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FeF3, with its half-filled Fe3+ 3d orbital, hence zero orbital angular momentum and S = 5/2, is often put
forward as a prototypical highly frustrated classical Heisenberg pyrochlore antiferromagnet. By employing
ab initio density functional theory, we obtain an effective spin Hamiltonian for this material. This Hamiltonian
contains nearest-neighbor antiferromagnetic Heisenberg, biquadratic, and Dzyaloshinskii-Moriya interactions as
dominant terms and we use Monte Carlo simulations to investigate the nonzero temperature properties of this
minimal model. We find that upon decreasing temperature, the system passes through a Coulomb phase, composed
of short-range correlated coplanar states, before transforming into an “all-in/all-out” (AIAO) state via a very
weakly first-order transition at a critical temperature Tc ≈ 22 K, in good agreement with the experimental value for
a reasonable set of Coulomb interaction U and Hund’s coupling JH describing the material. Despite the transition
being first order, the AIAO order parameter evolves below Tc with a power-law behavior characterized by a pseudo
“critical exponent” β ≈ 0.18 in accord with experiment. We comment on the origin of this unusual β value.
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Systems with magnetic moments on the vertices of two-
and three-dimensional networks of corner-shared triangles or
tetrahedra and with predominant effective antiferromagnetic
nearest-neighbor (n.n.) interactions have tenuous tendency
towards conventional long-range magnetic order [1,2]. Con-
sequently, the exotic low-temperature properties of materials
with such an architecture are ultimately dictated by the mutual
competition of perturbations beyond n.n. interactions [2].

One theoretically expects such highly frustrated magnets
to ubiquitously display a Coulomb phase (CP) [3]. This
is an emergent state with local constraints described by a
divergence-free “spin field” and whose defects, where the
constraints are violated, behave as effective charges with
Coulombic interactions. The CP and its underlying gauge
theory description provides an elegant setting to study the
effect of various perturbations [4] as well as thermal and
quantum fluctuations [5]. A telltale experimental signature
of a CP are bow-tie (“pinch points”) singularities in the
energy-integrated neutron scattering intensity pattern [3,6].

There is good evidence that the classical spin liquid
state of spin ice materials with discrete Ising spins may be
described by a CP [3,7–9]. Unfortunately, there are few, if
any, materials with continuous symmetry spins that display
a CP, as may be signaled by pinch points [6]. For example,
in Y2Mo2O7, complex orbital effects [10,11] and spin glass
behavior [12,13] eradicate the CP. In the ZnCr2O4 spinel,
pinch points are not observed [14], likely because perturbations
beyond n.n. interactions and spin-lattice coupling eliminate
them already at high temperature in the paramagnetic state
[4]. In this Rapid Communication we propose that FeF3, with
magnetic Fe3+ ions on a pyrochlore network of corner-sharing
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tetrahedra, may be a strong contender for a CP with Heisenberg
spins.

With Fe3+ being a 3d S-state (spin-only) S = 5/2 ion,
single-ion anisotropy and anisotropic spin-spin interactions
should be small in FeF3, making it a good candidate material
with predominant n.n. Heisenberg exchange. Neutron scat-
tering and Mössbauer experiments find long-range magnetic
order below Tc ≈ 20+2

−5 K [15–19]. Yet, the static magnetic
susceptibility shows a deviation from the Curie-Weiss law
even at 300 K, implying the existence of strong antiferro-
magnetic exchange and short-range correlations extending
up to temperatures much higher than Tc [15] and thus a
very high degree of frustration [2,20]. The ordered phase
is an “all-in/all-out” (AIAO) state [15] in which the Fe3+

