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Effects of rotational states on the c/a ratio in solid hydrogens
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We propose an approach to the problem of lattice distortions at low temperatures and ambient pressure
in the solid hydrogens in their rotational ground states that explicitly accounts for the molecular nature of
the constituent particles. The model is based on the idea that the second-order rotation-related correction to the
ground-state energy depends on the lattice parameters. The calculated ground-state rotation-related contributions,
δgs = c/a − (8/3)1/2, are negative for all species, amounting to about −1.5 × 10−5 for H2 and D2, whereas for
HD this contribution is about −0.6 × 10−3, which is roughly 50 times larger. This substantial difference stems
from the fact that the rotational dynamics in the homonuclear solids and in HD differ appreciably. The approach
can be generalized to high pressures.
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I. INTRODUCTION

It is well known that spherical particles such as rare gas
atoms [1] or hydrogen isotopomer molecules [2] crystallize
at zero pressure into close-packed lattices (hcp or fcc) with
the lattice parameter ratio c/a equal to

√
8/3 (fcc) or close

to that (hcp). What drives the crystallization to one of those
two close-packed lattices has been extensively discussed. The
deviation

δ ≡ c/a −
√

8/3 (1)

is one of the indicators of the interplay between the interactions
that shape the crystal structure. An important consideration
for predicting the value of δ is the magnitude of many-
body forces [3,4], which becomes more important for high
pressures. The magnitude and sign of δ are also controlled by
rotational states, pressure, and temperature. In this regard, we
note that many measurements as a function of density have
been carried out at 300 K and the temperature substantially
changes the distribution over rotational states. The changes in
the rotational dynamics of the solid hydrogens at 300 K and
high pressures have been treated within a phenomenological
model by Freiman et al. [5]. The lattice structure of both H2

and D2 depends also essentially on the ortho-para content.
Samples rich (60% or more) in J = 1 species crystallize
into fcc structures. At high J = 0 fractions both homonuclear
hydrogens form hcp lattices. Direct structure measurements in
the homonuclear hydrogen solids [6,7] showed that the typical
experimental values of δ are negative and of order 10−3.

The solid heteronuclear hydrogens show a wealth of
unusual properties as compared to the homonuclear species.
Although structure data for HD crystals are scarce, THEED
measurements [8] documented un unusual morphology of the
HD deposits grown at liquid He temperatures: the structure was
mainly cubic with two extra features, both of which could be
explained as being due to diffraction on twin boundaries or/and
stacking faults. It is only upon warming that the spectrum
underwent a sharp transformation to hcp. The c/a ratio
was found to be 1.634 ± 0.009. Subsequently, structure data
obtained using x-ray diffraction [9] gave an unexpected result:
c/a = 1.618 ± 0.003. Moreover, whereas in both normal and

para H2 the c/a ratio slightly decreased [9] upon warming,
the c/a ratio in HD grew with temperature, reaching the value
1.623 ± 0.005 at 17 K. The crude numerical evaluations of c/a

based on non-renormalized values of the specific interactions
between HD molecules gave values of the same order of mag-
nitude as found in the above-mentioned experiment [9]. Now
that the renormalized values and procedures are available [10],
the respective theory can be developed more accurately.

The principal aim of the present paper is to understand how
differences in the rotational dynamics affect the value of δ

at low temperatures. Our approach is based on the following
equation:

∂

∂δ
[�Eel(δ) + �Erot(δ)] = 0, (2)

where �Eel and �Erot are the densities of the elastic and
ground-state rotational energies, respectively, as functions of
the deviation δ defined in Eq. (1). Even in the rotational ground
state with all molecules occupying their J = 0 levels the
rotational energy emerges due to a quantum self-polarization
calculated in the second perturbation order in the anisotropic
interactions which involve the relevant angular variables of the
participating molecules. Since the elastic energy in Eq. (2) is
proportional to δ2, one needs to look for mechanisms that can
produce a contribution linear in δ, in order that Eq. (2) could
lead to a nonzero deviation δ.

We suggest that for the solid hydrogens the deviation δ

should be evaluated by taking explicitly into account the
molecular nature of the particles which constitute those crys-
tals. Since the rotational dynamics differ essentially between
homonuclear and heteronuclear hydrogen solids, one can
expect that the deviations δ in such crystals will be different.

