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Quantum corrections to the conductivity of itinerant antiferromagnets
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We present a systematic calculation of the effects of scattering of electrons off spin waves on electron transport
properties in itinerant antiferromagnetic thin films in two and three dimensions. We study various regimes set by
the parameters related to the spin-wave gap, exchange energy, as well as the exchange splitting, in addition to the
scales set by temperature and disorder. We find an interaction-induced quantum correction to the conductivity
linear in temperature, similar to that obtained recently for ferromagnetic systems within a certain regime of
disorder, although the disorder dependence is different. In addition, we explore the phase relaxation rates and the
associated weak-localization corrections for both small and large spin-wave gaps. We obtain a wide variety of
temperature and disorder dependence for various parameter regimes. These results should provide an alternative
way to study magnetic properties of thin antiferromagnetic films, for which neutron scattering measurements
could be difficult, by direct transport measurements.
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I. INTRODUCTION

Quantum corrections to conductivity due to weak local-
ization and Coulomb interaction effects [1,2] have now been
observed in numerous disordered metallic systems [3,4]. These
corrections have a logarithmic temperature (T ) dependence
in two dimensions (2D). In three dimesions (3D), the weak-
localization corrections have a T 1/2 dependence while the
Coulomb interaction corrections are T 3/2. In the context
of spintronics, quantum corrections to transport of charge
carriers in dilute magnetic semiconductor films have been
studied extensively [5,6]. In contrast, for itinerant metallic
magnetic systems, spin-wave mediated interaction corrections
to the conductivity (labeled Altshuler-Aronov correction [2]
or “AA” correction in the following) have only started to
be explored. This work has been motivated by challenging
experimental data on the conductivity of magnetically ordered
films of typically a few nanometers thickness. In the case of
ferromagnetic Fe films, it was found that 2D weak-localization
corrections appear in both the longitudinal and the Hall con-
ductivities [7]. The variation of the prefactor of the logarithm
in temperature in the Hall conductivity has been successfully
explained by the interplay of skew scattering and side-jump
mechanisms producing an anomalous Hall effect [8]. By
contrast, in ferromagnetic Gd films, a localizing contribution
to the conductivity linear in temperature has been observed
in addition to a logarithmically varying term [9,10]. While
the latter is well accounted for by the usual weak-localization
and AA contribution for 2D systems, the linear T term was
shown to arise from scattering off ferromagnetic spin-wave
excitations, as presented in the following. These quantum
corrections are sizable, in the case of Gd films they are of
order 10%. In particular, the linear temperature dependence
was observed in thin 2D disordered ferromagnetic films of
Gd where the spin-wave gap is negligible. On the other hand,
since the spin-wave gap, the exchange interaction, as well as
the exchange splitting introduce additional energy scales that
compete with the usual scales set by temperature and disorder,

quantum corrections to the conductivity from scattering of
electrons off of spin waves can be expected to have a wide
range of distinctive behavior in different regimes that are
not available in nonmagnetic systems. It is observed that
even for thin-film geometries, the system may effectively
be in the three-dimensional regime, if the phase-breaking
length is less than the film thickness, which may happen
on account of the strong scattering off spin-wave excitations
[11–13]. Indeed, recent studies of thin antiferromagnetic films
of Mn, with a spin-wave gap of about 15–20 K, have revealed
unusual temperature as well as disorder dependence [14]
that shows the importance of exploring the different regimes
in these systems. These distinct behaviors also provide an
opportunity to study certain magnetic properties of thin films
by direct transport measurements done in specific regimes,
specially when neutron scattering measurements are difficult.
For example in Ref. [14], it was possible to extract both the
spin-wave gap and the exchange energy from the detailed study
of the temperature and disorder dependence of the quantum
correction to the conductivity. In addition, it turns out that
antiferromagnetic thin Mn films can be made highly disordered
without going through the metal-insulator transition. In this
regime, a nonuniversal weak localization correction in 3D was
found. The observed corrections to the conductivity are large,
of order 50%. Thus, specifically for antiferromagnetic systems,
one expects a wide variety of temperature as well as disorder
dependence of the phase-breaking lengths at different regimes
in the large available parameter space.

However, while phase-breaking lengths and corrections
to conductivity for ferromagnets have been studied be-
fore [9,13,15], and some results for antiferromagnetic films
have been reported while explaining experimental obser-
vations [14], a systematic study of the antiferromagnetic
systems is still missing. In this work, we provide some
details of results used in Ref. [14], as well as results in
parameter regimes not yet reported elsewhere. In particular,
we obtain a linear T dependence for the quantum correction
to the conductivity for antiferromagnetic systems just like the
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corresponding ferromagnetic case obtained before. We take
the opportunity to provide some details of the results obtained
in Ref. [9] on the disorder dependence of conductivity for
a 2D ferromagnetic film at large disorder, and then show
how the disorder dependence changes for an antiferromagnetic
system. We systematically study the phase-breaking time and
associated weak-localization corrections where the inverse
phase-breaking time can be larger or smaller compared to
the spin-wave gap in 2D as well as 3D systems. We show
how the dispersion relation for antiferromagnets allows for an
interplay with disorder that is qualitatively different compared
to a ferromagnet, giving rise to weak-localization effects.
Instead of numerically evaluating the temperature or disorder
dependence accurately, we consider various limiting cases
where analytic expressions allow one to have a more detailed
understanding of the system. For example, in a numerical plot,
a crossover temperature dependence, where the temperature is
of the order of the spin-wave gap, can be hard to distinguish
from a fractional power law; we show how both can be
achieved in different parameter regimes.

The paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian and obtain the formula for the “AA”
quantum correction to conductivity due to scattering of
electrons off of spin waves for magnetic systems with arbitrary
spin-wave gap, exchange energy, and exchange splitting. The
general formula obtained is then used in Sec. III to obtain
the temperature and disorder dependence of the conductivity
for both ferromagnetic and antiferromagnetic systems. In
Sec. IV, we obtain the temperature and disorder dependence
of the inelastic lifetime due to scattering off spin waves in
an antiferromagnetic system in various parameter regimes.
These results are then used to obtain the weak-localization
corrections in Sec. V. Section VI contains a brief summary

(b)(a)

(a ) (b )

FIG. 1. Diagrams representing spin-wave contributions to the
conductivity. Solid lines represent impurity averaged Green’s func-
tions Gσ , while the broken lines are the “diffusons” �σσ ′ . The wavy
lines are the effective spin-wave-mediated interactions v(q,ω).

and discussions. The Appendix contains some details of the
results used in Sec. II regarding calculations of the conductivity
diagrams shown in Fig. 1.

II. SPIN-WAVE-INDUCED AA CORRECTION
TO THE CONDUCTIVITY

Our starting Hamiltonian for itinerant electrons scattering
from impurities as well as spin waves is [13]

H =
∑
kσ

(
εk − 1

2
σB

)
c+

kσ ckσ

+
∑

k,k′σ,j

V (k − k′)ei(k−k′)·Rj c+
k′σ ckσ

+
∑

q

ωqa
+
q aq + J

∑
q,k

[a+
q c+

k+q↓ck↑ + H.c.], (2.1)

where the annihilation and creation operators ck , c+
k refer to

electrons and aq , a+
q refer to spin waves, J is the effective

spin-exchange interaction, and B is the exchange splitting.
The potential V models the impurity scattering. For the
moment, we keep the derivation valid for both ferromagnets
and antiferromagnets by choosing the spin wave to have a
dispersion relation (at not too large wave vectors)

ωq = � + Aαqα, (2.2)

where � is the spin-wave gap and Aα is the spin stiffness.
Here, α = 2 for ferromagnetic spin waves while α = 1 for
antiferromagnets. There are many different regimes, owing
to the several characteristic energy scales. The energy scales
entering the Hamiltonian are (1) Fermi energy EF (typically
several eV), (2) exchange coupling energy J̄ = nJ (where
n is the electron density; nJ is typically of order 0.1 eV),
(3) exchange splitting B (0.001 to 0.1 eV), (4) spin-wave
gap � (of order 1 meV). Then, we have two derived energy
scales (5) the impurity scattering rate 1/τ (in the range 0.05
to 0.5 EF ), and (6) the phase-breaking rate 1/τφ (of order
0.1/τ ). These should be compared with the thermal energy T .
We will be interested in the parameter regime where EF is
the largest energy scale. The exchange energy J̄ is typically
the next largest energy scale. The exchange splitting B and the
spin-wave gap � may be larger or smaller, and both may be
larger or smaller than the derived energy scales 1/τ or 1/τφ .
The spin stiffness is approximately related to the exchange
energy by Aαkα

F = J̄ . The spin-wave propagator is

S↑↓(q,ωn) = 1/[iωn − ωq + iγ (q)] = [S↓↑]∗, (2.3)

where the star denotes complex conjugation, ωn = 2πnT is the
bosonic Matsubara frequency, and γ (q) is a phenomenological
damping parameter that depends on q as some power qβ with
β � 2. The spin-wave-mediated effective interaction is given
by

v(q,ωl) = nJ 2[S↑↓(q,ωl) + S↓↑(q,ωl)]

= − 2nJ 2ωq

(|ωl| + γ )2 + ω2
q

, (2.4)

which is attractive. Here, n is the density of conduction
electrons.
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The conductivity diagrams are shown in Fig. 1. For finite
Zeeman splitting B, the spin-dependent Green’s functions
Gσ for σ = ↑, ↓ have different energies, G−1

σ (k,ωn) = iωn −
εkσ + i

2τ
sign(ωn). We choose εk↑ = εk↓ − B. The particle-

hole (ph) diffuson propagator in the presence of a finite B

is given by [13]

�+−
↑↓ (q,ωl,B) = 1

2πN0τ

1

1 − τ̃ ∗
τ

+ τ̃ ∗2

τ
(|ωl| + D̃∗q2)

= 1

2πN0τ

τ

τ̃ ∗2

1

|ωl| + D̃∗q2 + δ̃∗ , (2.5)

where we have defined

D̃ ≡ 1

d
v2

F τ̃ ;
1

τ̃
≡ 1

τ
− iB;

