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Structure factor of a relaxor ferroelectric
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We study a minimal model for a relaxor ferroelectric including dipolar interactions and short-range harmonic
and anharmonic forces for the critical modes as in the theory of pure ferroelectrics together with quenched
disorder coupled linearly to the critical modes. We present the simplest approximate solution of the model
necessary to obtain the principal features of the correlation functions. Specifically, we calculate and compare the
structure factor measured by neutron scattering in different characteristic regimes of temperature in the relaxor
Pb(Mg1/3Nb2/3)O3.
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I. INTRODUCTION

Relaxor ferroelectrics, a typical example of which is
Pb(Mg1/3Nb2/3)O3 (PMN), a perovskite in which the Mg2+

and Nb5+ randomly occupy the octahedrally coordinated site,
have a very high dielectric constant for a very wide region
in temperature and have no ferroelectric transition except in
applied electric fields. Cowley et al. [1], in a detailed review
of relaxor ferroelectrics, have commented that although they
were first synthesized over 50 years ago and their properties
have been well explored, a satisfactory theory explaining their
properties has not yet been formulated. Here we present a
minimal model for the canonical relaxor PMN and its simplest
necessary approximate solution based on Onsager’s results
on models with dipolar interactions, the displacive transition
model of pure ferroelectrics, and quenched random fields.

The properties of the relaxors such as PMN may be
summarized as follows [1–5]: In zero external electric field
they have a region of collective dielectric fluctuations which
is bounded at the upper end by a temperature TB , the
Burns temperature [6], above which the susceptibility has
a Curie-Weiss form [7]. A broad region extending down to
T = 0 below TB is marked by a temperature Tmax where the
susceptibility is maximum and has a width in temperature
�Tmax. Both Tmax and �Tmax depend on the frequency ω at
which the dielectric susceptibility is measured [8–12]. Very
significantly, neutron scattering experiments have revealed
that the structure factor Sq has unusual temperature [13–15],
power-law [13] forms and anisotropies [16], which are unlike
those in the random field or the random bond disorder models
with short-range interactions [17–19].

Typically only such interaction models with quenched
disorder have been used to describe relaxor ferroelectrics.
These models in three dimensions for weak disorder also
have long-range order at a finite temperature [17], which is
not observed in the canonical relaxor PMN [1]. Several other
models have been proposed for relaxors [20–25], including
those of Burton et al. [21] and of Tinte et al. [22], which, just
as is done in the present paper, considers well-known effective
Hamiltonians for conventional ferroelectrics with quenched
disorder; however, they have almost exclusively been solved
by numerical methods, which makes it difficult to determine
general aspects of the solution of such models.

Recently, it has been proposed that the ground state of
relaxors is that of a cluster glass in which polar domains
generated by random fields cluster at low temperatures due to
frustrating nature of the dipolar force [26]. The mechanism
by which such a glassy state is formed is described by
the subsequent formation of polar domains due to random
electric fields and the clustering of mesoscopic domains due
to frustrated random dipolar interactions. While we do not
study this problem here, we cannot rule out that such freezing
mechanisms may be out of reach of the theoretical treatment
that is presented here, as nucleation of polar domains within
the disordered matrix may occur as there are stable ordered
states in the free energy of our model [27]. Such domains
would then interact through the dipolar force, which is in itself
frustrating due to its anisotropy.

In a previous paper [27], we developed a variational
method which allowed us to study the temperature evolution
of the free energy with compositional disorder, which is
essential to understand the dielectric properties of solid
solutions of relaxors with conventional ferroelectrics such
as Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT). We found that
there are disordered states with a region of metastability
that extends to zero temperature for moderate disorder and
that field-induced transitions to stable ferroelectric states can
occur only for applied electric fields sufficiently large to
overcome the energy barriers that result from disorder. Here
we present a different solution of the model based on Onsager’s
results on systems with dipolar interactions [28] that provides
an important physical insight that is not obvious from the
variational solution.

In formulating the minimum necessary model for PMN,
it is important to recall Onsager’s result [28] that, unlike
in the Clausius-Mossotti or Lorentz approximation, dipole
interactions alone do not lead to ferroelectic order except at
T = 0. Moreover, pure ferroelectric transitions were under-
stood with the realization [29] that they are soft transverse
optic mode transitions due to dipoles induced by structural
transitions so the low-temperature phase does not have a center
of symmetry. The first point is not in practice important for
pure ferroelectrics which are well described by a mean-field
theory for the dielectric constant and is often a first-order
transition only below which the dipoles are produced [30].
But, as we show below, in the relaxor PMN the random

1098-0121/2015/91(14)/144105(6) 144105-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.144105
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location of defects acts in concert with the dipole interactions
to extend the region of fluctuations to zero temperatures.
Therefore dipole interactions must be a necessary part of the
model. The essential physical points in the simplest necessary
solution is to formulate a theory which considers thermal
and quantum fluctuations at least at the level of the Onsager
approximation [28] and random field fluctuations at least at
the level of a replica theory [31].