This article is structured as follows. Sections II and III
enumerate the anisotropic interactions that affect the c/a

ratio as well as the perturbation energies used in subsequent
calculations. Section IV describes the variations of the elastic
energy due to lattice parameter deviations from the ideal
values. The deviation of the lattice parameter ratio owing to
the ground-state rotational energy, δgs, calculated for the three
hydrogen species considered, H2, D2, and HD, is discussed in
Sec. V. Section VI sums up the results and discusses possible
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consequences for the theory including effects at high pressures
and high temperatures. Appendices contain further technical
details about the calculations.

II. INTERACTIONS

The anisotropic interactions operating between the isotopes
of hydrogen in the corresponding solids include the electrical
quadrupole-quadrupole (EQQ) interaction as well as the rank-2
crystal field contribution [11], which can be represented as
shown below.

From the complete Hamiltonian of the rank-2 crystal field
we leave the part in which only the central (chosen) molecule
with subscript 0 is supposed to be excited:

Vcf2 =
∑

i

B2(Ri)(C2(w0) · C2(ni)). (3)

Here i runs over the nearest neighbors; Ri ≡ Rini ; CN (a) is
the rank-N spherical harmonic of unit vector a in Racah’s
representation; B2(R) is the well-known [2,11] crystal field
energy parameter; the big parenthesizes mean scalar product
of spherical harmonics [12]. It should be also noted that there
is another interaction, which is the rank-4 analog [11,13] of
the rank-2 crystal field energy in Eq. (3). Unlike Vcf2, it does
contribute to the rotational energy term that can influence
the c/a ratio but, presumably, the corresponding effect is
appreciable only at higher pressures [13].

The EQQ interaction, which inevitably produces excitation
of both interacting molecules, can be represented in the form

VEQQ =
∑

i

θ (Ri)({C2(w0) ⊗ C2(wi)}4 · C4(ni)), (4)

where we use the standard definitions for direct products of
irreducible tensors:

{CK (a) ⊗ CL(b)}Mμ ≡
∑
kl

C
Mμ

Kk, LlCKk(a)CLl(b);

CMm
Kk,Ll are the Clebsch-Gordan coefficients; a and b are unit

vectors. The EQQ energy function θ (R) can be represented in
the form

θ (R) = 5
6 � (R0/R)5, (5)

where R0 is the unperturbed nn distance and � is the
EQQ interaction parameter. This general definition needs
clarification. Most commonly, the parameter � is known as
representing the electric quadrupole-quadrupole interaction
between two J = 1 rotational states in the homonuclear solids,
in which case the respective parameter is defined as [11]

�11 = 6

25 R5
0

〈1|Q2|1〉2, (6)

where 〈1|Q2|1〉 is the matrix element of the electrical
quadrupole moment Q2 between J = 1 states of two neighbor
molecules. In our calculations we will need the matrix element
�02 = 〈0|Q2|2〉 between the J = 0 rotational ground state and
the J = 2 excited state. As it can be seen from Table I, for all
species to be considered all matrix elements differ between
themselves insignificantly.

The effective parameters �, as renormalized to account for
various quantum crystal corrections [16,17] and determined

TABLE I. Matrix elements of the quadrupole moment of hydro-
gen molecules.

〈1|Q2|1〉 〈0|Q2|2〉 Ratio

H2 0.48468 0.48516 0.99901 Ref. [14]
HD 0.48148 0.48185 0.99923 Ref. [15]
D2 0.47702 0.47728 0.99946 Ref. [15]

from experiment, amount to 0.9 ± 0.1 K for H2 and 0.93 ±
0.5 K for D2 [11]. Knowing the nn intermolecular distance in
HD 3.701 Å [9], we calculate �11 in HD to be 0.916 K.