δ̃ ≡ τ

τ̃ 2
− 1

τ̃
= −iB(1 − iBτ ). (2.6)

We only show the evaluation of Fig. 1(a) here in some detail
and leave the rest for the Appendix. Using standard rules of
diagrams [1,2] we have, for Fig. 1(a),

L1(a) = −T
∑
εn

T
∑
ωl

∑
q

C2
1C

2
2

×�2
↑↓(q,ωl)�↑↓(q,ωl − �m)v(q,ωl)

×�[εn(εn − �m)]�[−εn(εn − ωl)]. (2.7)

Here,

C1 ≡
∑

k

(G+
k↑)2G−

k−q↓
kx

m

≈
∑

k

(G+
k↑)2

[
G−

k↓ +
(

i|ωl| − kq

m

)
(G−

k↓)2 + · · ·
]
kx

m

=
∑

k

(G+
k↑)2(G−

k↓)2

〈−k2
x

m2

〉
θ

qx

= −4πN0D̃
∗τ̃ ∗2qx, (2.8)

where the angular average is obtained from 〈k2
x〉θ = 1

d
k2
F , and

C2 ≡
∑

k

G+
k↑G−

k−q↓

≈ 2πN0τ̃
∗[1 − |ωl|τ̃ ∗ − D̃∗q2τ̃ ∗]. (2.9)

In the above we used εn > 0, so that εn − �m > 0, εn − ωl < 0,
such that

T

ωl∑
εn=�m

= (ωl − �m); ωl > �m. (2.10)

On the other hand, for εn < 0, we have εn − �m < 0,
εn − ωl > 0, such that

T

0∑
εn=ωl

= |ωl|; ωl < 0. (2.11)

In this case, C1 and C2 are given by the above expressions
with G± replaced by G∓, which essentially replaces C1

and C2 by their complex conjugates. We thus obtain, for

Fig. 1(a),

L1(a) = −T
∑

ωl>�m

ω−
lm

∑
q

q2F (q,ωl)K(q,ω−
lm)

− T
∑
ωl>0

|ωl|
∑

q

q2F ∗(q,−ωl)K
∗(q,−ω+

lm), (2.12)

where we have defined

ω±
lm ≡ ωl ± �m, (2.13)

F (q,ωl) = 4πN0D̃
∗2[1 − |ωl|τ̃ ∗ − D̃∗q2τ̃ ∗]2

× v(q,ωl)

(|ωl| + D̃∗q2 + δ̃∗)2
(2.14)

and

K(q,ω−
lm) = 1

|ω−
lm| + D̃∗q2 + δ̃∗ . (2.15)

Figure 1(a′) has the interaction on the lower line. As shown
in the Appendix, it gives

L1(a′) = (L1(a))∗. (2.16)

Figures 1(b) and 1(1b′) are also evaluated similarly in the
Appendix. The results are

L1(b) = T
∑

ωl>�m

(ω−
lm)

∑
q

q2F (q,ωl)K(q,ω−
lm)

+ T
∑

ωl>�m

(ω−
lm)

∑
q

q2F ∗(q,−ωl)K
∗(q,−ω+

lm),

L1(b′) = (L1(b))∗. (2.17)

Adding all contributions from the four diagrams we get

L(sum) = T
∑
ωl>0

ωl

∑
q

q2F ∗(q,−ωl)K
∗(q,−ω+

lm)

+ T
∑

ωl>�m

(ω−
lm)

∑
q

q2F ∗(q,−ωl)K
∗(q,ω+

lm) + c.c.

= −T

⎡⎣ �m∑
ωl=0

ωl +
∞∑

ωl=�m

�m

⎤⎦C(ωl,�m) + c.c.,

(2.18)

where we have defined

C(ωl,�m) = C̃0

∑
q

[1 − |ωl|τ̃ − D̃q2τ̃ ]2

× q2v(q,ωl)

(|ωl| + D̃q2 + δ̃)2(|ω+
lm| + D̃q2 + δ̃)

(2.19)

with

C̃0 = 4πN0D̃
2. (2.20)

We now define C̃(ωl,�m) = C(ωl,�m) + c.c., then we can
follow Ref. [2] to analytically continue to the complex ω plane
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and obtain

L = − 1

4π

∫ ∞

−∞
dω ω coth

ω

2T

× [C̃[−i(ω + �),−i�] − C̃(−iω,−i�)]. (2.21)

The conductivity correction is the � → 0 limit after dividing
by �, which gives

δσ = 1

4π

∫ ∞

−∞
dω C̃(−iω,0)

∂

∂ω

[
ω coth

ω

2T

]
. (2.22)

This agrees with the Altshuler-Aronov correction (or the “AA
correction”) in Ref. [2] when C̃ obtained for spin-wave-
mediated interaction here is replaced by the corresponding
function for Coulomb interactions.

III. TEMPERATURE AND DISORDER
DEPENDENCE OF CONDUCTIVITY

We will use Eq. (2.22) to evaluate the leading temperature
and disorder dependence of the conductivity. We confine our
discussion to the low-temperature T 
 B and strong disorder
Bτ 
 1 regimes.