II. MODEL HAMILTONIAN

We consider the model Hamiltonian presented in Ref. [27],
which we present here for the sake of completeness. We focus
on the relevant transverse optic mode configuration coordinate
ui of the ions in the unit cell i along the polar axis (chosen
to be the z axis); ui experiences a local random field hi

with probability P ({hi}) due to the compositional disorder
introduced by the different ionic radii and different valencies
of Mg+2, Nb+5, in PMN. The model Hamiltonian is

H =
∑

i

[
�2

i

2M
+ V (ui)

]
− 1

2

∑
i,j

vijuiuj

−
∑

i

Eext
i ui −

∑
i

hiui, (1)

where �i is the momentum conjugate to ui and M is an
effective mass and we have included an external electric field
Eext

i = Eext
0 + Eext

i (t), with a static and uniform component
Eext

0 and an infinitesimally small time-dependent component,
Eext

i (t). We assume the hi’s are independent random variables
with zero mean and variance �2. V (ui) is an anharmonic
potential,

V (ui) = κ

2
u2

i + γ

4
u4

i , (2)

where κ,γ are positive constants. vij is the dipole interaction,

vij /e
∗2 =

{
3 (Zi−Zj )2

|Ri−Rj |5 − 1
|Ri−Rj |3 , Ri �= Rj

0, Ri = Rj ,
(3)

where e∗ is the Born effective charge and Zi is the z

component of Ri . The Fourier transform of the dipole in-
teraction vq/(ne∗2) = 1/(ne∗2)

∑
i,j vij e

iq·(Ri−Rj ) = 4π
3 (1 −

3 q2
z

|q|2 ) − ζ |qa|2 + 3ζ (qza)2 is nonanalytic for q → 0. For fu-

ture use, we denote v⊥
0 = 4πne∗2/3 as the q → 0 component

of vq in the direction transverse to the polar axis (q ⊥ ẑ), n as
the number of unit cells per unit volume, and a as the lattice
constant. ζ is a dimensionless coefficient that depends on the
structure of the lattice [32].

The Hamiltonian of Eq. (1) presents (i) long-ranged
(anisotropic) dipolar interactions, (ii) compositional disorder,
and (iii) anharmonicity. We now present the procedure used
to find the correlation functions for (1). We use the quasihar-
monic approximation, similar to that used for pure displacive
ferroelectrics to treat anharmonicity [30]. This reduces the
problem to that of harmonic oscillators with a renormalized
stiffness which is determined self-consistently. Disorder is
treated by an approach which may be termed the “poor man’s
replica method” and has been used to study two- and three-
dimensional magnets with quenched random fields [33]. The

Onsager approximation, which may be considered the leading
fluctuation correction over the mean-field approximation [34],
is used for the dipolar interactions as well as for the general
statistical-mechanical treatment of the problem.

III. SOLUTION BY ONSAGER CAVITY METHOD

In this approximation,

H ≈
∑

i

Hi =
∑

i

(
H 0

i − hiui − E
cavity
i ui

)
, (4)

with H 0
i = �2

i /(2M) + V (ui) − (λ/2)u2
i . E

cavity
i is the On-

sager cavity field,

E
cavity
i =

∑
j

vij 〈uj 〉 − λ〈ui〉 + Eext
i . (5)

〈X〉 denotes the thermal average of any quantity X;
similarly, we will denote by 〈X〉 the configurational average
over the quenched random fields hi taken after the thermal
average is taken.