In the heteronuclear solid hydrogens there are two other
interactions; their origin [10,11] stems from the fact that
the center of mass in these molecules is shifted respective
to the charge distribution center by s, which in the HD
molecules amounts to one-sixth of the internuclear distance
re = 0.74116 Å. One of these specific interactions is the rank-1
crystal field energy, which referred to the central molecule can
be represented as [11]

Vcf1 =
∑

i

s dv(R)/dR(C1(w0) · C1(ni)), (7)

where v(R) is the central (isotropic) part of the interaction
potential.

The other specific interaction between HD molecules, also
existing owing to nonzero s, can be written as

V11 =
∑

N=0, 2

γN (R)({C1(w1) ⊗ C1(w2)}N · CN (n)). (8)

Both γ0(R) and γ2(R) comprise two contributions [10,11]; the
relevant renormalized values for the average equilibrium nn
intermolecular distance can be found in Ref. [10].

III. ROTATIONAL ENERGIES

We first consider the contribution to the zero-point energies
due to the rank-2 crystal field of Eq. (3). The second-order
correction to the energy of the rotational ground state |00〉
per molecule owing to rank-2 crystal field interactions can be
evaluated in the perturbative way [18], taking into account that
only the central molecule gets virtually excited:

E
(cf 2)
rot = −

∑
μ

|〈00(0)| Vcf 2 |2μ(0)〉|2
6B0

. (9)

Here and below |Nμ(m)〉 is the rotational state with J =
N, Jz = μ of a molecule at site m, with m = 0 denoting the
central molecule and m from 1 to 12 denoting the nearest
neighbors; B0 is the rotational constant of the respective
molecular species, and 6B0 is the excitation energy of the
J = 2 level.

Directing the reader for the technical details to Appendix A,
the rotational energy under consideration is

E
(cf 2)
rot = − 1

30B0

∣∣∣∣∣∣
∑
i,μ

B2(Ri)C2μ(ni)

∣∣∣∣∣∣
2

. (10)

It is a well-known fact (cf. Van Kranendonk [11]) that the
sum appearing in Eq. (10) nullifies for an ideal hcp lattice
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with c/a = (8/3)1/2. Therefore, its variation due to the crystal
field interactions will be linear in the deviation δ; hence, E(cf 2)

rot
will be proportional to δ2. As argued in Sec. I, this conclusion
renders this interaction inappropriate for our aims. The rank-1
crystal field in Eq. (7) helps as little and has to be discarded
too.

Now we consider the interactions in which two molecules
are simultaneously excited. The EQQ interaction has the same
form as in Eq. (4) for all hydrogen crystals. The rotational
energy caused by the EQQ interactions is

E
(EQQ)
rot = −

∑
jμν

|〈00(j ) 00(0)| VEQQ |2μ(0)2ν(j )〉|2
24B0

,

where VEQQ as in Eq. (4) accounts for transitions from the
ground states 00 of both the central molecule, which is labeled
(0), and (one by one) all its nearest neighbors, labeled with j

running from 1 to 12, to, respectively, 2μ and 2ν states. The
denominator is the total excitation energy of two molecules
(2 × 6ω0), while the extra factor 2 accounts for the fact that
the sought-for rotational energy is per molecule rather than
per pair. Details of the relevant calculations can be found in
Appendix B, so that the final expression for the EQQ-related
rotational energy is

E
(EQQ)
rot = − 1

120B0

∑
j

[θ (Rj )]2. (11)

For θ (Rj ) see Eq. (5) and the ensuing discussion.
Without proceeding further with detailed calculations for

the specific interaction, Eq. (8), which can be found in
Appendix C, we sum up that the two contributions due to V11

with N = 0 and N = 2 “split” (that is, the cross-term vanishes)
in the final expression. Thus, the specific interactions produce
another two contributions to the rotational energy:

E
(sp0)
rot = − 1

24B0

∑
j

γ 2
0 , (12)

E
(sp2)
rot = − 1

24B0

∑
j

γ 2
2 . (13)

IV. ELASTIC ENERGY

The density of elastic energy per unit volume is

Wel = (1/2)σij εij , (14)

where summation runs over Cartesian indices i and j , εij

is the deformation tensor, and σij is the tensor of elastic
stresses. Within the elastic theory, σij is a linear function of
εij ; the proportionality elements constitute the tensor of elastic
moduli, cij . The deformation tensor is defined as