magnetic moments point from the corners to the centers
(or vice versa) of each tetrahedron [see Fig. 1(a)]. Notably,
neutron diffraction experiments find a power-law growth of the
AIAO order parameter characterized by a “critical exponent”
β ∼ 0.18 [19]. This value differs significantly from standard
order-parameter exponents β ∼ 1/3 for three-dimensional
systems, which prompted the suggestion of an underlying
“new” universality class [19]. There appears to have been no
attempt to determine a realistic spin Hamiltonian H for FeF3.
In this Rapid Communication, we employ density-functional
theory (DFT) to flesh out such H and use it to study the
development of correlations upon approaching Tc and to
explore the associated critical properties. By computing the
energy of various spin configurations and performing Monte
Carlo simulations, we expose a highly entropic coplanar
(Coulombic) state above Tc and its demise at T � Tc against
an energetically selected AIAO state along with replicating the
unusual β ∼ 0.18 exponent.

Spin Hamiltonian and DFT calculations. The classical spin
Hamiltonian for FeF3 is given by

H = HH + Hb.q. + Hr + HDM + Hs.i.. (1)
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FIG. 1. (Color online) The structure of FeF3. Red (dark gray)
spheres denote the Fe3+ ions with their spin indicated by a green
arrow. The F− ions (not shown) are located at the (shown) bends where
bonds merge. (a) The AIAO state. (b) A coplanar spin configuration
(for clarity, a long-range coplanar state is shown).

HH = ∑
i>j Jij Si · Sj denotes the isotropic Heisenberg term.

Si and Sj are classical unit vectors representing the
orientation of the magnetic moments at sites i and j ,
respectively. We consider a distance-dependent exchange
Jij between Si and Sj , with first (J1), second (J2),
and two distinct third (J3a and J3b) n.n. [21]. Hb.q. =∑

i>j Bij (Si · Sj )2 is the biquadratic interaction with n.n.
coupling B1. Hr = ∑

ijkl K[(Si · Sj )(Sk · Sl) + (Sj · Sk)(Sl ·
Si) − (Si · Sk)(Sj · Sl)] is the ring-exchange interaction. The
last two (anisotropic interaction) terms, originating from spin-
orbit coupling (SOC), are the Dzyaloshinskii-Moriya (DM)
interaction, HDM = D

∑
〈i,j〉 D̂ij · (Si × Sj ), and single-ion

anisotropy Hs.i. = �
∑

i(Si · d̂i)2. D̂ij are the DM (unit)
vectors determined according to the Moriya rules [22,23]. The
unit vector d̂i denotes the single-ion easy-axis along the local
cubic [111] direction at site i.

We next use DFT to study the properties of FeF3. For all
computations, the experimental data for the conventional cubic
unit cell lattice parameter (10.325 Å) and position of the ions
were used [16]. The DFT calculations were carried out with
the full-potential linearized augmented plane wave (FLAPW)
method, employing the FLEUR code [31]. We used the local
density approximation (LDA) to account for the electron
exchange correlation. Electron-electron interactions due to the
on-site electron repulsion U are taken into account using the
LDA+U method. The effective on-site Coulomb interaction,
Ueff , is defined as Ueff = U − JH, where U is the bare
Coulomb repulsion and JH is the on-site ferromagnetic Hund’s
exchange, which we set to 1.0 eV, a typical value in such
DFT calculations. Using a linear response approach [32], we
obtain Ueff ≈ 2.8 eV from the QUANTUM ESPRESSO code [33].
The influence of Ueff on various properties is discussed
in the Supplemental Material [23]. The minimum energy
states possess a global continuous O(3) degeneracy within
LDA+U . However, incorporating the effect of SOC within
LDA+U+SOC leads to an AIAO configuration with spins
along 〈111〉 as minimum energy state. We find FeF3 to be
an insulator with a 1.04 eV band gap within LDA+SOC.
The band gap rises to 2.49 eV in LDA+U+SOC with
Ueff = 2.8 eV.