Onsager calculated the parameter λ for the simpler problem
of dipolar forces alone using continuum electrostatics. More
generally, one may determine λ by use of a self-consistent
procedure such that the response functions obey the fluctuation
dissipation theorem [35]. To find the self-consistent response
functions, we consider the thermal average of ui made up
of a static and uniform order parameter p = 〈ui〉 and a linear
response part δ〈ui〉, i.e., 〈ui〉 = p + δ〈ui〉. The linear response
is determined from the cavity field E

cavity
i [30],

δ〈ui〉 = φhi
(ω)δEcavity

i , (6)

where φhi
(ω) is the dielectric susceptibility for the prob-

lem with Hamiltonian, H 0
i − uihi − uip(v⊥

0 − λ) − uiE0 and
δE

cavity
i = ∑

j vij δ〈uj 〉 − λδ〈ui〉 + δEext
i (t). To take the av-

erage over configurations, we assume that the effects of the
random fields hi decouple in φhi

(ω) and 〈ui〉. For our model,
as will be shown below, φhi

(ω) is independent of i and therefore
has only a q = 0 component denoted simply by φh(ω). Then,
taking a Fourier transform, we get the formal expression for
the susceptibility function,

χq(ω) = δ〈uq〉
δEext

q
= φh(ω)

1 + φh(ω)(vq − λ)
. (7)

Next we determine φh(ω). The equation of motion for ui due to
H0 − hiui − uip(v⊥

0 − λ) − uiE
ext
0 and including a damping

force characterized by  are

Müi = −dV (ui)

dui

+ λui + hi + p(v⊥
0 − λ) + Eext

0 − u̇i .

(8)

We now linearize (8) by considering fluctuations δui around
the static and uniform expectation value of ui , i.e., ui = p +
δui , to get that

φh(ω) = 1

M�′2 − ω2 + iω
, (9)

E0 = [M�′2 − (v⊥
0 − λ) − 2γp2]p, (10)

where M�′2 ≡ κ − λ + 3γ (〈(δui)2〉 + p2).
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The fluctuations 〈(δui)2〉 of the H0 − hiui problem are
easily shown to be

〈(δui)2〉 = �

2M�′ coth

(
β��′

2

)
+ 〈ui〉2 − p2. (11)

We finally find the susceptibility (7),

χq(ω) = 1

M�2
q − Mω2 + iω

, (12)

where �q is the vibration frequency of ui for the full problem,

M�2
q = M(�⊥

0 )2 + (v⊥
0 − vq), (13)

and �⊥
0 is the q = 0 component of the phonon frequency in

the direction perpendicular to the polar axis,

M(�⊥
0 )2 = M�′2 − (v⊥

0 − λ). (14)

We now determine the parameter λ by enforcing the
fluctuation dissipation theorem,

〈
u2

i

〉 − 〈ui〉2 = 1

N

∑
q

1

2π

∫ ∞

−∞
dω coth

(
β�ω

2

)
Im[χq(ω)].

(15)

The summation over q extends over the first Brillouin zone. To
close the system of equations the polarization 〈ui〉0

T must itself
be related to the random fields through the susceptibility (12).
For a fixed realization of disorder [33],

〈ui〉 = p +
∑

j

χ ijhj , (16)

where χij (0) is the zero-frequency susceptibility averaged over
compositional disorder with the Fourier transform χq(0) =∑

ij χ ij (0)eiq·(Ri−Rj ).

Using hj = 0 and hihj = �2δij ,

〈ui〉 = p, 〈ui〉2 = p2 + �2

N

∑
q

χ2
q (0). (17)

Given the above solution, the temperature and disorder
dependence of the the dielectric susceptibility χq(ω) given by
Eq. (12), the phonon frequency �q of Eq. (13), and the static
polarization p of Eq. (17) can be determined self-consistently
together with the parameter λ in Eq. (15). It is easy to show
that by eliminating �′ and λ from Eqs. (10), (11), and (14) one
recovers the results of Ref. [27].

The static structure factor Sq is derivable from χq(ω) by
use of the standard procedure [36]. We obtain the following
result:

Sq = p2δq + �

2M�q
coth

(
β��q

2

)
+ �2(

M�2
q

)2 , (18)

where the transverse optic phonon frequency �q is given in
Eq. (13) and it is calculated self-consistently as described
above. In the absence of disorder and in the classical limit
(� → 0), we recover the standard results for conventional
ferroelectrics [30]. The line shape of the structure factor (13)
resembles that of the well-known Lorentzian plus Lorentzian
squared for disordered magenetic systems [37] with the
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T Tc

M
0
2
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2 v0 a 2 0.25
2 v0 a 2 0.00

FIG. 1. (Color online) Temperature dependence of the zone cen-
ter optic phonon frequencies �⊥

0 for dipole interactions and compo-
sitional disorder. The frequencies remain finite down to T = 0 for
finite disorder, thus excluding long-range ferroelectric order.

important distinction that the relevant interactions in our
problem are long-ranged and anisotropic dipolar forces rather
than short-ranged isotropic exchange interactions.