εij = 1

2

[
∂ui

∂xj

+ ∂uj

∂xi

+
∑
m

∂um

∂xi

∂um

∂xj

]
. (15)

Any of the hexagonal crystals considered here is deformed
uniformly but isotropically only within the basal plane. For this
type of deformation the following derivatives will be nonzero:
∂ux/∂x = ∂uy/∂y = �a/a0 and ∂uz/∂z = �c/c0, where a0

and c0 are the “ideal” hexagonal lattice parameters (with their

ratio being equal to
√

8/3) while �a and �c are their variations
due to the virtual rotational excitation. Unlike in the case with
sound, when displacements in the sonic wave are oriented
arbitrarily, the deformation in our case is uniform. As a result,
the cross-terms in the deformation tensor (like εxz) are zero
and only the following elements are involved [19]: c11, c12,
c13, c33. Thus, we obtain that

σxx = σyy = (c11 + c12) × �a/a0 + c13�c/c0, (16)

σxx = 2c13�a/a0 + c33�c/c0. (17)

Finally, the corresponding density of elastic energy �Eel takes
the form

�Eel = (c11 + c12)

(
�a

a0

)2

+ 2c13
�a

a0

�c

c0
+ c33

2

(
�c

c0

)2

.

(18)

The elastic moduli in the homonuclear hydrogen crystals at
low pressures have been determined using various techniques
and at different temperatures from 4 to 13 K for solid
hydrogen [20–22] and deuterium [20]. The scatter of values is
quite broad, especially for c13. A complete model for the elastic
moduli in H2 and D2 was developed by Goldman first for zero
pressure [23] and subsequently [24] as functions of pressure
(or molar volume). Zha et al. [25] directly measured the elastic
moduli in H2 at pressures up to 23.6 GPa at room temperature
and at normal ortho-para (3:1) content. Notwithstanding the
fact that many molecular and crystal parameters for solid HD
are known [26], in our numerical evaluations for HD we
rely on the average of cij for hydrogen and deuterium. The
high-pressure behavior will be discussed in more detail in a
subsequent paper.

V. LATTICE PARAMETER RATIO

Prior to substituting �Erot into Eq. (2) we must account for
the fact that, by definition, the elastic energy is normalized to
unit volume whereas the rotational energy was calculated per
molecule. Therefore, to obtain the correct dimension of �Erot

we divide it by the volume per molecule v0 = VM/NAv where
VM is the molar volume and NAv is the Avogadro number.
Thus, the rotational energy with account of Eqs. (11)–(13)
will be

Erot = − 1

120B0v0

∑
j

[
θ2 + 5γ 2

0 + 5γ 2
2

]
, (19)

where all terms are known functions of the twelve nearest
neighbor distances. Likewise, the corresponding variation of
the rotational energy with account of the deformation to be
found is

�Erot = − 1

60B0v0

∑
j

[θ�θ + 5γ0�γ0 + 5γ2�γ2]. (20)

The fact of importance with regard to this formula is that all the
functions involved are such that the signs of their derivatives
are opposite to those of the functions themselves, which means
that the total sign of �Erot is definitely positive.

We calculate how the relative deformations �a/a0

and �c/c0 change the total rotational energy. Since the
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summation in Eq. (20) runs over nn neighbors of the
central molecule, we need to define the shifts of their
distances to the central molecule. Obviously, the shift
within the same plane is purely radial and equal to �a.
It can be easily shown that the molecules in the next
plane, for instance, above the reference plane, shift by
�c/2 along the z axis and by �a/

√
3 in the radial

direction. Now it is easy to calculate, for example, the sum∑
i θ (Ri)�θ (Ri). Within our perturbation procedure all Ri

in the expression θ (Ri) are the same and equal to a0. Any
of the six in-plane variations is �θin(Ri) = ∂θ (R)/∂R ×
∂R/∂x × �a = (∂θ/∂R) × �a. Similarly, the corresponding
expressions for any of the six out-of-plane neighbors can be
calculated as

�θout(Ri) = ∂θ (R)

∂R

[
�c√

6
+ �a

3

]
. (21)