A. Temperature dependence

As seen from expression (2.22), the leading temperature
dependence is generated in the frequency range 0 < ω < 2T ,
where we may expand coth x ≈ 1/x + x/3 for x 
 1 and
write

δσ ≈ 1

2π

1

3T

∫ 2T

0
ω dωC̃(−iω,0). (3.1)

For B � T (which is the generic regime for low temperatures
in the several Kelvin range or below), the diffusons are cut off
by the finite B term and the only ω dependence to F and K

comes from the spin-wave interaction v(q,ω). In this case, we
write

C̃(−iω) ≈ C̃0

∫ q0

0
(dq)

q2v(q,−iω)

(D̃q2 + δ̃)3
+ c.c., (3.2)

where (dq) = dDq/(2π )D for dimensions D = 2,3. Here,
q0 ≈ l−1 is a cutoff related to the inverse mean-free path l−1 =
1/(vF τ ). Since the diffusons do not contribute in a singular
fashion, and ωq = � + Aαqα , the dominant contribution to the
q integral comes from q0 > q > (T/Aα)1/α . In that case, the
ω dependence of v(q,ω) can be neglected. This immediately
leads to a linear T dependence:

δσ ≈ 2C̃0

3π
T

∫ q0

0
(dq)

q2v(q,ω = 0)

(D̃q2 + δ̃)3
. (3.3)

Note that the linear T dependence is independent of the
dimensionality, and should be valid for both ferromagnets
and antiferromagnets. It was experimentally observed in
ferromagnetic thin Gd films [9]. [We take this opportunity
to point out that there is a misprint in Ref. [9], where the
inequality after Eq. (10) should be Bτ 
 1 in order to obtain
the given disorder dependence.]

We note here that in their theoretical evaluations, Ref. [15]
did not obtain a linear T dependence in any regime of a
ferromagnet. The difference seems to appear from the choice of

the cutoff qc ≡ √
T/A2, using α = 2 for ferromagnets. While

Ref. [15] assumes the upper cutoff for the q integral to be qc,
we take the upper limit to be given by q0 = 1/l, with qc 
 1/l

such that the major contribution of the q integral comes
from q0 > q > qc. In this case, q2

c = T/A2 < 1/l2 implies
T/J < 1/(kF l)2, where J = A2k

2
F . Typically, T/J ∼ 10−2,

which implies that for a wide range of disorder the above
inequality is well satisfied. As pointed out in Ref. [15], the large
disorder limit considered here allows us to ignore additional
nondiffuson diagrams considered there.

B. Disorder dependence

We will basically use Eq. (3.3) to evaluate the disorder
dependence of the conductivity correction in various limiting
cases in two and three dimensions. We will ignore the spin-
wave damping, so that the spin-wave-mediated interaction is

v(qω) = − 2nJ 2ωq

ω2 + ω2
q

. (3.4)

We recall that the system parameters entering here are C̃0 ≈
4πN0D̃

2, δ̃ = −iB(1 − iBτ ), D̃ = D
1−iBτ

. Note that up to
this point, the formulas are valid for both ferromagnets and
antiferromagnets, differentiated only by the q dependence in
the dispersion relation.

1. Ferromagnetic spin waves: 2D

Since Eq. (3.3) is valid for ferromagnets as well, we take this
opportunity to provide some details for obtaining the results
given in Ref. [9]. Consistent with Ref. [9], we will consider
a 2D system, in the limit where the exchange splitting B is
large compared to � but Bτ 
 1 (note: there is a misprint in
Ref. [9], which states the opposite limit Bτ � 1). Then,

δσ ≈ 2C̃0

3π
T (−2nJ 2)

1

A2D̃3
I1,

I1 =
∫ q0

0
dq

q3

(b + q2)3(c2 + q2)
, (3.5)

where

b ≡ δ̃

D̃
, cα ≡ �

Aα

. (3.6)

While the integral can be done exactly, we will be interested in
the limit of strong disorder b, c2 < (q0)2, when we may take
q0 → ∞ and D < A2, giving the leading term as

I1 = 1

2b2
, q0 → ∞, b � c2. (3.7)

In this limit, the conductivity becomes

δσ ≈ −8

3
N0nJ 2 T

A2
Re

(
D̃

δ̃2

)
, (3.8)

where we have used the definitions of C̃0 and b. Considering
furthermore the limit Bτ 
 1, when

Re

(
D̃

δ̃2

)
lim

Bτ
1
= − D

B2
, (3.9)
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we finally obtain

δσ ≈ 16

3
N0J

nJ

B

εF

B

T

A2k
2
F

(εF τ ), Bτ 
 1 (3.10)

where D = 1
2v2

F τ and kF vF = 2εF (� = 1) have been used.
This agrees with [9] for negligible damping (γ = 0) (apart
from the misprint about the Bτ limit mentioned before), where
it was shown to agree well with the experimental data.

2. Antiferromagnetic spin waves

The antiferromagnetic spin wave is characterized by ωq =
� + A1q. We will consider both the 3D and 2D cases, but
only in the limits of large spin-wave gap � and large disorder
Bτ 
 1.