IV. RESULTS

We now present results of the calculations to illustrate the
physical principles. We focus on the disordered states (p = 0)
as the experiments we will compare have been performed in
such a phase. The model parameters are obtained from fits to
the experimental structure factor of PMN (see Fig. 4).

Figure 1 presents the calculated temperature dependence of
the (mean) transverse optical model frequency at q = 0 suit-
ably normalized to show its different regimes. The frequency
remains finite at all temperatures, even for weak disorder, thus
excluding long-range order in the model which includes dipo-
lar interactions and weak disorder (long-range order would be
present for the model with short-range interactions alone) [17].
This state is metastable at low temperatures [27]. As expected,
these results are similar to those found previously [27] and are
shown here for the sake of completeness.

Associated with the phonon frequency is the dielectric
response χ0(ω), shown in Fig. 2, where TCW and TB are also
identified (see the inset in Fig. 2). Figures 3(a)–3(b) give
the variation of TCW, TB , and Tmax with the parameters of
the model. We see that the characteristic temperatures are
understood by the ratio of the disorder distribution to the
transverse dipole interaction with the damping  playing
a major role for Tmax. Clearly, our model is too simple
to give the dynamics observed in the relaxor susceptibility
such as the Vogel-Fulcher behavior [12]. Nonetheless, it can
capture several of the temperature scales. To get detailed
dynamics, one must add the full landscape of potentials and
relaxation processes, which have already been considered
in the literature [21,24]. This is not the aim of the present
paper which is concerned with the simpler question of static
structure factor. We may add, however, that it is necessary to
have the theory of static structure factor well in hand before
one can reliably consider the more complicated dynamical
problems.

We now compare the static structure factor Sq with that
measured by neutron scattering experiments [13,14]. Without
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FIG. 2. (Color online) Temperature and frequency dependence
of the real part of the dynamic susceptibility χ0(ω). Inset: Inverse
of the real part of the static susceptibility with compositional disorder
[�2/(v⊥

0 a)2 = 0.03]. Deviations from Curie-Weiss law are indicated
by the gray dashed line. Blue (top), red (middle), and green (bottom)
lines correspond to ω/v⊥

0 = 2.0 × 10−2, 3.0 × 10−2, 4.0 × 10−2.

compositional disorder (� = 0), simple inspection shows
that Sq=0 diverges as the mode frequency softens in the
vicinity of the critical point Tc where long-range ferroelectric
order sets in. For finite compositional disorder (� > 0), Sq=0

remains finite at all temperatures and there is no long-range
ferroelectric order. We find this temperature behavior is in
agreement with that observed by neutrons in PMN, as shown in
Fig. 4(a). The flat behavior of Sq at low temperatures (T → 0)
is due to zero-point fluctuations: In the classical limit (� → 0),
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FIG. 3. (Color online) (a) Curie-Weiss (TCW) and Burns (TB )
temperature dependence on compositional disorder. (b) Frequency
and disorder dependence of the temperature Tmax at which the
dielectric constant is maximum.

FIG. 4. (Color online) (a) Temperature and [(b) and (c)] wave-
vector dependence of the structure factor Sq . Red dots and blue
squares correspond to neutron scattering data from Refs. [13,14]
in the vicinity of the (110) and (100) Bragg peaks in PMN. Black
solid line corresponds to the calculated Sq with (v⊥

0 − κ)/v⊥
0 =

0.85,γ a2/v⊥
0 = 0.09,�/(Mv⊥

0 a4)1/2 = 5.0,�2/(v⊥
0 a)2 = 0.03, and

kBTc/(v⊥
0 a2) = 1.0 with Tc = 465 K. The green dashed line is a

Gaussian Bragg peak of width given by the experimental resolution
used in Ref. [13] (�0.01 rlu).

Sq of Eq. (18) increases with decreasing temperature and is
finite at T = 0.

Figures 4(b) and 4(c) compare the calculated wave-vector
distribution of Sq with that observed for the relaxor PMN
at T = 150 K and T = 300 K. We use the same value of
the model parameters as those of Fig. 4(a). The observed
line shape cannot be described by a simple Lorentzian seen
for conventional perovskite ferroelectrics or the “squared
Lorentzian” expected for random field models.

We now compute the spatial dependence and anisotropy of
the correlation functions of polarization at various character-
istic temperatures and various normalized disorder strengths.
These spatial correlations have been Fourier transformed to
give the static structure factor Sq . One of the purposes of
this section is to contrast the correlations of our model to
those expected from hypothetical polar nanoregions (PNRs)
on which we will comment at the end.

