓

)
= Û

†
j

(
âj↑
âj↓

)
, j = 1,2,3, (A1)

where the unitary operators Ûj = cos θj

2 1̂ − i sin θj

2 nσ̂ rep-
resent rotation through the angles θ1 = 0, θ2 = 2π/3, and
θ3 = 4π/3.

For further simplification we take the permutation symme-
try of the magnetic sublattices [24] into account and introduce
the following combinations of operators b̂jτ ,

ξ̂1τ = 1√
6

(2b̂1τ − b̂2τ − b̂3τ ), ξ̂2τ = 1√
2

(b̂2τ − b̂3τ ),

(A2)

ξ̂3τ = 1√
3

(b̂1τ + b̂2τ + b̂3τ ),

that form irreducible representations of permutation group P3

(isomorphic to C3 rotation group which describes the exchange
symmetry of the compound).

Operators {b̂jτ ,b̂
†
jτ } and {ξ̂jτ ,ξ̂

†
jτ } satisfy the same anticom-

mutation relations as Fermi operators {âjτ ,â
†
jτ }.

It is worth mentioning that the operators {ξ̂1τ ,ξ̂2τ } belong
to the same irreducible representation as the AFM vectors
{L1,L2}, and the operator {ξ̂3τ } has the same transformation
properties as the magnetization vector M [see Eq. (2)].

As it was already mentioned, in the AFM ground state
M = 0, L1⊥L2⊥n, |L1| = |L2| = √

3/2S [24]. We take the
quantization axis for free spins parallel to L1.

Taking account of transformations (A1) and (A2), the
Hamiltonian (6) takes a form

Ĥ (r,t) = −JsdS
∑

j

(ξ̂ †
j↑ξ̂j↑ − ξ̂

†
j↓ξ̂j↓)

+ γ (k)[2ξ̂
†
3τ ξ̂3τ − (ξ̂ †

1τ ξ̂1τ + ξ̂
†
2τ ξ̂2τ )

+ 3(ξ̂ †
1↓ξ̂2↑ + ξ̂

†
2↑ξ̂1↓ − ξ̂

†
2↓ξ̂1↑ − ξ̂

†
1↑ξ̂2↓)], (A3)

which now can be easily diagonalized.

APPENDIX B: BERRY CONNECTION, BERRY
CURVATURE, AND DYNAMICS EQUATIONS

To simplify the calculation of the Berry connection (19)
we note that (i) time and space dependence of the state
vectors |
2a(rμ)〉, |
2b(rμ)〉 stems from the rotation of the
spin quantization axis; (ii) rotation of the local frame (unit
vectors ek(rμ), k = x,y,z) can be equivalently represented
in terms of the rotation matrix � (3): ek(rμ) ≡ �(ϕ)e0

k or

related unitary matrix Û (14): eσ̂ =Ûe0σ̂ Û †, where e0
k is

taken at some reference point r0
μ. The same matrix Û defines

transformation (15) of state the vectors |
2(rμ)〉. An analogous
procedure was proposed in Ref. [48]. So, the Berry connection
Âr

μ can be expressed as

Âr
μ = i

( 〈

0

2a

∣∣�̂μ
0
2a

〉 〈

0

2a

∣∣�̂μ
0
2b

〉
〈

0

2b | �̂μ
0
2a

〉 〈

0

2b

∣∣�̂μ
0
2b

〉
)

, (B1)

where we introduced the matrix �̂μ ≡ Û †∂r
μÛ . Direct calcu-

lations show that

�̂μ = − i

2
�−1(ϕ)�μσ̂ (B2)

and

Âr
μ = (

1
2 sin 2ψ�−1(ϕ)�μ

+ 1
4 (1 − sin 2ψ)n0 × �−1(ϕ)�μ × n0

)
σ̂ . (B3)

From (B3) after some simple math one gets expression (21).
It is obvious from relations (B1) and (B2) that the singlet

states with zero spin do not contribute to the Berry connection.
The spin vector s(t,r) = 〈w| σ̂ |w〉 is calculated in a similar

way with the help of matrix �̂ ≡ Û †σ̂ Û = �(ϕ)e0
kσ̂k , the

explicit relation being

s(t,r) = �(ϕ)
[

sin 2ψC + 1
2 (1 − sin 2ψ) n0 × (C × n0)

]
.

(B4)

Using the relation n = �(ϕ)n0 between the vectors in the local
and reference frame one gets expression (29) from (B4).

Equation (B4) is easily inverted in order to express the
isospin C through the real spin as follows:

C = 2

1 + sin 2ψ
�−1(ϕ)

[
s(t,r)+1 − sin 2ψ

2 sin 2ψ
(ns) n

]
. (B5)

Substituting relation (B5) into the normalization condition
|C|2 = 1 one gets Eq. (30) for spheroid.

The Berry curvatures (22) are calculated by differentiation
of (B3) with account of two general relations:

�̇(ϕ) = �×�(ϕ) and ∂r
ν�μ − ∂r

μ�ν = �μ × �ν . (B6)

Dynamic equation (31) for the spin is obtained by differentia-
tion of the expression (29) with the use of relations (B6), (16),
and (B5).

The complete equation for acceleration has the following
form:

k̇μ = −∂r
με2 − 1

2
ṡ · �μ

− 1

2
k̇ν∂

k
ν ln (1 + sin 2ψ)

[
s · �μ+ 1

sin 2ψ
(ns) (n�μ)

]
.

(B7)
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