Finally, Eq. (20) takes the form

�Erot = − 1

10B0v0

[
4�a

3
+ �c√

6

]
× S(R), (22)

where

S(R) ≡ θ
dθ

dR
+ 5γ0

dγ0

dR
+ 5γ2

dγ2

dR
. (23)

We note here that only the first term applies for H2 and D2

whereas all the three terms “work” for HD.
Now we will return to Eq. (2) with the remark that actually

we have two independent variables �a and �c which are to
be found by equating to zero the two respective derivatives of
the sum of Eqs. (18) and (22), which leads to two equations

2(c11 + c12)
�a

a2
+ 2c13

�c

ac
= 4S(R)

30B0v0
, (24)

2c13
�a

ac
+ c33

�c

c2
= 4S(R)

10B0v0

√
6
. (25)

The solution to this set of equations can be cast as

�a = A2ac(c33/2 − c13)

c33(c11 + c12) − 2c2
13

, (26)

�c = 8A2a
2

3c13
× (c11 + c12)(c13 + c33/2) − 2c2

13

c33(c11 + c12) − 2c2
13

(27)

with

A2 = 4S(R)

10B0v0

√
6
. (28)

Here we note that �a and �c have the same sign. The lattice
constant ratio deviation, as defined in Eq. (1) and expressed
through �a and �c, has the form δ = √

8/3(�c/c0 − �a/a0),
which yields

δgs = cS(R0)

15B0v0c13
× D (29)

with

D = (c11 + c12)(c13 + c33/2) − c13(c33/2 − c13)

c33(c11 + c12) − 2c2
13

. (30)

Note that the denominator in Eq. (29) contains c13, the
smallest of the elastic moduli. In addition, the expression D

TABLE II. Chosen parameters for the solid hydrogens at low
temperatures and low pressures.

p-H2 HD o-D2

nn distance R0, cm−1 3.783 3.701 3.618
Molar volume v0 × 1023, cm3 3.829 3.584 3.350
EQQ constant �(R0), cm−1 0.626 0.637 0.646
Rank-0 energy γ0(R0), cm−1 N/A 0.161 N/A
Rank-2 energy γ2(R0), cm−1 N/A − 0.472 N/A
Rotational constant B0, cm−1 59.339 44.667 29.913
c11, kbar 4.14 5.51 6.88
c12, kbar 0.95 1.42 1.88
c33, kbar 4.51 6.00 7.50
c13, kbar 0.57 0.91 1.25

is convenient for the reason that if cij are scaled to the same
exponential function of the molar volume V , then D will be
independent of V . As our subsequent evaluation showed, D

varies with molar volume by far less as compared with any of
cij and the nn distance R0.

Prior to numeric evaluations we make a few notes. First,
we recall that when dealing with the homonuclear species
one needs to take into account only the first (EQQ) term in
Eq. (23) whereas in calculations for HD all terms “work.”
Second, as stated above, in our evaluations we use the zero-
temperature elastic moduli as calculated by Goldman [23] and
shown in Table II. For lack of anything better, the cij values
for HD were taken to be an average of the respective data
for the homonuclear solids. To get insight, we evaluate the
dimensionless quantity D in Eq. (30) to be 0.602 for H2,
0.650 for D2, and 0.631 for HD. The first term of S(R) in
Eq. (23), with account of Eq. (5), can be written as ∂θ/∂R =
−5θ (R0)/R0.

Final calculations yield δgs = −1.39 × 10−5 for hydrogen
and δgs = −1.65 × 10−5 for deuterium. The EQQ-related con-
tribution to δgs in solid HD is of the same order of magnitude
(−1.34 × 10−5) but there are two extra terms to be taken into
account. Let us consider one of them, for instance, the rank-0
one. This contribution is proportional to the second term on
the right-hand side of Eq. (23), which involves both γ0(R0) and
dγ0(R)/dR. The values [10] of γ0(R0) and γ2(R0) are shown
in Table II. The values of both dγ0(R)/dR and dγ2(R)/dR

without quantum-mechanical renormalization can be easily
obtained numerically by using the known expressions [10]. A
more difficult task is to evaluate renormalization factors for
the quantities under discussion dγ0(R)/dR and dγ2(R)/dR.
Both of these quantities comprise two contributions [10], one
of which comes from the direct isotropic interaction and the
other, from the rank-2 crystal field energy in Eq. (3). Luckily,
the respective renormalization parameters are known [10] for
all four constituent contributions of both above-mentioned
energies, which allows us to implement a simplified, albeit less
accurate but resulting only in slight underestimates, procedure
explained below.