Case I: 3D, Bτ 
 1: In this limit we start with

δσ ≈ 2C̃0

3π
T (−2nJ 2)

1

A1D̃3
I2,

I2 =
∫ q0

0
dq

q4

(b + q2)3(c1 + q)
, (3.11)

where b and c1 are defined in (3.6). Since q0 � (c1,
√

b) we
may take q0 → ∞ and also b � c2

1, when

I2 ≈ 1

4b
, q0 → ∞, b � c2

1. (3.12)

Then, the contribution to the conductivity is

δσ ≈ −8

3
N0nJ 2 T

A1
Re

1

δ̃
. (3.13)

Using the 3D values N0 = mkF

π2 , n = k3
F

3π2 this gives

δσ ≈ −8
T J̄

vF

Re
1

δ̃
, J̄ = nJ (3.14)

where we defined the spin-exchange energy scale J̄ = nJ and
used A1 ≈ vF . In the limit Bτ 
 1 using Re(1/δ̃) → −τ , we
finally get

δσ ≈ 4
J̄

εF

T

εF

(εF τ )kF . (3.15)

Comparing this result in the case of Mn films with the con-
tribution from the weak-localization mechanism considered
in the next section, it is found to be smaller by two orders
of magnitude and therefore has not been observed in the
experiments reported in [14].

Case II: 2D, Bτ 
 1. In 2D, we have

δσ ≈ 2C̃0

3π
T (−2nJ 2)

1

A1D̃3
I3,

I3 =
∫ q0

0
dq

q3

(b + q2)3(c1 + q)
. (3.16)

In the regime under consideration, the integral is simply

I3 ≈ π

16

1

b3/2
, q0 → ∞, b � c2

1. (3.17)

The corresponding conductivity is

δσ ≈ −π

3
N0nJ 2 T

A1
Re

(
D̃

δ̃3

)1/2

. (3.18)

In the limit Bτ 
 1, we finally get

δσ ≈ π

3

J̄

εF

J̄

B

√
εF

B

T

A1kF

√
εF τ . (3.19)

Thus, the disorder dependence in 2D for antiferromagnets
(
√

εF τ ) is different from that for ferromagnets (εF τ ).

IV. INELASTIC LIFETIME FOR
ANTIFERROMAGNETIC SYSTEMS

In order to consider the conductivity corrections due to
weak localization, we will need the inelastic lifetime caused
by scattering off spin waves. Some ferromagnetic cases
have been considered in Ref. [13]. Here, we consider the
antiferromagnetic case. The inelastic lifetime due to scattering
off spin waves is given by [13]

�

τφ

= 4

π�
nJ 2

∫ q0

0

qd−1dq

sinh βωq

Dq2 + 1/τφ

(Dq2 + 1/τφ)2 + ω2
q

, (4.1)

where we substitute the dispersion law for antiferromagnetic
spin waves �ωq = � + A1q. We will consider both the limits
�/τφ 
 � and �/τφ � �. Considering that the sinh function
acts as an exponential cutoff of the q integral at q ∼ q1,
where ωq1 ∼ 2T , we distinguish in the following the two cases
q1 < q0 and q1 > q0.

Note that for the ferromagnetic case, ωq in the spin-
wave interaction term has the same q dependence as Dq2

in the diffusion term, while it has a lower power for the
antiferromagnetic case. If dominant contributions come from
large q, then the antiferromagnetic systems will be much more
dominated by disorder, eventually leading to more interesting
weak-localization effects.

A. Large spin-wave gap

We consider the case �/τφ 
 � first. Depending on the
temperature, this may have different possibilities, as shown in
the following.

Case I: 3D, �/τφ 
 �, T > �, q1 < q0. Consider 3D
systems. In the limit �/τφ 
 � we can neglect the 1/τφ terms
inside the integral. Then, the inelastic lifetime is given by

�

τφ

= 4

π�
nJ 2

∫ q0

0

q2dq

sinh βωq

Dq2

(Dq2)2 + ω2
q

= 4J̄

π
K1, (4.2)

where we defined the dimensionless quantity K1:

K1 ≡ J̄

�n

∫ q0

0

q2dq

sinh �+A1q

T

Dq2

(Dq2)2 + (� + A1q)2
. (4.3)

The sinh function will cut off the integral at (� + A1q)/T � 2
or q � (2T − �)/A1, if 2T > � and if (2T − �)/A1 < q0.
We will first consider this limit. (Note that in the opposite
limit 2T 
 �, the T dependence is exponential.) We may
then replace the upper limit of the integral as

K1 ≈ J̄

�nD

∫ 2T −�
A

0

q4dq

sinh
[

A1
T

(
q + �

A1

)]
× 1

q4 + A2
1

D2

(
q + �

A1

)2
. (4.4)
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In addition, if �
A1

< 2T −�
A1

or equivalently � < T , then we split
the integral into two pieces: K1 = K11 + K12 with

K11 ≈ J̄

�nD

∫ �
A1

0

q4dq

sinh �
T

1

q4 + �2

D2

= J̄

�nD

1

sinh �
T

K00, (4.5)

where

K00 ≡
∫ �

A1

0

q4dq

q4 + �2

D2

. (4.6)