We next determine the coupling constants of H using
spin-polarized DFT calculations. For the first three (isotropic)
terms of Eq. (1), we use LDA+U to compute the total energy
difference between various magnetic configurations [23]. We
assume that J3b [21] as well as farther Heisenberg exchanges
(Jm,m � 4), and biquadratic terms farther than first n.n.
(Bm,m � 2), are negligible. By matching the energy differ-
ences for spin-polarized electronic states with that of H, we
determine J1,J2,J3a , and B1 [23]. To compute the anisotropic
DM (D) and single-ion (�) couplings arising from SOC, we
use the LDA+U+SOC framework. We consider noncollinear
spin-polarized configurations, keeping the isotropic terms ofH
unchanged [23]. The largest couplings within LDA+U+SOC
are (all in meV)

J1 = 32.7, J2 = 0.6, J3a = 0.5, B1 = 1.0, D = 0.6. (2)

The ring exchange K and the single-ion coupling � are found
to be smaller than 0.1 meV [23], so we henceforth ignore them.
The Curie-Weiss temperature, θCW, can thus be estimated by
θCW ∼ qJ1/3 ∼ 760 K, where q = 6 is the number of n.n.
With θCW/Tc ∼ 38, we thus confirm FeF3 to be a highly
frustrated antiferromagnet [2,20].

Ground states and Monte Carlo simulations. Following
Refs. [34,35], we find that mean-field theory predicts AIAO
order for H with the above {J1,J2,J3a,D} values and B1 ≡ 0.
This is confirmed by MC simulations when including B1 = 1.0
meV since (B1 > 0,D = 0) stabilizes an O(3) symmetric
AIAO state (see discussion below). In the rest of this Rapid
Communication, we focus on the generic aspects of the
collective behavior of the system (such as exponent β ∼ 0.18).
While specific details (Tc, and the Fe and F magnetic moments)
depend on the value of the (U,JH) parameters [23], we expect
the overall collective properties to survive small adjustments
of these parameters [23]. Therefore, to explore those generic
facets, we consider a minimal model Hamiltonian, Hmin,
with Hmin ≡ H(J1,B1,D,J2 = J3a = 0), with the (J1,B1,D)
values of Eq. (2).

The ground state of Hmin with (J1 > 0,B1 = D = 0) is
highly degenerate on the pyrochlore lattice [1,35–37]. The
ground-state manifold consists of spin configurations with
vanishing total spin on each tetrahedron, with two continuous
degrees of freedom per tetrahedron [23,35–37]. The minimum
energy of Hmin with (J1 > 0,B1 > 0,D = 0) has a globally
O(3) degenerate noncoplanar AIAO spin configuration with
an angle of 109.47◦ between each n.n. pair of spins [23].
Including D > 0 fixes the spin directions within such a
configuration to one of two discrete AIAO states with spins
along the cubic 〈111〉 directions [23]. With B1 = 0, direct
DM interactions (D > 0) also dictate an AIAO state [22].
The ground-state energy per spin [23] for the coplanar and
AIAO state is, respectively, εcoplanar = −J1 + B1 − √

2D and
εAIAO = −J1 + B1/3 − 2

√
2D, showing that the ground state

is AIAO for all B1 > 0 and D > 0 values.
With (J1 > 0,B1 > 0,D = 0), Hmin displays for a tetra-

hedron three saddle points in its energy landscape which
correspond to coplanar states [23]. In these states, two out of
four spins are antiparallel along a given axis and perpendicular
to the other axis along which the two remaining spins are
themselves aligned mutually antiparallel. The addition of
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D > 0 restricts the orientation of the “coplanes” to be along
the xz, xy, or yz planes of the cubic unit cell, depending on
which pairs of spins are chosen to be collinear [23]. There
are an exponentially large number of such coplanar states
which provide an entropy buffer above the critical temperature
where the system orders into AIAO. One such coplanar spin
arrangement, within the xz plane, is depicted in Fig. 1(b).