Let us take, for example, the rank-0 specific interaction
energy

γ0(R) = γ
(V)
0 (R) + γ

(B)
0 (R). (31)

144102-4



EFFECTS OF ROTATIONAL STATES ON THE c/a . . . PHYSICAL REVIEW B 91, 144102 (2015)

Knowing the renormalization factors for each of the two terms,
we ascribe them to the corresponding derivatives in the sum
for dγ0(R)/dR. This procedure is based on the following
reasoning. All four γ contributions involved are rather steep
functions of R, which increase fast with decreasing R, such
as the EQQ energy ∝ R−5. Renormalization is carried out
by integrating this function with a bell-shaped wave function,
which symbolizes quantum mechanical spread. It can be easily
shown that the renormalization factor that emerges for the
derivative is even slightly (by a few percent) smaller than
for the function itself. Concluding our reasoning, the known
renormalization factors for the respective functions we ascribe
to be the renormalization factors of the respective derivatives
of the four γ ’s involved. Finally, we obtain the following
renormalized values: γ0 = 0.161 cm−1 and γ2 = −0.472 cm−1

(as in Ref. [10]) and γ ′
0 = −0.960 cm−1/ Å and γ ′

2 = 6.809
cm−1/ Å.

Summing up the three terms in Eq. (23) we calculate that
the lattice parameter ratio deviation δ for HD actually at zero
temperature is −0.609 × 10−3. We estimate the uncertainty in
δgs, as defined in Eqs. (29) and (30), making use of the available
experimental errors. We found that the largest contribution to
the net uncertainty comes from errors in the elastic moduli
in the expression for D/c13 in Eq. (30). Therefore, the final
estimate for δgs in solid HD is

δgs(HD) = −(0.61 ± 0.08) × 10−3. (32)

Note that δgs is also negative and approximately 50 times larger
in magnitude than in H2 or D2. Nonetheless, the above value is
by a factor of approximately 20 smaller compared with what
was determined experimentally [9] but the trend is more than
meaningful.

VI. DISCUSSION

We suggest a theoretical approach to the problem of the
deviation δ in the solid hydrogens at low temperatures and low
pressures due to a specific reason, which explicitly accounts for
the fact that the constituent particles are molecules with differ-
ent rotation dynamics. The deviations δgs appear as a reaction
of the lattice to virtual excitation to higher rotational states.
These mechanisms differ substantially between homonuclear
(H2 and D2) and heteronuclear (HD) species. It is also evident
that other contributions to δ, for example, due to three-body
interactions, are to be simply added to obtain the total value.

Evaluations at zero pressure yield negative δgs values, the
absolute values of δgs in HD being substantially greater (by a
factor of 50) compared to the homonuclear hydrogen solids.
This difference is owing to the fact that additional specific
interactions exist between HD molecules compared to their
homonuclear counterparts. However, the calculated δgs in HD
is still approximately 20 times smaller than reported for solid
HD at low temperatures [9].

This paper focuses on how differences in the rotational
dynamics of molecules in the various hydrogen solids affect
their structure at low temperatures and low pressures. The
corresponding contribution should be summed up with the
other ones. Our approach allows its application to the solid
at reasonably high pressures (e.g., to 100 GPa) where the
molecules remain intact; in other words, the intramolecular
energy significantly exceeds the intermolecular interactions.
But unlike low pressures, at high pressures (which frequently
go together with room temperature) there are a greater
number of contributions at play. In addition to high pressures
(densities) and high temperatures, specific details of the
rotational spectra as well as the ortho-para content play
a role. The results are important for developing a more
complete understanding of condensed phases of hydrogen,
including its isotopic mixtures, for energy applications. For
T close to zero and ambient pressure there are actually only
two mechanisms that determine the c/a ratio, namely, the
ground-state rotational energy discussed in this article and
the three-body interactions considered by Tretyak et al. [27]
for solid p-H2. Unfortunately, the three-body contribution for
solid HD has not yet been calculated.
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APPENDIX A: CALCULATIONS FOR RANK-2
CRYSTAL FIELD

The second-order rotational energy, E
(cf 2)
rot in Eq. (9), in

complete form is

−
∑

μ

∣∣∑
i,m B2(Ri)C∗

2m(ni)〈00|C2m(w0)|2μ〉∣∣2

6B0
.