(Note: so far we have used � = 1.)
Putting � back and defining �̄ = �/�, we change variables

to u = Dq2/�̄, giving

K00 = �

2

�2

A3
1

1

x3/2
I (x), I (x) ≡

∫ x

0

u3/2du

1 + u2
, (4.7)

where

x ≡ �D�

A2
1

. (4.8)

While the exact result for this integral is available, if lengthy,
the limits can be obtained simply:

I (x) ∼
∫ x

0
u3/2du = 2

5
x5/2, x 
 1

I (x) ∼
∫ x

0
u−1/2du = 2x1/2, x � 1. (4.9)

The second part of the integral is typically small. We can
estimate it as

K12 ≈ J̄

�nD

∫ 2T −�
A

�
A

dq

sinh A1q

T

q2

q2 + A2
1

D2

= J̄

�nD

T

A1

∫ 2T −�
T

�
T

dy

sinh y

y2

y2 + A2
1

D2T 2

, (4.10)

where we changed the integration variable to y = qA1/T . For
x � 1, we have A2

1/DT = �/T x 
 �/T and in this limit
we have

K12 = J̄

�nD

T

A1

∫ 2T −�
T

�
T

dy

sinh y

= T

DA1
ln

tanh[1 − �/(2T )]

tanh[�/(2T )]
. (4.11)

In the opposite limit x 
 1, A2
1/DT = �/T x � �/T , the

integrals may only be done numerically to get the leading T

dependence.
Assuming the first part dominates, we can estimate the

inelastic length Lφ as follows. Rewrite

x = �D�

A2
1

= �Dk2
F �

J̄ 2
, J̄ ≡ A1kF

n = k3
F

3π2
; J = J̄

n
, nJ 2 = 3π2A2

1

kF

. (4.12)

Then,

�

τφ

≈ 6π

sinh �
T

�2

J̄

1

x3/2
I (x). (4.13)

The inelastic length is given by

Lφ = √
Dτφ. (4.14)

Writing D in terms of x as D = J̄ 2

�k2
F �

x, we rewrite

kF Lφ =
(

J̄

�

)3/2( sinh �
T

6π

)1/2(
x5/2

I (x)

)1/2

. (4.15)

In the two limits x large and small we get

kF Lφ ≈
(

J̄

�

)3/2( sinh �
T

12π

)1/2

x, x � 1

≈
(

J̄

�

)3/2(5 sinh �
T

12π

)1/2

, x 
 1. (4.16)

Since x decreases with increasing disorder, Lφ decreases with
increasing disorder and then saturates at a disorder independent
value for x 
 1 given by the ratios J̄ /� and �/T . This is the
regime studied in Ref. [14].

Case II: 3D, �/τφ 
 �, T > �, q1 > q0. In this case
in 3D

�

τφ

≈ 4

π�
nJ 2 1

sinh �
T

K01, (4.17)

where

K01 ≡
∫ q0=1/l

0
q2dq

Dq2

(Dq2)2 + �̄2
, �/A1 
 q0. (4.18)

This leads to

K01 = 27

2�2

�2

v3
F

x̄3/2I (x̄), x̄ ≡ �Dq2
0

�
= �v2

F

9�D
(4.19)

giving

1

τφ

= 81π

4� sinh �
T

�2J̄ 2

ε3
F

x̄3/2I (x̄). (4.20)

The corresponding inelastic length is given by

kF Lφ = 4

9

(
ε5
F

�3J̄ 2

)1/2( sinh �
T

π

)1/2( 1

x̄3/2I (x̄)

)1/2

. (4.21)

In the two limits, the disorder dependence is given by

kF Lφ ∼ 1

x̄
∼ D, x̄ � 1

∼ 1

x̄2
∼ D2, x̄ 
 1. (4.22)

Case III: 2D, �/τφ 
 �, T < �. As mentioned above,
the temperature dependence is exponential in this limit.
We will consider this limit in two dimensions, where the
corresponding weak-localization effect can be important. The
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quantity K1 in Eq. (4.3) is now approximated as

K1 ≈ J̄

�n

∫ ∞

0
dq e− �

T
− Aq

T
Dq3

(Dq2)2 + (� + A1q)2

= J̄

�n
e− �

T

∫ ∞

0
dy

D
(

T
A1

)3
y3e−y

D2
(

T
A1

)4
y4 + (� + Ty)2

. (4.23)

For � > T we can ignore the term Ty compared to � in the
denominator since the exponential term limits y < 1. Also, we
will consider the regime where D(T/A)2y2 can be neglected
compared to �, as is true for T/J̄ 
 1. In this limit,

K1 ≈ e− �
T

(
T

AkF

)4
J̄Dk2

F

�2
(4.24)

leading to

1

τφ

≈ e− �
T

T 4

J̄ 2�2
(εF τ )εF . (4.25)

The corresponding result in 3D will have a different T -
dependent prefactor to the exponential. Similarly, the ferro-
magnetic case in 2D will have a logarithmic T dependence as
a prefactor to the exponential.