We first consider the correlation functions of polarization at
large distances (|Rij | → ∞). For low temperatures (T → 0)
and arbitrarily small but finite disorder (0 < �/(v⊥

0 a) 
1), the correlations are anisotropic and slowly decaying
functions,

〈uiuj 〉 =
⎧⎨
⎩

(
4π
3

)2 �2

(v⊥
0 )2 × 32π3

vBZ

(χ̄⊥
0 )3

|Rij |3 , Rij ‖ ẑ,

−(
4π
3

)2 �2

(v⊥
0 )2 × 1

2
π3/2

vBZ

(χ̄⊥
0 )3/2

|Rij |3 , Rij ⊥ ẑ,
(19)

where (χ̄⊥
0 )−1 = (4π/3)(χ⊥

0 )−1/v⊥
0 is a small but finite di-

mensionless inverse susceptibility and vBZ is the volume
of the Brillouin zone. The ratio of the longitudinal to
transverse components is proportional (in absolute value) to
(χ̄⊥

0 )3/2, indicating that the positive longitudinal correlations
are stronger than the negative transverse components. This
behavior is similar to that of ferroelectrics without random
fields. For a uniaxial ferroelectric without compositional
disorder and above the critical temperature Tc, the correlation
functions exhibit the same anisotropy, power-law decay,
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FIG. 5. (Color online) Log-linear plot of near-neighbor correlation functions of polarization for several temperatures and disorder strengths.
Here (v⊥

0 − κ)/v⊥
0 = 0.40, γ a2/v⊥

0 = 0.10, and �/(Mv⊥
0 a4)1/2 = 1.0.

and longitudinal-to-transverse ratio [38]. The correlations
of Eq. (19) are, however, in sharp contrast with those of
short-range interactions with quenched random fields in three
dimensions where the correlation functions decay exponen-
tially [39].

We now discuss the nearest-neighbor correlations with
compositional disorder. For temperatures slightly above Tc, the
nearest-neighbor longitudinal correlations with and without
disorder show similar decay with an overall strength that
decreases with increasing compositional disorder [Fig. 5(a)].
This behavior persists down to T = 0 for finite compositional
disorder [Fig. 5(b)]. For no disorder, the correlations exhibit
the long-range order expected at T = 0. The correlations in
the transverse direction follow similar decay as that of the
longitudinal components except that they are negative and
significantly weaker [Figs. 5(c) and 5(d)].

To compare with the idea of PNRs invoked to rationalize the
behavior of relaxors, we note that we find that significant corre-
lations develop below the Burns temperature TB . However, we
do not find a difference in the characteristic behavior at short
distances compared to that at long distances, which might have
been expected for PNRs. We find that the correlations have a
power-law behavior which joins smoothly to a short-range part
where they must saturate to near the on-site correlations. This
is characteristic of the fluctuation regime of any cooperative
problem. We have emphasized that relaxors may be looked
on as materials in which the fluctuation regime extends from
the Burns temperature all the way to T = 0. We therefore
conclude that the diffuse scattering observed by neutrons does
not support the qualitative picture of PNRs. Recently, other
works have arrived at similar conclusions [24,40,41]. We point
out, however, that nucleation of local polar domains within the

nonpolar phase may occur as there are stable ferroelectric
states in the free energy [27].

V. CONCLUSIONS

We have used the insight that the frustrating nature of the
dipolar interactions (due to their anisotropy) introduced in
a perovskite due to a putative displacive transition together
with quenched disorder impedes a ferroelectric transition at
all temperatures and leads instead to a region of extended
ferroelectric fluctuations in PMN. The nature of the dipolar
interactions is such that the physics cannot be captured in a
mean-field-like or two-body correlation approximations to the
problem. Using a minimal approximation scheme which is
able to handle the special nature of the problem, we are able
to derive the observed structure factor of the relaxor PMN and
relate it to their static and dynamic microscopic properties.

In addition to the difficulties posed to our current theoretical
treatment by the complex dynamic processes of relaxors (see
Sec. IV), there are several other challenges which should
be addressed in future extensions of this work such as the
effects of cubic symmetry, of disorder in the bonds (e.g.,
lattice stiffness and dipole interactions), and of electrostriction.
These are all important ingredients of any model that aims
to describe the universality class [1], glassiness [26], and
ultrahigh piezoelectricity [42] of typical relaxors such as PMN
and its solid solutions with conventional ferroelectrics such as
PMN-PT.
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