We next perform Monte Carlo simulations to gain some
insight into the finite-temperature properties of Hmin. We
use the standard single-spin Metropolis algorithm on lattices
consisting of N = 4 × L3 spins, where L is the linear
dimension of the rhombohedral simulation cell. To ensure
thermal equilibrium, 106 Monte Carlo steps (MCS) per spin
were used for each temperature and 106 MCS for the data
collection. To reduce the correlation between measurements,
10 to 20 MC sweeps were discarded between successive data
collection. To ascertain that our results are fully thermally
equilibrated and are not caused by a two-phase coexistence,
we started the simulation runs from different initial states, i.e.,
totally disordered, AIAO ordered, and coplanar states, and
checked that all final results remain the same.

Quantities of particular interest are the AIAO order param-
eter m ≡ �i,a Sa

i · d̂a/N (d̂a is the local cubic [111] direction
for sublattice a) and the Binder fourth-order cumulant for both
m and energy E, defined respectively as Um(T ) ≡ 1 − 1

3
〈m4〉
〈m2〉2

and UE(T ) ≡ 1 − 1
3

〈E4〉
〈E2〉2 . Um vanishes in the paramagnetic

phase, with a Gaussian probability distribution for m, while Um

approaches 2/3 in the ordered phase [38–40]. UE tends asymp-
totically to 2/3 in both the ordered and paramagnetic phase
while reaching a minimum, Umin

E , near the transition [23].
The temperature dependence of m and Um is shown in

the main panel and top inset of Fig. 2. Both plots indicate a
narrow critical region around T ≈ 0.06. The left inset in Fig. 2
shows the finite-size scaling of m for different L according to
the finite-size scaling behavior m = L−β/νM(tL1/ν). Here t ≡
(Tc − T )/Tc is the reduced temperature, β is the order parame-
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FIG. 2. (Color online) Main panel: Variation of the AIAO order
parameter (m) versus temperature (in units of J1), for lattices of
linear size L = 4,6,8,10. Top inset: Fourth-order Binder cumulant
of m versus temperature, T (in units of J1), for the same lattice
sizes. Left inset: Finite-size scaling of m(t,L) with β = 0.18(2) and
ν = 0.60(2).

ter exponent, ν is the correlation length exponent, andM is the
scaling function [40]. This analysis yields Tc/J1 = 0.0601(2),
β = 0.18(2), and ν = 0.60(2). With J1 = 32.7 meV =
379.47 K, we get Tc ≈ 22 K, in good agreement with the exper-
imental value [15–17,19]. Perhaps most noteworthy, the Monte
Carlo exponent β ≈ 0.18 value corresponds to that found
in experiment [19]. While these scaling arguments naively
suggest that the transition is second order, it is instructive to
consider the L dependence of Umin

E which, for a first-order tran-
sition, is given by [40], Umin

E (L) = U ∗ + AL−d + O(L−2d ),
with U ∗ < 2/3. Here d = 3 is the space dimension and A is
a constant. The precise linear fit of Umin

E (L) versus L−3, with
U ∗ = 0.666664(1), hence very close to 2/3, that we find (see
Fig. 10 in the Supplemental Material [23]) suggests that the
transition might actually be very weakly first order.

To shed further light on the nature of the transition, we
compute the probability distribution function of the order
parameter per tetrahedron, P (mn), with mn ≡ �4

a=1 Sa · d̂a .
We also compute the probability distribution function of two
distinct four-spin correlations within each tetrahedron, P (R)
and P (R̃), with

R ≡ (S1 · S2)(S3 · S4) + (S1 · S3)(S2 · S4)

+ (S1 · S4)(S2 · S3),

R̃ ≡ |(S1 · S2)(S3 · S4) − (S1 · S3)(S2 · S4)