B. Small spin-wave gap

We now consider the case �/τφ � �. In this limit, we use
�ωq ≈ A1q and sinh(βωq) ∼ A1q/T , and there will be self-
consistent equations because the integrals will have a lower
cutoff at 1/Lφ .

Case I: 3D, �/τφ � �. For 3D, we have

�

τφ

≈ 4

π�
nJ 2 T

AD
K ′

0, K ′
0 ≡

∫ q0

1/Lφ

q dq

q2 + (
A

�D

)2 . (4.26)

The interesting limit is when �D/Al � 1. In this case,

�

τφ

≈ 4

π�
nJ 2 T

AD
ln

(
Lφ

l

)
,

�D

Al
= 2

3

εF

J̄
� 1. (4.27)

To leading order, we replace Lφ/l = τφ/τ in the argument of
the logarithm by the prefactor, giving

τ

τφ

≈ 9π
J̄T

ε2
F

ln

(
ε2
F

9πJ̄T

)
. (4.28)

Case II: 2D, �/τφ � �. In contrast, in 2D,

�

τφ

≈ 4

π�
nJ 2 T

A2

[
arctan

�D

Al
− arctan

�D

ALφ

]
. (4.29)

Again, the interesting limit is

�

τφ

≈ 3T
J̄

εF

Lφ

l
,

�D

Al
� 1. (4.30)

Replacing Lφ = √
Dτφ and solving for τφ gives

�

τφ

≈
(

�

2τ

)1/3(
J̄

εF

)2/3

T 2/3. (4.31)

V. WEAK LOCALIZATION

The observation of weak-localization (WL) contributions to
the conductivity of magnetically ordered films is somewhat
surprising since one may expect a strong internal magnetic
field cutting off the WL contribution. Nonetheless, WL effects
have been observed in ferromagnetic nickel films [16], thin
Fe films [7], and ferromagnetic GaMnAs nanostructures [17].
There are at least two reasons for that. For once, the inelastic
scattering rate 1/τφ is unusually large on account of the
strong scattering off spin waves (see above), such that in
the temperature regime considered in these experiments the
relevant cutoff is 1/τφ and not the magnetic induction. Second,
the demagnetization field of the film geometry compensates
the internal magnetic induction almost completely.

Given the inelastic lifetime, the weak-localization correc-
tion to the conductivity is found as

δσ ∼
√

τ

τφ

, 3D

∼ ln
τ

τφ

, 2D. (5.1)

We will consider two limiting cases.

A. Large spin-wave gap

When the spin-wave gap is large compared to the inverse
inelastic lifetime, i.e., �

τφ

 �, there are three interesting

possibilities.
Case I: 3D, T > �, q1 < q0, strong disorder. Using the

corresponding results for the inelastic lifetimes,

τ

τφ

≈ τ

�

6π

sinh �
T

�2

J̄

1

x3/2
I (x). (5.2)

Inserting the limiting behavior of I (x) for small and large x,
we get

τ

τφ

≈ 2

15

(
�

J̄

)3

(kF l)2 6π

sinh �
T

, x 
 1

≈ 3

4

�J̄

ε2
F

6π

sinh �
T

, x � 1. (5.3)

Then, the weak-localization correction is

δσ ≈
√

4

5

(
�

J̄

)3/2

(kF l)

√
π

sinh �
T

, x 
 1

≈
√

9

2

(
�J̄

ε2
F

)1/2√
π

sinh �
T

, x � 1. (5.4)

Note that

x = �Dk2
F �

J̄ 2
= 2

3

�εF

J̄ 2
(kF l). (5.5)
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The T dependence in the crossover regime T ∼ � might
look like a fractional power law. This was observed recently
experimentally in Ref. [14].

Case II: 3D, T > �, q1 > q0, moderate disorder. In this
limit,

τ

τφ

= 81πτ

4� sinh �
T

�2J̄ 2

ε3
F

x̄3/2I (x̄),

x̄ ≡ �D

�l2
= 1

3

�

�τ
. (5.6)

In the two limits of large and small x̄, the localization
corrections are given by

δσ ≈
√

4

5

(
J̄

�

)
1

(kF l)3/2

√
π

sinh �
T

, x̄ 
 1

≈ 3
√

2

(
J̄

εF

)
1

kF l

√
π

sinh �
T

, x̄ � 1. (5.7)

Case III: 2D, T < �. Here, we have the thermally activated
behavior of 1

τφ
, which when substituted into the logarithm

leads to

δσ ∼ ln e−�/T ∼ −�

T
(5.8)

a distinctive behavior, which should be observable in experi-
ment.

B. Small spin-wave gap

In the regime where the spin-wave gap is smaller than
the inverse inelastic lifetime �

τφ
� �, one arrives at a self-

consistent equation and we will only consider the limit �D
Al

� 1
in 3D. Then, from Eq. (4.28) the conductivity correction is

δσ ≈
√

9π
J̄T

ε2
F

ln

(
ε2
F

9πJ̄T

)
. (5.9)

This is another unusual T dependence in 3D that should be
observable.