Here i runs over all nearest neighbors of the central molecule.
Substituting into this formula the matrix element in explicit
form

〈00|C2m(w0)|2μ〉 = δ(m + μ)(−1)μ/
√

5, (A1)

we obtain Eq. (10).

APPENDIX B: CALCULATIONS FOR EQQ INTERACTION

The second-order rotational energy due to electric
quadrupole-quadrupole interaction, Eq. (9), is

E
(EQQ)
rot = −

∑
jμν

∣∣∑
i,m,n θ (Ri)C∗

4n(ni)C4n
2m 2(n−m)〈00(j )|C2m(wi)|2ν(j )〉〈00(0)|C2(n−m)(w0)|2μ(0)〉∣∣2

24B0
. (B1)
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Applying Eq. (A1), after some simple algebra we find

E
(EQQ)
rot = −

∑
jνκ

∣∣θ (Rj )C∗
4κ (nj )C4κ

2ν2(κ−ν)

∣∣2

120B0
.

Making use of the normalization rule for Clebsch-Gordan
coefficients ∑

ν

[
C4κ

2ν 2(κ−ν)

]2 = 1

as well as the unitarity rule for spherical harmonics∑
κ

C∗
4κ (ni)C4κ (ni) = 1,

we come to

E
(EQQ)
rot = − 1

120B0

∑
j

[θ (Rj )]2. (B2)

APPENDIX C: CALCULATIONS FOR
SPECIFIC INTERACTIONS

We start with the complete form of the rotational energy
due to the specific interactions of Eq. (8),

E
(sp)
rot = − 1

8B0

∑
j μ ν

∣∣∣∣∣
∑
Ni

γN (Ri)M
(jμν)
Ni

∣∣∣∣∣
2

, (C1)

where N = 0, 2 and the matrix element in the internal
summation can be cast as

M
(jμν)
Ni =

∑
mn

CNn
1m 1(n−m) 〈00(0)|C1m(w0)|1μ(0)〉

× 〈00(j )|C1(n−m)(wi)|1ν(j )〉C∗
Nm(ni). (C2)

The expressions appearing in this equation are

〈00(0)|C1m(w0)|1μ(0)〉 = (−1)μδ(m + μ)/
√

3

and

〈00(j )|C1(n−m)(wi)|1ν(j )〉 = δij (−1)νδ(ν + n − m)/
√

3,

which yields

M
(jμν)
Ni = 1

3 δij C
N(ν+μ)
1μ 1ν CN (ν+μ)(ni), (C3)

in the derivation of which we made use of the symmetry and
normalization properties [12] of Clebsch-Gordan coefficients
and spherical harmonics. Substitution of Eq. (C3) into Eq. (C2)
after simple operations yields for E

(sp)
rot

(24B0)1/2
∑

jμν,N

∣∣γN (Rj ) CN(ν+μ)(nj ) C
N(ν+μ)
1μ 1ν

∣∣2
. (C4)

Now we analyze the cross-term in Eq. (C4), i.e., the term
in which the sums with N = 0 and N = 2 appear together. It
can be easily shown that this term V02 can be brought to the
following form:

V02 = 1

24
√

3

∑
j

γ0(Rj )γ2(Rj )C2 0(nj )
∑

μ

(−1)μC2 0
1μ 1μ.

(C5)

By virtue of the known general relation [12] the sum over
μ is zero and, thus, the cross-term vanishes. Therefore,
Eq. (C4) becomes a sum of two terms, respectively with N = 0
and N = 2. The calculations with both are straightforward
and similar to those in Appendix B. The results are two
contributions, Eqs. (12) and (13).
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