+ (S1 · S4)(S2 · S3)|.
Figures 3(a)–3(c) show P (mn), P (R), and P (R̃) versus T

for L = 10. P (mn) is a Gaussian centered at mn = 0 for
T 
 Tc. As T decreases, P (mn) deviates from a Gaussian
near Tc, developing four peaks with mn �= 0 for T � Tc. Well
below the transition, only two peaks at |mn| ≈ 4 remain,
corresponding to almost perfect AIAO order. The peculiar
temperature evolution of P (mn) suggests that another state
coexists or competes with the AIAO state near Tc. The nature of
this other state can be clarified by considering P (R) and P (R̃)
in Figs. 3(b) and 3(c), respectively. Two peaks arise in P (R) at
T � Tc: one at R ≈ 1/3 and another at R ≈ 1 [see Fig. 3(b)].
The former corresponds to an AIAO spin configuration for
which (Sa · Sb) = − 1

3 at T � J1 for two n.n. spins. The peak
at R = 1 is consistent with coplanar states as deduced from
Eq. (3). Considering P (R̃) in Fig. 3(c), one observes a peak at
R̃ ≈ 1 near Tc. One can easily show [23] that the two equations
for R = 1/3 and R̃ = 1 have no common solution for a zero
net spin/moment on a tetrahedron. Therefore, an AIAO state
does not produce the peak at R̃ ≈ 1, which must therefore
originate from the competing state. One can show that Eqs.
(3) for R = 1 and R̃ = 1 admit three solutions [23], which are
precisely the xy, xz, and yz coplanar states discussed above.
The “competing state” at T � Tc is therefore short-range
coplanar, is divergence-free in the “spin field,” and should thus
be viewed as a CP [3]. To expose further the CP nature of the
state at T � Tc, we compute the neutron structure factor S(q)
(second row of Fig. 3) in the (hhl) scattering plane as a function
of T . At T = 0.1, clear pinch points (marked by arrows)
are visible. Some of these pinch points (solid arrows) turn
into magnetic Bragg preaks (T ∼ 0.06) while others (dashed
arrows) become mere weak diffuse spots (forbidden Bragg
peaks [23]) upon going through the transition to AIAO order
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FIG. 3. (Color online) Top row: Probability distribution functions, P (mn), P (R), and P (R̃), as a function of temperature T and for a lattice
of linear size L = 10. The inset of panel (b) shows the T dependence of 〈R〉, which displays a sharp drop at Tc ≈ 0.06, a further indication
for the discontinuous nature of the transition. Bottom row: Temperature evolution of the neutron structure factor, S(q), in the (hhl) plane as T

approaches Tc from the paramagnetic phase. The arrows indicate the location of pinch points for the T = 0.1 and T = 0.08 panels (see text).

at Tc (see T = 0.08, T = 0.07, and T = 0.06 panels in bottom
row of Fig. 3).

Conclusion. Using DFT, we determined the predominant
couplings of the spin Hamiltonian of the FeF3 pyrochlore
Heisenberg antiferromagnet. We find that biquadratic ex-
change and anisotropic direct Dzyaloshinskii-Moriya inter-
actions conspire to select an all-in/all-out ground state. Monte
Carlo simulations find a transition to that state at a critical
temperature Tc ≈ 22 K, in good agreement with experiments.
The transition is characterized by an order parameter pseudo
“critical exponent” β ≈ 0.18, that is also in agreement with
experiment. We view this exponent not as signaling an
unusual universality class, but rather as an effective power-law
parametrization near a very weakly first-order transition,
perhaps near a mean-field tricritical point for which β = 1/4
(up to logarithmic correction because three dimensions is the
upper critical dimension for tricritical behavior [41]). Indeed,
for D/J1 � 0.01, the transition is found to be strongly first
order while it is second order and in the three-dimensional
Ising universality class for D/J1 � 0.1 [42]. We find the state
above Tc to be composed of entropically favored coplanar

states without long-range magnetic order and thus a Coulomb
phase [3]. We hope that our study will motivate a new
generation of experiments on FeF3, perhaps even on single-
crystal samples, which we would anticipate on the basis of our
work to display interesting properties heretofore unexposed in
highly frustrated Heisenberg pyrochlore antiferromagnets.
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