C. Very strong disorder

Finally, we like to mention a renormalization of the
prefactor of the standard weak-localization expression in the
case of a metallic 3D system close to the metal-insulator
transition, when the conductivity σ already strongly deviates
from the Drude result σ0. As discussed in Ref. [14], the WL
correction to the conductivity gets renormalized as

δσ�
L00

= σ

σ0

t

Lφ

. (5.10)

Here, δσ� = tδσ , with t denoting the film thickness, and
L00 = e2/πh is the conductance quantum. The ratio σ/σ0 is
accessible through the sheet resistance R0 at T = 0,

σ

σ0
≈ 2

1 +
√

1 + (R0/Rc)2
(5.11)

with Rc a characteristic sheet resistance of the order of e2/h.
The above is based on a self-consistent theory of Anderson

localization, which is known to give a good description of the
3D conductivity near the Anderson transition, but still outside
of the critical regime [18].

VI. SUMMARY

In this work, we have systematically evaluated the tem-
perature and disorder dependence of the quantum corrections
to the conductivity due to scattering of electrons off of
spin waves in itinerant antiferromagnetic systems. First, we
considered the interaction-induced AA correction. We showed
how a linear T correction arises naturally in some specific
parameter range in both ferromagnetic and antiferromagnetic
systems. However, the disorder dependence is different in
antiferromagnetic systems compared to ferromagnets. We
provide details of the derivation of the crossover temperature
behavior reported in Ref. [14], which allowed the extraction of
the spin-wave gap and the exchange-energy parameters from
the temperature and disorder dependence of the conductivity of
thin Mn films. Second, we reconsider the inelastic scattering,
or phase-breaking rate, induced by scattering of electrons off
spin waves. This quantity determines the weak-localization
correction to the conductivity. We show how the temperature
and disorder dependence in the various parameter regimes
can be very different, and provides an opportunity to study
magnetic properties of thin films in 2D or 3D by direct transport
measurements.
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APPENDIX: EVALUATION OF THE
CONDUCTIVITY DIAGRAMS

Here, we show the details of evaluating Figs. 1(a′), 1(b),
and 1(b′).

Diagram 1(a′) has the interaction on the lower line. It gives

L1(a′) = −T
∑
εn

T
∑
ωl

∑
q

C2
1C

2
2�

2
↑↓(q,ωl)�↑↓(q,ω+

lm)

× v(q,ωl)�[εn(εn − �m)]

×�[−εn(εn − ω+
lm)]. (A1)

For εn > 0, C1 and C2 are given by Eqs. (2.8) and (2.9), but for
εn − �m > 0 and εn − �m − ωl < 0, the sum over εn becomes

T

ωl+�m∑
εn=�m

= ωl, ωl > 0. (A2)

For εn < 0, we have εn − �m < 0, εn − �m − ωl > 0, such
that

T

0∑
εn=ωl+�m

= −(ωl + �m), ωl < 0 (A3)
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and C1 and C2 replaced by complex conjugates as before.
Thus, we have for diagram 1(a′)

L1(a′) = −T
∑
ωl>0

ωl

∑
q

q2F (q,ωl)K(q,ω+
lm)

− T
∑

ωl>�m

ω−
lm

∑
q

q2F ∗(q,−ωl)K
∗(q,−ω−

lm).

(A4)

Since F and K depend on the frequency only as the
absolute value, i.e., F (q,ωl) = F (q,−ωl) and K(q,ω+

lm) =
K(q,−ω+

lm), we see that

L1(a′) = (L1(a))∗. (A5)

We now consider Fig. 1(b). It is given by

L1(b) = −T
∑
εn

T
∑
ωl

∑
q

C1C3C
2
2�

2
↑↓(q,ωl)�↑↓(q,ω−

lm)

× v(q,ωl)�[εn(εn − �m)]�[−εn(εn − ωl)]

×�[(εn − ωl)(εn − ω+
lm)], (A6)

where for εn > 0,

C3 ≡
∑

k

(G+
k↑)(G−

k−q↓)2 kx

m

≈
∑

k

(G+
k↑)

[
G−

k↓ +
(

i|ωl| − kq

m

)
(G−

k↓)2 + · · ·
]2

kx

m

=
∑

k

(G+
k↑)(G−

k↓)3

〈−2k2
x

m2

〉
θ

qx

= +4πN0D̃
∗τ̃ ∗2qx (A7)

such that C3 = −C1. In the above we used εn > 0, so that
εn − �m > 0, εn − ωl < 0, and εn − �m − ωl < 0 such that

T

ωl∑
εn=�m

= (ωl − �m), ωl > �m. (A8)

On the other hand, for εn < 0, we have εn − �m < 0, εn −
ωl > 0, and εn − �m − ωl > 0 such that

T

0∑
εn=(ωl+�m)

= −(ωl + �m), ωl < −�m. (A9)

We thus obtain, for Fig. 1(b),

L1(b) = T
∑

ωl>�m

ω−
lm

∑
q

q2F (q,ωl)K(q,ω−
lm)

+ T
∑

ωl>�m

ω−
lm

∑
q

q2F ∗(q,−ωl)K
∗(q,−ω+

lm).

(A10)

Figure 1(b′) can be evaluated just as Fig. 1(a′’), and the result
is that

L1(b′) = (L1(b))∗. (A11)
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